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Abstract

Person re-identification (Re-ID) aims to match pedes-
trians under dis-joint cameras. Most Re-ID methods for-
mulate it as visual representation learning and image
search, and its accuracy is consequently affected greatly
by the search space. Spatial-temporal information has
been proven to be efficient to filter irrelevant negative sam-
ples and significantly improve Re-ID accuracy. However,
existing spatial-temporal person Re-ID methods are still
rough and do not exploit spatial-temporal information suffi-
ciently. In this paper, we propose a novel Instance-level and
Spatial-Temporal Disentangled Re-ID method (InSTD), to
improve Re-ID accuracy. In our proposed framework, per-
sonalized information such as moving direction is explic-
itly considered to further narrow down the search space.
Besides, the spatial-temporal transferring probability is
disentangled from joint distribution to marginal distribu-
tion, so that outliers can also be well modeled. Abun-
dant experimental analyses are presented, which demon-
strates the superiority and provides more insights into our
method. The proposed method achieves mAP of 90.8%
on Market-1501 and 89.1% on DukeMTMC-reID, improv-
ing from the baseline 82.2% and 72.7%, respectively. Be-
sides, in order to provide a better benchmark for per-
son re-identification, we release a cleaned data list of
DukeMTMC-reID with this paper: https://github.
com/RenMin1991/cleaned-DukeMTMC-reID/

1. Introduction
Person re-identification aims to retrieve pedestrians

across non-overlapping camera views. Most existing person
re-identification methods focus on the visual feature repre-
sentations of pedestrian images [6, 11, 14, 27, 32, 35, 38, 36,
42], such as appearance, clothes, and textures. The auxiliary
information of person images is also adopted recently, such
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Figure 1. For each pair of pedestrian images, instance-level spatial
and temporal constraints are provided separately by the proposed
framework. Then they are adaptively combined with the visual
feature similarity for matching.

as parsing information [5, 13, 15, 22, 25], pose of the pedes-
trians [3, 19, 20], or human body key points [33]. However,
the performances of these methods are still far from the re-
quirements of real-world situations. Because it is hard for
visual representations to discriminate pedestrian with simi-
lar appearance and clothes.

Recent methods model spatial-temporal patterns [8, 18,
21, 34] to filter out the irrelevant candidates and narrow
down the search space. Specifically, these methods mainly
formulate spatial-temporal pattern as a joint distribution
P (Sci,cj , T ), where Sci,cj means moving from camera i to
camera j, T means time interval. It has been proven to be
efficient to significantly improve re-identification accuracy.
However, there are two problems of the existing methods.
Firstly, the existing spatial-temporal methods only consider
camera-level but neglect instance-level information. The
state information of each pedestrian is neglected while it
is essential for spatial-temporal patterns of the person. Sec-
ondly, existing methods formulate spatial-temporal patterns
as a joint distribution, meaning that only those candidates
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matching both spatial and temporal priors can be matched.
They are not robust to the outliers.

To solve these problems, we propose a novel method
named Instance-level and Spatial-Temporal Disentangled
Re-ID (InSTD) to model the instance-level and spatial-
temporal disentangled patterns. Firstly, the traditional
spatial-temporal pattern is updated to be conditional on
instance-level state information. Its formulation looks like
p(Sci,cj , T |P ), where P is instance-level pedestrian infor-
mation. The walking direction of the pedestrian, which is
the key instance-level state information, is taken into con-
sideration in this paper. The walking direction of a pedes-
trian is complimentary information of pedestrian detection
and tracking. It is useful because it is highly correlated with
spatial-temporal patterns. For example, a pedestrian, who is
walking towards the west in the view of a camera, is more
probable to appear in the view of the western cameras later,
rather than the eastern cameras. Meanwhile, it is economi-
cal because pedestrian detection and tracking are necessary
steps before person re-identification in practice.

Secondly, we disentangle the spatial-temporal pattern
by constructing their marginal distribution, i.e. transmis-
sion probability P (Sci,cj |P ) and time interval distribution
P (T |P ). They are modeled separately and adaptively com-
bined to handle outliers. If the temporal (spatial) pattern of
a pedestrian is unusual, the person may be normal in the
term of spatial (temporal) patterns. The similarity metric
should focus on the spatial (temporal) pattern. For exam-
ple, a runner, who is moving faster than most pedestrians,
is an outlier from the view of temporal pattern. But the
runner can be quite normal in terms of spatial transmission
perspective. It is harmful to model this runner by joint dis-
tribution of spatial and temporal patterns. To this end, we
propose a novel fusion approach to adaptively combine the
spatial and temporal patterns. The spatial patterns and tem-
poral patterns are complementary, rather than in conflict as
existing methods, so that outliers can also be well modeled.

