
Robust Automatic Monocular Vehicle Speed Estimation for Traffic Surveillance

Jerome Revaud Martin Humenberger
NAVER LABS Europe

firstname.lastname@naverlabs.com

Abstract

Even though CCTV cameras are widely deployed for
traffic surveillance and have therefore the potential of be-
coming cheap automated sensors for traffic speed analysis,
their large-scale usage toward this goal has not been re-
ported yet. A key difficulty lies in fact in the camera calibra-
tion phase. Existing state-of-the-art methods perform the
calibration using image processing or keypoint detection
techniques that require high-quality video streams, yet typ-
ical CCTV footage is low-resolution and noisy. As a result,
these methods largely fail in real-world conditions. In con-
trast, we propose two novel calibration techniques whose
only inputs come from an off-the-shelf object detector. Both
methods consider multiple detections jointly, leveraging the
fact that cars have similar and well-known 3D shapes with
normalized dimensions. The first one is based on minimiz-
ing an energy function corresponding to a 3D reprojection
error, the second one instead learns from synthetic training
data to predict the scene geometry directly. Noticing the
lack of speed estimation benchmarks faithfully reflecting the
actual quality of surveillance cameras, we introduce a novel
dataset collected from public CCTV streams. Experimen-
tal results conducted on three diverse benchmarks demon-
strate excellent speed estimation accuracy that could enable
the wide use of CCTV cameras for traffic analysis, even in
challenging conditions where state-of-the-art methods com-
pletely fail. Additional information can be found on our
project web page: https://rebrand.ly/nle-cctv

1. Introduction

Being able to accurately measure the traffic speed on
road networks is important for many applications like live
intelligent transportation system and itinerary planning,
traffic analysis [24, 40], and anomaly detection [18, 10].
This is normally achieved through dedicated hardware sen-
sors like roadside radar sensors on highways, inductive loop
detectors at intersections, GPS data collected from probe
fleet, etc. [32, 23]. Nevertheless, such equipment is expen-
sive and can hardly be deployed quickly and at a large scale.

Figure 1. Cars in the BrnoCompSpeed [44] benchmark (left) and
our CCTV dataset (right) displayed at their actual apparent size.
Calibration methods [16, 43, 9, 5, 4] are based on image pro-
cessing techniques (estimating angles of lines on moving cars,
green lines) or keypoint localization (colored crosses) that are both
highly impacted by image quality and resolution. Applying the
same techniques on actual CCTV footage, where the resolution is
low and quality often mediocre, turns out to be nearly impossible.

Traffic surveillance cameras, often (improperly) dubbed
CCTVs, are already widely deployed for manual traffic
monitoring. Since they are directly filming roads and ve-
hicles, they provide a rich flow of video data that im-
plicitly contains nearly all relevant traffic information. It
has therefore been noted that CCTV cameras have the
potential to be turned into traffic speed sensors at little
cost [2, 32, 30, 18, 28, 23]. In this paper, we precisely fo-
cus on this particular problem, i.e. the estimation of vehi-
cle speed from monocular videos captured via surveillance
cameras. This is in fact a challenging problem. As a mat-
ter of fact, there is to the best of our knowledge no large-
scale usage of CCTV cameras for automated traffic speed
surveillance, despite the public availability of CCTV real-
time video streams [23, 2, 30, 18].

One of the explanation lies in the fact that state-of-
the-art approaches often assume that cameras are already
calibrated [42, 35], which is rarely the case for CCTVs.
Still, recent methods were developed to automatically cali-
brate cameras by looking for specific clues on moving ve-
hicles [17, 43, 9, 6, 6, 5]. For instance, one solution is
to look for straight edges perpendicular to the car motion
and parallel to the ground (green lines in Fig. 1), as the

14551

Figure 2. Example of frames from typical CCTV cameras. Resolu-
tion and quality are typically low and cars can appear quite small.

apparent angle between perpendicular edges is related to
the camera focal [16, 43]. Another option is to localize
certain keypoints (colored crosses in Fig. 1) which, com-
bined with the knowledge of the corresponding 3D car
model, establish 2D-3D correspondences that lead to the
camera 3D pose [9, 6, 6, 5]. These techniques, however, are
complex and highly sensitive to noise, hence high-quality
footage with high-resolution is required in practice. The
BrnoCompSpeed dataset [44], which serves as benchmark
for all these methods, incidentally comprises only high-
resolution videos (2M Pixels) captured with high-quality
optics that are unlikely to be encountered in field condi-
tions. CCTV footage typically consists of low-quality, low-
resolution and blurry/noisy video clips with tiny-looking
cars, as exemplified in Fig. 1 and 2.