The contributions of this paper can be summarized as
follows:

• We present a novel instance-level method to model
spatial-temporal patterns for person re-identification.
The proposed method provides personalized predic-
tions by leveraging the instance-level state information
of each pedestrian.

• The instance-level spatial-temporal patterns are decou-
pled into transmission probabilities and time interval
distributions between cameras in the proposed method.
The spatial and temporal patterns become complemen-
tary rather than in conflict as existing methods.

• Without bells and whistles, the proposed method sur-
passes the baseline model based on visual features

by 16.9% on DukeMTMC-reID and 8.6% on Market-
1501 in the term of mAP, and outperforms the state-
of-the-art method based on spatial-temporal patterns
by 4.8% on DukeMTMC-reID and 2.2% on Market-
1501.

2. Related Work
2.1. Visual Features based Re-ID

Person re-identification addresses the problem of match-
ing pedestrian images across non-overlapping camera
views [29, 40]. Many studies exploit discriminative visual
features [2, 26, 37].

Deep learning algorithms foster significant improve-
ments in the field of person re-identification. Some re-
searchers attempt to explore effective convolutional neural
networks [1, 4, 6, 9, 16, 17, 10, 30, 31, 35, 36, 41, 44]. Some
studies explore training strategies and loss functions for
person re-identification [1, 9, 10, 31, 43]. Recently, some
studies leverage the structure information of person images,
such as parsing information [5, 15, 22, 25], pose of the
pedestrians [3, 19, 20, 24], or human body key points [33].

However, appearance-based methods are still far from
practical applications. They are not discriminative enough
in complex scenarios where pedestrians may exhibit simi-
lar appearance and clothes. It is hard to further improve the
performance using only appearance-based features.

2.2. Spatial-temporal Person Re-ID

There are some researchers who have paid attention to
the topology of cameras since the spatial-temporal patterns
implied in the topology are essential for cross-camera re-
trieval. The spatial-temporal constraints are utilized to filter
out the irrelevant gallery images [8, 18, 21, 34]. Huang et
al. [34] propose a method to take both visual feature rep-
resentation and spatial-temporal constraints into consider-
ation for person re-identification. However, this method
makes a strong assumption that the time intervals between
cameras follow Weibull distribution. This assumption is
invalid for complex scenarios. Cho et al. [21] propose a
framework to integrate camera network topology into per-
son re-identification. However, the temporal constraints are
simply realized by time thresholds, which cannot handle
massive gallery images and complex cases in practice. Lv et
al. [18] propose a method that leverage the spatial-temporal
constraints for cross-dataset person re-identification. The
spatial-temporal constraints improve the performance on
the target dataset by enhancing the pseudo label during
training. It is not proper to be directly applied to gen-
eral person re-identification tasks. Wang et al. [8] propose
a two-stream architecture to apply spatial-temporal con-
straints to person re-identification. However, the spatial-
temporal constraints are coupled together in this method,
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Figure 2. Spatial-temporal patterns are implied in the topology of cameras. The spatial-temporal pattern between two cameras of a pedes-
trian are highly correlated with his/her moving direction. Pedestrians in the view of camera 2 may appear in camera 1, camera 3, or camera
5 after a certain time lapse. However, pedestrians with different states will appear in different cameras at different times. For example,
the pedestrian in the red bounding box is much more likely to appear in Camera 3 than Camera 1, because he is moving towards the field
of view of Camera 3. In the proposed method, the instance-level state information is adopted rather than modeling the spatial-temporal
patterns on camera-level as the existing methods.

which is harmful to recalling positive samples. All these
spatial-temporal person Re-ID methods establish the pat-
terns based on the camera-level information, which means
they can not provide fine-grained constraints for each in-
stance.

Different from existing spatial-temporal methods, our
method models spatial-temporal patterns at the instance-
level to filter out more irrelevant gallery images and provide
personalized predictions. And the spatial-temporal patterns
are decoupled into transmission probabilities and time in-
terval distributions to make them mutually beneficial rather
than in conflict.

3. Method
The instance-level spatial constraint i.e. transmission

probabilities, and temporal constraint i.e. time interval dis-
tributions are detailed separately in this section. Then the
adaptive combined metric is presented.

3.1. Instance-level Spatial Constraint

The spatial constraint between two cameras is described
by the transmission probability of the cameras, which
means how tightly the two cameras correlate. Formally, we
model the transmission probability by a conditional proba-
bility:

pi,j = Pr(Cl = j|Ce = i) (1)

Figure 3. View of the first camera of DukeMTMC-reID. The state
set of this camera contains two states: walking towards the red
zone and walking towards the blue zone.

where i and j are the indexes of cameras, Ce is the cam-
era that a person appears earlier, Cl is the camera that the
same person appears later. It is the probability that a per-
son appears in the view of camera j later on the condition
that this person has appeared in the view of camera i. The
conditional probability in Eq. 1 can be easily calculated:

pi,j =
Pr(Cl = j, Ce = i)

Pr(Ce = i)
(2)

The higher the conditional probability means the person
in the view of camera i is more likely to appear in the view
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of camera j later. The time interval between camera i and j
is not involved here. Note that pi,j 6= pj,i in most cases.

However, the spatial patterns of persons appear in the
same camera can be different, as shown in Fig. 2 . To ad-
dress this problem, we introduce the instance-level state in-
formation of a person into the conditional probability:

psi,j = Pr(Cl = j|Ce = i, se = s) (3)

where se is the state of a person in the view of Ce, s ∈ Si,
Si is the set of states:

Si = {s1, s2, ..., sni
} (4)

where ni is the number of states of camera i.
The instance-level states are represented by walking di-

rections of pedestrians. For example, the view of the first
camera of DukeMTMC-reID [7] is shown in Fig. 3. The
state set of this camera contains two states: walking towards
the red zone and walking towards the blue zone. The state
sets of the rest cameras are defined similarly, and the illus-
trations of other cameras can be found in the supplementary
material.

Hence, the instance-level transmission probability can be
calculated:

psi,j =
Pr(Cl = j, Ce = i, se = s)

Pr(Ce = i, se = s)
(5)

3.2. Instance-level Temporal Constraint

The temporal constraint is described by the time interval
distribution, which represents the time lapse for a pedestrian
to transfer between two cameras. Formally, we model the
time interval distribution by a conditional probability den-
sity function:

fi,j(δ) =
dFi,j(δ)

dδ
(6)

where δ is the transfer time, Fi,j(δ) is the cumulative distri-
bution function, which is a conditional probability:

Fi,j(δ) = Pr(∆ ≤ δ|Ce = i, Cl = j) (7)

It can be harmful to recalling positive samples that fitting
fi,j(δ) or Fi,j(δ) into a closed-form probability distribu-
tion. Hence, a non-parameter estimation method is adopted
in our method. Specially, we use Parzen window with Gaus-
sian kernel to estimate fi,j(δ):

fi,j(δ) =
1

Zi,j

∑
n

Hi,j(δ)K(n− δ) (8)

Hi,j(δ) =

{
1 δ ∈ Di,j
0 otherwise

(9)

where K(·) is the kernel function, Zi,j =
∑
δHi,j(δ) is

a normalized factor, Di,j is the time interval set between
camera i and camera j of training samples.

However, the time interval distribution of persons appear
in the same camera can be different, as we have mentioned
before. Similar to the instance-level transmission proba-
bilities, the instance-level state information of a person is
introduced into the conditional probability to address this
problem:

fsi,j(δ) =
dF si,j(δ)

dδ
(10)

F si,j(δ) = Pr(∆ ≤ δ|Ce = i, Cl = j, se = s) (11)

where se is the instance-level state of a person in the view
of Ce. The moving direction is also considered as the key
state information. Similar with Eq. 8 , instance-level time
interval distribution fsi,j(δ) can be estimated:

fsi,j(δ) =
1

Zsi,j

∑
n

Hs
i,j(δ)K(n− δ) (12)

Hs
i,j(δ) =

{
1 δ ∈ Dsi,j
0 otherwise

(13)

where the normalized factor Zsi,j =
∑
δH

s
i,j(δ), Dsi,j is a

subset of Di,j , it contains the samples subject to se = s.