In this paper, we take a radically different approach for
estimating the speed of vehicles solely based on vehicle
detections that are output by an off-the-shelf object detec-
tor. As a first contribution, we propose a novel calibration
method based on minimizing a 3D reprojection error that
leverages general assumptions about the 3D shape and di-
mension of cars. As a second contribution, we propose a
trainable version of the first method that instead learns to
predict the scene geometry directly. Both approaches can
handle non-straight roads and recover the full camera cal-
ibration in order to calculate vehicle speeds. Finally, as a
third contribution, we introduce a novel dataset collected
from public CCTV video streams and annotated with GPS
tracks. Our experiments demonstrate excellent performance
on synthetic and real data, even in challenging conditions.

2. Related work
In this section, we present prior art on vehicle speed esti-

mation, camera calibration, and 3D vehicle pose estimation.
We restrict our review to the vision-based methods for the
sake of brevity.
Vehicle speed (velocity) estimation. Measuring the speed
of vehicles purely from visual input, i.e. without using ded-

icated physical sensors, has been considered actively since
at least two decades [42, 19, 21] (see [34] for a compre-
hensive survey). The vast majority of approaches, includ-
ing modern ones [17, 18, 22, 28, 33, 35, 46, 23, 6, 5],
can be formulated as a 3-step pipeline consisting of (1)
detecting and (2) tracking vehicles, followed by (3) con-
verting displacements from pixels to meters. Earlier works
achieved vehicle detection via handcrafted methods such as
background subtraction [15, 19, 21]. Nowadays, object de-
tectors based on deep networks (e.g. Faster-RCNN [41]),
and possibly fine-tuned to CCTVs conditions [27], are pre-
ferred due to their robustness and superior performance
[18, 43, 28, 46]. Temporally connecting these detections
in order to form vehicle tracks can then be performed ei-
ther heuristicly (e.g. Kalman filter [8], [17, 46]) or with
learned models [28]. The last step involves to convert each
track, i.e. the pixel coordinates of a given vehicle along
time, to meters in a world coordinate system. To the best
of our knowledge, this step is systematically performed un-
der the planar road assumption, which assumes that a ho-
mography directly maps image pixels to metric coordinates
[27, 28, 33, 35, 44, 46, 43, 23, 30, 17, 18].

Camera calibration. Estimating the homography that re-
lates the camera view with the road plane essentially boils
down to calibrating the camera. This step is critical for the
accuracy of vehicle speed measurements, as the speed es-
timation is highly sensitive to the calibration quality. The
calibration consists of determining the intrinsic and extrin-
sic camera parameters describing, e.g., the focal length and
camera 3D pose (translation and rotation) [13]. We refer
the reader to [44] for a more detailed review on camera cal-
ibration and now only include a brief description of exist-
ing methods. Calibration parameters are either manually
entered by the user [42] or estimated automatically from
CCTV footage. Manual methods typically require the user
to annotate several points on the road with known coor-
dinates [42, 44, 36, 35]. Automatic methods usually as-
sume a straight planar road and rely on detecting vanishing
points as an intersection of road markings (i.e. line paint-
ings) [12, 11, 21] or from vehicle motion [13, 17, 16, 43].
Note that finding the vanishing points is not sufficient to
fully calibrate the camera as it yields an homography up to
an unknown scaling factor. This factor also needs to be es-
timated accurately since it affects all speeds linearly. Semi-
automatic approaches therefore adopt some form of man-
ual annotations where several known distances are typically
carefully measured on the image by an operator [18, 28, 46].
FullACC and its improved version [16, 43] have been pro-
posed to overcome these limitations and perform a fully-
automatic calibration. After recovering the vanishing points
using image-processing techniques, the scaling factor is es-
timated by fine-grained categorization of the vehicles (SUV,
sedan, combi, ...), retrieving a corresponding 3D CAD

4552

model and measuring the reprojection error w.r.t. the ob-
served bounding box. While our first method also leverages
box reprojection errors, it is able to recover all camera pa-
rameters (not just the scale), including the focal. Further-
more, our method does not require a specially trained net-
work for fine-grained vehicle classification and works with
any off-the-shelf object detector.