3.3. Joint Metric

Given the transmission probability and time interval dis-
tribution affiliated to instance-level state information, the
spatial-temporal probability is the fusion of them:

P = F(pspa, ptem) (14)

where pspa = psi,j is the instance-level transmission prob-
ability of two images in Eq. 5, and ptem = fsi,j(δ) is the
instance-level time interval probability in Eq. 10. And the
final joint metric of two images is:

S · P = S · F(pspa, ptem) (15)

where S is the visual feature similarity.
A straightforward way to fuse both components is mul-

tiplying pspa and ptem together. However, the constraint
realized by directly multiplying is too strict for person re-
identification. If a spatial/temporal pattern of a pedestrian
is unusual, the person may be normal in terms of tempo-
ral/spatial patterns. This kind of samples should not be re-
moved recklessly. Hence, the spatial-temporal probability
F(pspa, ptem) should be fairly high when only one of them
is high. Fusion by multiplying directly is not proper here
obviously.

The spatial-temporal probability in our method is defined
as:

P =
1

1 + e−(αpspa+βptem)
(16)

where α and β are scaling parameters of similarity fusion.
The spatial and temporal constraints are adjusted by α and
β separately.
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The spatial-temporal factor is scaled into [0.5, 1). The
constraint is relaxed properly when the spatial-temporal
probability is low. And the value of P stays stable when
pspa or ptem is low.

3.4. Implementation Details

More details are presented in this subsection. The mov-
ing direction of a pedestrian is complimentary information
of pedestrian detection and tracking, which is a necessary
step before person re-identification in practice. There is no
need to predict the moving direction by an extra model or
manual annotations. In our experiments, the moving direc-
tions of samples in the field of one camera are confirmed
by tracking them in the original video of this camera. Actu-
ally, the moving direction of a pedestrian can be confirmed
within five consecutive frames in most cases, which can be
easily derived from existing tracking methods.

A pretrained ResNet-50 is adopted as baseline for feature
extraction. We set the standard deviation of the Gaussian
kernel for distribution estimation to 100. As for the scaling
parameters, α, β in Eq. 16 are set to 0.15 and 1 respectively.

4. Experiments
In this section, we evaluate our method on two large

scale person re-identification benchmark datasets, i.e.
Market-1501 [23] and DukeMTMC-reID [7]. Then, more
experimental analysis is presented.

4.1. Datasets and Evaluation Protocol

Market-1501 dataset [23] is collected at a university
campus. A total of six cameras are used, including 5 high-
resolution cameras, and one low-resolution camera. It con-
tains 32,668 annotated bounding boxes of 1,501 identifies,
plus a distractor set of over 500K images. The pedestri-
ans are detected by Deformable Part Model (DPM). Among
them, the training set consists of 12,936 images from 751
identities, the gallery set contains 19,732 images from other
750 identities and all the distractors. 3,368 hand-drawn
bounding boxes from 750 identities are used as the query
images. In this dataset, each image contains its camera in-
dex and time stamp.

DukeMTMC-reID [7] is a subset of DukeMTMC dataset
for image-based person re-identification. There are eight
cameras in total. 1,404 identities appear in more than one
camera and 408 identities (distractor) appear in only one
camera. 702 identities are used for training, and the other
702 identities plus distractors are used for testing. One im-
age for each identity in each camera is picked as a query,
and the other images are put into the gallery. Each image
contains its camera index and time stamp.

We use two performance indexes as in most person re-
identification literature. The first is mean average pre-
cision (mAP). The average precision (AP) of a query is

Methods mAP Rank-1 Rank-5 Rank-10
PCB [38] 77.4% 92.3% 97.2% 98.2%
VPM [39] 80.8% 93.0% 97.8% 98.8%
BOT [12] 85.9% 94.5% - -
SPReID [25] 81.3% 92.5% 97.15% 98.1%
MGCAM [5] 74.3% 83.8% - -
MaskReID [22] 75.4% 90.4% - -
FPR [15] 86.6% 95.4% - -
PDC [3] 63.4% 84.1% - -
Pose-transfer [20] 68.9% 87.7% - -
PSE [28] 69.0% 87.7% 94.5% 96.8%
PGFA [19] 76.8% 91.2% - -
HOReID [33] 84.9% 94.2% - -
Baseline 82.2% 93.6% 98.4% 99.0%
Baseline+st-ReID [8] 88.6% 96.9% 99.2% 99.5%
Baseline+InSTD 90.8% 97.6% 99.5% 99.7%

Table 1. Comparison with the state-of-the-arts methods on Market-
1501. Group 1: vanilla deep learning based methods. Group 2:
human-parsing information based methods. Group 3: pose or key
points based methods. Group 4: spatial-temporal methods.

the area under the Precision-Recall curve, which means
both precision and recall rate is taken into consideration.
Hence, the mean average precision among all query im-
ages is a comprehensive performance index for person re-
identification. The second is the cumulative matching char-
acteristic (CMC) i.e. the top-k accuracy. Hence, the cumu-
lative matching characteristic emphasizes precision rather
than recall rate.