Vehicle 3D pose estimation. Another line of research to
calibrate the camera aims to estimate the 3D pose (trans-
lation and rotation) of rigid objects with known dimen-
sions. There exists a vast literature on 3D pose estima-
tion and we now briefly review relevant works (for a re-
cent review see e.g. [47]). Earlier works on 3D vehicle
pose estimation are based on edge-guided non-rigid match-
ing with 3D models [31] or cascades [25, 50]. With the
advent of deep learning, deep network have successfully
been applied to this task in various contexts (object pose es-
timation [50], car pose estimation for autonomous driving
and for surveillance purposes [47, 45]). Existing works for
estimating the 3D poses of vehicles either directly regress
the global vehicle translation and rotation w.r.t. the cam-
era [29, 38, 39, 45, 50] under constrained conditions (usu-
ally for autonomous driving), or predict the 2D positions
of certain keypoints [48, 49, 3, 47, 4] and solve a PnP
problem to jointly recover the homography and scale fac-
tor [9, 4, 5, 6]. Our second method regresses the homog-
raphy Jacobian, which is a subset of the 3D vehicle pose
(see Section 3.2), hence it is conceptually closer to this lat-
ter category of methods than to the calibration-based ap-
proaches. An important drawback of all these 3D pose esti-
mation methods is that they require both a fine-grained cat-
egorization of vehicles and an accurate prediction of the 2D
keypoint positions [9, 45, 4, 5, 6]. While this is feasible with
high-resolution and high-quality videos, it becomes close to
impossible with typical surveillance cameras, even for the
human eye, as shown in Figure 1. In contrast, our method is
able to predict the 3D pose of vehicles from weak clues and
without categorizing vehicles nor detecting landmarks, but
rather by accumulating evidences from multiple detections,
making it broadly applicable without further requirements.

3. Automatic calibration method

We present in this section two different methods, yet
based on similar insights, for automatically calibrating the
camera given a set of vehicle detections. The first method
consists in minimizing a 3D reprojection error given a ren-
dering of the scene based on the calibration (Section 3.1).
The second method learns to predict the outcome of this
handcrafted and computationally expensive minimization
using a transformer network (Section 3.2).

3.1. Reprojection-based method

We seek to minimize an objective function E(H) 7→ R
that measures the fit between a camera calibration H and a
set of vehicle detections D. The overall calibration proce-
dure can thus be simply formulated as

H∗ = argmin
H

E(H,D). (1)

In this paper, we make the (reasonable) assumption that
the road portion visible in the scene is planar. In this case,
calibrating the camera amounts to recovering an homogra-
phy H : R2 → R2 that maps a position x ∈ R2 in the metric
road coordinate system to a pixel position H(x):

H(x) =

(
H1x̄

H3x̄
,
H2x̄

H3x̄

)
,

where H ∈ R3×3 is the homography matrix (Hi denotes
the i-th row) and x̄ = (x0, x1, 1). We point out that H con-
veniently includes all extrinsic and intrinsic camera param-
eters, i.e. it can be uniquely decomposed into a rigid motion
(rotation R and translation T forming [R|T] ∈ SE(3)) fol-
lowed by a projection on the image plane using the intrinsic
calibration matrix K ∈ R3×3:

H = K [R |T]D, (2)

where D = diag ([1, 1, 0, 1]) projects onto the xy plane.
While an homography normally has 8 degrees-of-freedom
(DOF), we can reduce this number to only 3 free parameters
in our particular case by assuming square pixels, no skew, a
principal point at the image center as in [5], no camera roll
and noticing that vehicle speeds, i.e. length measures, are
invariant to translations and rotations in the 2D road plane.
Note that these simplifying assumptions have little impact
on the final system accuracy even when they are strongly
violated, see Section B in the Supplementary. Specifically,
an homography is generated by selecting a focal f , a camera
tilt angle γ and a camera height z (in meters) in Eq. (2):