4.2. Comparisons to the State-of-the-Art

The proposed method is compared with fourteen ex-
isting state-of-the-art methods, which can be categorized
into four groups. The first group of methods extract vi-
sual features directly from the person images, including
PCB [38], VPM [39], and BOT [12]. These methods ex-
plore various aspects of visual feature extraction, includ-
ing the structure of convolutional neural networks, training
strategy, data augmentation, and loss function. The second
group of methods adopt human parsing information for per-
son re-identification, including SPReID [25], MGCAM [5],
MaskReID [22] and FPR [15]. The third group of meth-
ods leverage the pose or key points of person images, in-
cluding PDC [3], Pose-transfer [20], PSE [28], PGFA [19]
and HOReID [33]. The fourth group of methods utilize
the spatial-temporal information to enhance the person re-
identification, including TFusion-sup [18] and st-ReID [8].
These methods use hard or soft constraints to narrow the
number of gallery images.

The experiment results on Market-1501 are shown in
Tab. 1, and the results on DukeMTMC-reID are shown in
Tab. 2. Our method outperforms all of the existing meth-
ods on both datasets. Comparing to the baseline model,
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Methods mAP Rank-1 Rank-5 Rank-10
PCB [38] 66.1% 81.7% 89.7% 91.9%
VPM [39] 72.6% 83.6% 91.7% 94.2%
BOT [12] 76.4% 86.4% - -
SPReID [25] 70.9% 84.4% 91.8% 93.7%
MGCAM [5] 46.0% 46.7% - -
MaskReID [22] 61.89% 78.86% - -
FPR [15] 78.4% 88.6% - -
Pose-transfer [20] 56.9% 78.5% - -
PSE [28] 62.0% 79.8% 89.7% 92.2%
PGFA [19] 65.5% 82.6% - -
HOReID [33] 75.6% 86.9% - -
Baseline 72.7% 85.7% 90.9% 93.5%
Baseline+st-ReID [8] 84.3% 94.1% 96.3% 97.2%
Baseline+InSTD 89.1% 95.7% 97.2% 98.0%

Table 2. Comparison with state-of-the-arts for person re-
identification on DukeMTMC-reID [7]. Group 1: vanilla deep
learning based methods. Group 2: human-parsing information
based methods. Group 3: pose or key points based methods.
Group 4: spatial-temporal methods.

which is a ResNet-50, our method improves the mAP by
8.6% on Market-1501 and 16.5% on DukeMTMC-reID, im-
prove the Rank-1 accuracy by 4% on Market-1501 and 10%
on DukeMTMC-reID. Our method achieves significant im-
provements especially in terms of mAP.

Comparing to the methods in the first three groups, the
advantage of our method is obvious. Besides, the compared
methods in the second and third groups need expensive an-
notations, such as key points, pixel-wise parsing maps, and
masks, to match the query and gallery images. Our method
adopts economical information i.e. camera ID, timestamp,
and state information.

The disadvantages of the methods in the fourth group
have been interpreted in Sec. 2. And the interpretations
have been demonstrated by the results of experiments in this
subsection. Given the same baseline model, our method
outperforms the st-ReID by a remarkable margin, espe-
cially in terms of mAP (2.2% on Market-1501 and 4.8% on
DukeMTMC-reID). These results indicate that our method
has evident advantages over existing spatial-temporal meth-
ods.

To show the effect of spatial-temporal constraint, an ex-
ample from DukeMTMC-reID is presented in Fig. 4. The
appearance of the pedestrian in the red bounding box, who
is mistakenly ranked first, is similar to the query image. The
visual representation cannot distinguish it from the correct
identifies as shown in Fig. 4 (a). The incorrect pedestrian,
which is difficult to discriminate for the visual represen-
tation, is filtered out by the spatial-temporal constraint as
shown in Fig. 4 (b).