H = T
(
Iw
2
,
Ih
2

)
F

Rx(γ)

∣∣∣∣∣∣
0
0
−z

D, (3)

where T : R2 → R3×3 is a 2D translation, F =
diag ([f, f, 1]), Rx : R → R3×3 is a 3D rotation around
the x-axis, and (Iw, Ih) is the image dimension. In the
following, we denote the Jacobian of H at a position x as
JH(x) ∈ R2×2.

3.1.1 Energy function

Our goal is to evaluate the fit of a given calibration H
w.r.t. a set of detected vehicle tracks D. Specifically, we
define D = {Tj} as a set of |D| vehicle tracks pro-
duced by a vehicle detector and tracker, where each track

4553

Tj = {(bj,n, tj,n)} is composed of a sequence of 2D car
bounding boxes bj,n ∈ R4 and their corresponding times-
tamps tj,n ∈ R. The key insight is that the size of the
bounding boxes should roughly match what the calibra-
tion H would predict, knowing the actual 3D car’s posi-
tions and dimensions in the 3D world. In other words, the
energy E(H,D) consists of a reprojection error between
the true bounding boxes and the ones fitted using H, i.e.
E(H,D) =

∑|D|
j=1 Ej(H, Tj) with

Ej(H, Tj) =
|Tj |∑
n=1

d(bj,n, pH(bj,n)), (4)

where d : R4 × R4 → R+ is a box error function and
pH(bj,n) is the predicted bounding box computed as fol-
lows. Assume a car visible on the road and its corre-
sponding (observed) bounding box b ∈ R4. Further as-
sume knowledge of the car’s geometry, which we denote
as an array of 3D points A ∈ R3×N bottom-centered at 0
and aligned with the three main axis (i.e. length, width and
height respectively aligned with x-, y- and z-axis). Further
denote the rotation Rb ∈ R3×3 and translation Tb ∈ R3 that
transport the car on the road in the 3D world and orientate
it properly, then the bounding box pH(b) can be computed
as

pH(b) =
(
min
i

A′
1,i,min

i
A′

2,i,max
i

A′
1,i,max

i
A′

2,i

)
(5)

with A′ = P(RbA + Tb) and P : R3 → R2 is the 3D
counterpart of H, constructed as in Eq. (2) but without D.
The car geometry A can be assumed fixed as most cars have
similar shapes, hence the goal of the fitting procedure is to
calculate Rb and Tb knowing the observed bounding box b.
For the rotation Rb, we first point out that the car motion
in the image and in the real-world road are related by the
homography’s Jacobian. More specifically, let µb denote
the center of the bounding box. The apparent motion of
the car in the image can be expressed as mb = ∂µb

∂t ∈ R2.
The Jacobian of H−1, denoted as JH−1 = J−1

H yields by
definition the motion qb ∈ R2 in the real-world road plane:

qb = J−1
H (µb)mb. (6)

Hence the car’s principal axis must then be aligned with
qb. Since the car is horizontally sitting on the xy plane, its
vertical axis is z = [0, 0, 1]⊤. All in all, we have Rb =
[q̄b, z × q̄b, z] ∈ R3×3 where q̄b = qb/ ∥qb∥ and × denotes
the cross-product.
For the translation Tb, we proceed with an iterative fixed-
point algorithm. As initial estimate, we project µb on the
road manifold T 0

b = H−1 (µb). Due to perspective effects
and the fact that the car’s center µb is slighlty above the
road plane, the predicted box p0H(b) is not well centered on
b. We then iteratively correct T k

b , k = 0 . . .K, as follows.

Based on T k
b , we first compute pkH(b) from Eq. (5) and its

apparent center µ
(
pkH(b)

)
. The translation T k

b is then up-
dated according to the difference between the expected and
predicted centers:

T k+1
b = T k

b + T 0
b −H−1

(
µ
(
pkH(b)

))
. (7)

This procedure converges very quickly in practice, as we
find that K = 3 iterations suffice to almost perfectly align
the observed and predicted bounding boxes.