The effect of instance-level information are shown in
Fig. 5. The spatial-temporal constrains may be misguided

Figure 4. (a): The appearance of the pedestrian in the red bounding
box, who is mistakenly ranked first, is similar to the query image.
(b): The incorrect pedestrian is filtered out by the spatial-temporal
constraint.

Figure 5. (a): The top three of the ranked list are wrong samples
because the spatial-temporal constraints are misguided without
instance-level information. (b): The spatial-temporal constraints
are more reliable because of the instance-level state.

in complex scenarios, as shown in Fig. 5 (a). The instance-
level information can make the spatial-temporal constrains
more reliable for person re-identification. The incorrect
pedestrians are filtered out by the instance-level state as
shown in Fig. 5 (b).

4.3. Experiments on Different Feature Extractors
The proposed method can be applied to different fea-

ture extractors. To verify its effectiveness, we evaluate
the proposed method based on other two feature extractors:
PCB [38], and VPM [39].

The results are shown in Tab. 3. Our method consis-
tently improves the performance of all feature extractors.
Our method gains significant 20%/11% improvement in
mAP/rank-1 accuracy for PCB [38], and 16%+/10%+ im-
provement for the other two feature extractors. Compar-
ing to st-ReID [8], which is also based on spatial-temporal
constraints, our method achieves consistent improvements
too. Our method outperforms st-ReID [8] by 4%+/0.6%+
improvement in mAP/rank-1 accuracy for all of the feature
extractors.

The results show that our method can be generalized to
different feature extractors. Moreover, the results demon-
strate the advantages of our method comparing to the exist-
ing spatial-temporal based method.

4.4. Analysis of Scaling Parameters
To investigate the impact of two scaling parameters, α

and β in Eq. 16, we conduct two sensitivity analysis exper-
iments on α and β. The results are shown in Fig. 6. When
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Methods mAP Rank-1 Rank-5 Rank-10
PCB [38] 66.1% 81.7% 89.7% 91.9%
PCB [38]+st-ReID [8] 80.9% 92.1% 95.4% 96.6%
PCB [38]+InSTD 86.1% 92.7% 96.5% 97.6%
VPM [39] 72.6% 83.6% 91.7% 94.2%
VPM [39]+st-ReID [8] 84.9% 94.2% 96.1% 96.9%
VPM [39]+InSTD 89.3% 95.1% 97.0% 97.9%

Table 3. Effects on different feature extractors. The experiments
are conducted on DukeMTMC-reID [7]

Figure 6. Result of sensitivity analysis experiments on α and β in
Eq. 16. When analyzing one of them, the other one is fixed as its
optimal value. The experimental results show that our method is
is insensitive to fusion parameters.

analyzing one of them, the other one is fixed as its optimal
value: α = 0.15, β = 1. As we can observe, our method
nearly keeps the best performance when α is in the range of
0.1 to 0.3 or β is in the range of 1 to 1.7. The results show
that our method is insensitive to fusion parameters.

4.5. Ablation Study
The ablation study on the instance-level state informa-

tion of pedestrians and the decoupling of spatial-temporal
patterns is presented in this part.

Four protocols are taken into consideration. The first one
is the proposed method itself. In the second protocol, pspa
and ptem in Eq. 14 are replaced by pi,j (Eq. 2) and fi,j(δ)
(Eq. 8). The instance-level state information is excluded in
this protocol.

In the third protocol, the spatial pattern and temporal pat-
tern are coupled together. The normalized factor in Eq. 12
is replaced by Ẑ:

f̂si,j(δ) =
1

Ẑs

∑
n

Hs
i,j(δ)K(n− δ) (17)

Ẑs = max
i,j

Zsi,j (18)

which means all time interval distributions share an identi-
cal denominator. The numerical relations of the area under
curves indicate the transmission probabilities between cam-
eras. And pspa and pspa are replaced by pst Eq. 16:

P =
1

1 + eβpst
, (19)

Protocol Instance Info. ST Decouple mAP Rank-1
1 X X 89.1% 95.7%
2 × X 87.1% 94.3%
3 X × 86.9% 95.0%
4 × × 83.4% 93.8%

Table 4. Ablation Study results on DukeMTMC-reID [7].

pst = f̂si,j(δ) (20)

In the fourth protocol, the instance-level state informa-
tion is excluded based on the third protocol:

f̂i,j(δ) =
1

Ẑ

∑
n

Hi,j(δ)K(n− δ) (21)

Ẑ = max
i,j

Zi,j (22)

The results of these four protocols are shown in Tab. 4.
The results show that the instance-level state information of
pedestrians and the decoupling of spatial and temporal are
both useful to improve the performance.

Besides, the instance-level state information of pedes-
trians is more helpful to Rank-1 accuracy, and the decou-
pling of spatial and temporal patterns is more contributive
to mAP. These results indicate that the decoupling of spa-
tial and temporal patterns is more helpful to improve mAP
by recalling more hard positive samples. The instance-level
state information of pedestrians is more helpful to improve
precision by narrow the number of gallery images. The
combination of these two strategies achieves the best per-
formance.

To demonstrate the effect of introducing instance-level
state information, the time interval distributions between
camera 1 and camera 2 of DukeMTMC-reID are shown in
Fig. 7. The instance-level states are not taken into consid-
eration in Fig. 7 (a). On the other hand, distributions of two
states are shown separately in Fig. 7 (b). The distribution in
Fig. 7 (a) is split into two distributions, which means more
irrelevant gallery images can be filtered out according to the
instance-level state information.

To show the difference between spatial-temporal coupled
constraint and spatial-temporal decoupled constraint, time
interval distributions of camera 1 to camera 2 and camera
1 to camera 5 are shown in Fig. 8. In the coupled case, the
spatial pattern is conveyed by the areas under distribution
curves as shown in Fig. 8 (b). In the decoupled case, the
areas under distribution curves are the same as shown in
Fig. 8 (c), and the spatial pattern is decoupled from the time
interval distributions as transmission probabilities.

4.6. Failure Analysis
In this part, we analyze the failure cases of the proposed

method on DukeMTMC-reID. We find that the failures can
be categorized as four cases:
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Figure 7. The time interval distributions between camera 1 and
camera 2 of DukeMTMC-reID. (a): Time interval distribution
without state information. (b): Time interval distributions with
instance-level state information. The distribution in (a) is split
into two distributions in (b), which means more irrelevant gallery
images can be filtered out according to the instance-level state in-
formation.

Figure 8. The time interval distributions of camera 1 to camera 2
and camera 1 to camera 5 of DukeMTMC-reID. (a): Time inter-
val frequencies. (b): Time interval distributions without spatial-
temporal decouple. The spatial pattern is conveyed by the areas
under distribution curves. (c): Time interval distributions with
spatial-temporal decouple. The areas under distribution curves are
the same. The spatial pattern is decoupled from the time interval
distributions as transmission probabilities. (Instance-level state in-
formation is not shown for simplicity.)

Firstly, there are incorrect labels in DukeMTMC-reID.
The proportion of failure cases caused by incorrect labels
is 16.2%. It is harmful to keep the incorrect labels in

the database. Hence, we release a cleaned data list of
DukeMTMC-reID with this paper: https://github.
com/RenMin1991/cleaned-DukeMTMC-reID/.

Secondly, the feature extractor is fooled because of seri-
ous occlusions. For example, the upper part of two individ-
uals is quite similar while the lower part is occluded. The
proportion of this case in all failures is 56.9%.

In the third case, the visual feature is not discriminative
enough to distinguish the hard negative samples. The pro-
portion of this case in all failures is 23.5%.

In the last case, the proposed method outputs high prob-
abilities due to spatial-temporal patterns. However, it im-
properly pushes up the final joint metric. The proportion of
this case in all failures is 3.4%.

The failure analysis shows that serious occlusion is the
main cause of mismatching (56.9%). The second important
reason is that the feature extracted by the recognition model
is not discriminative enough (23.5%). Incorrect labels also
degrade the performance (16.2%). The proportion of failure
samples caused by the improper spatial-temporal probabil-
ity in all failures is quite small (3.4%).

5. Conclusion
In this paper, we propose a method to exploit spatial-

temporal patterns for person re-identification. Different
from the existing spatial-temporal person re-identification
methods, the proposed method adopts the walking direction
of each pedestrian, as key instance-level state information,
to provide personalized predictions. In addition, the spatial-
temporal patterns are decoupled into transmission probabil-
ities and time interval distributions between cameras. The
spatial-temporal patterns become mutually beneficial rather
than in conflict with each other as current methods. A novel
joint metric is proposed to fuse the instance-level spatial
constraint, temporal constraint, and visual feature similar-
ity. The superiority of our method is demonstrated by ex-
tensive contrast experiments. And adequate experimental
analyses provide more insights into our method.
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