3.1.2 Box error function

We measure the error d(b, b′) between 2 boxes, defined by
their boundaries b, b′ = (left, top, right, bottom), using their
weighted intersection-over-union (IoU):

dIoU(b, b
′) = αb

(
1− intersection(b, b′)

union(b, b′)

)
. (8)

We find that larger boxes convey more information due
to perspective effects being more pronounced for objects
closer to the camera. Because perspective effects are ul-
timately the only way to precisely estimate the focal, we
upweight errors on those closer (hence larger) boxes with
αb =

√
area(b).

Masked IoU. We also consider a more precise version of
this error that receives masks instead of rectangular boxes.
A binary mask indicating the presence or absence of the
car for each image pixel can be obtained either as a di-
rect output of the vehicle detector, for instance using Mask-
RCNN [20], or it can be computed using background sub-
traction techniques [16]. The formula stays the same as in
Eq. (8) except that b, b′ ∈ {0, 1}Iw×Ih are binary masks.
We denote the masked IoU similarity as dmsk-IoU.

3.1.3 Dealing with car categories

We assumed above that the car geometry was known in ad-
vance. In reality, this is not quite the case as there exists
several categories of cars (e.g. sedan, SUV, etc.) which have
different shapes and dimensions, see Fig. 3. We therefore
collect a catalog A of several 3D car models and modify
Eq. (4) accordingly in order to identify the optimal proto-
type for each vehicle track:

E(H, Tj) = min
A∈A

|Tj |∑
n=1

d(bj,n, pH,A(bj,n)). (9)

Computing speeds. As a direct by-product of this en-
ergy minimization, we compute vehicle speeds straightfor-
wardly based on the recovered 3D box translations {Tb}
from Eq. (7), i.e. vb =

∥∥∂Tb

∂t

∥∥.

4554

Figure 3. The catalog A of 3D car models used in Eq. (9).

3.2. Learning-based method

The reprojection method presented above is robust and
works well in practice but is computationally demanding.
Indeed its complexity linearly increases with (i) the number
of detections, (ii) the number of 3D models in the catalog A,
and (iii) the number of 3D points per model. In practice, the
minimization takes about 20 minutes for a short video clip
of 30 seconds (see Section 4.2). In this section, we propose
a fast method that learns to directly predict the calibration.
It consists of a deep network fθ that takes as input a set of
car detections D = {b, . . . } and outputs a corresponding set
Ĵ =

{
(µ̂b, Ĵb), . . .

}
, where µ̂b ≃ P(Tb) predicts the 2D

position of the actual 3D car bottom-center Tb, and Ĵb ≃
JH(µ̂b) predicts the Jacobian of H at this position.
Direct speed estimation. The network output Ĵ contains
enough information to fully recover the car speed vb. Indeed
the speed is defined as the norm of its 3D motion vb =
∥qb∥ =

∥∥∂Tb

∂t

∥∥ and, according to Eq. (6):

q̂b ≃
(
Ĵb

)−1 ∂µ̂b

∂t
. (10)

Homography prediction. In practice, the regressions out-
put by the network are noisy, hence it is desirable to filter
them and improve their overall consistency. Specifically, we
aim at recovering an homography Ĥ that achieves a good
consensus among all output Jacobians in Ĵ . We achieve
this goal using a RANSAC procedure. At each iteration, we
randomly sample 2 predictions (µ̂i, Ĵi) and (µ̂j , Ĵj), i ̸= j,
and recover a homography Ĥi,j consistent with both Jaco-
bians (see Supplementary). We then compute the consensus
score of Ĥi,j with respect to all Jacobians in Ĵ . Finally we
select the homography that maximizes the consensus:

Ĥ = argmax
i,j

|Ĵ |∑
n=1

score
(
Ĥi,j , µ̂n, Ĵn

)
. (11)

The score is defined as the similarity between Ĵn and the
corresponding Jacobian according to Ĥi,j :

score(Ĥ, µ̂, Ĵ) = sim
(
JĤ,1(µ̂), Ĵ1

)
sim

(
JĤ,2(µ̂), Ĵ2

)
.

The similarity is computed for both column vectors of Ĵ =
[Ĵ1, Ĵ2] using a criterion that penalizes the orientation dif-

Figure 4. Visualisation of the representation rb extracted for car
mask b. Left: Synthetic scene. Right: ellipses (1st and 2nd order
moments) and normalized motion (arrows) on top of binary car
masks. More examples are in the supplementary.

ference (1st factor) and the norm difference (2nd factor):

sim(V, V ′) =
V ⊤V ′

∥V ∥ ∥V ′∥
.
min (∥V ∥ , ∥V ′∥)
max (∥V ∥ , ∥V ′∥)

.

3.2.1 Network architecture and training

We use a transformer architecture for the network as it nat-
urally handles inputs in the form of a set. Specifically, we
stack several encoder blocks as in, e.g., BERT [14]. Since
the network takes as input a set of vectors, we need to com-
pute a representation rb ∈ RB for each detection b. For the
sake of simplicity as well as for bridging the domain gap
between synthetic and real data (see below), we choose a
simple and straightforward representation. Given a car de-
tection in the form of a pixel mask b ∈ {0, 1}Iw×Ih , with
non-zero pixels Pb = {(i, j)|bi,j = 1}, we concatenate the
first- and second-order moments of Pb (i.e. an ellipse) to-
gether with its apparent motion mb (see Eq. (6)), all being
normalized for generalization purposes. We obtain an 8-
dimensional representation that formally writes as

rb =

[
mean(

Pb

Iw
), cov(

Pb

Iw
),

mb

∥mb∥

]
∈ R8.

While it can be argued that more sophisticated represen-
tations based e.g. on auto-encoders [37] of car images could
be used, this representation offers the advantage of being
compatible with fully synthetic training, almost completely
eliminating the domain gap. In addition, it is simple and
yields good performance in practice, see Section 4.
Training. To train the network, we generate synthetic train-
ing data on the fly by randomly generating scenes with dif-
ferent camera, road, and car poses (see Eq. (3)). For each
scene, we render each car’s mask and then extract their rep-
resentations {rb, . . . }. Examples of rendered masks and
corresponding representations are shown in Figure 4.

For each scene, a set of 32 detections is fed to the net-
work. We zero-pad the representation to 64 dimension
and use 256 hidden layers in the encoder blocks. The 64-
dimensional network outputs are linearly projected to 8-
dimensional vectors z = [µ̂− Ĵ1, µ̂− Ĵ2, µ̂+ Ĵ1, µ̂+ Ĵ2] ∈
R4×2 from which we can recover both µ̂ = 1

4

∑
n zn and

4555

Ĵ = 1
2 [z3 − z1, z4 − z2]. We minimize the ℓ2 loss between

the output and the ground-truth targets µ∗ and J∗:

L(µ̂, Ĵ , µ∗, J∗) = ∥µ̂− µ∗∥2 + λ
∥∥∥Ĵ − J∗

∥∥∥2 , (12)

where λ is a hyper-parameter. We also tried to directly op-
timize for the speed error, but due to the instability of the
matrix inversion involved in Eq. (10) we obtained consis-
tently inferior results.

4. Experiments
We now evaluate the two proposed speed estimation ap-

proaches on synthetic and real data. In particular, we intro-
duce in Section 4.4 a new dataset that most closely repre-
sents actual CCTV footage.
Metrics. In order to get unbiased performance with respect
to the target task, we report results in terms of speed error
(in km/h if absolute or % if relative). Unless told otherwise,
we compute the median error for each video clip and report
the average and median errors at the dataset level.

4.1. Implementation details

3D car models. We obtain from the Unity 3D engine cat-
alog1 a set of 10 realistically shaped vehicles shown in
Figure 3. They comprise a variety of car categories and
shapes (sedan, SUV, etc.). Each vehicle track in the syn-
thetic datasets that we generate is randomly assigned to one
of these 10 models.
Energy minimization. The energy function defined in
Eq. (9) is not convex and may comprise many local min-
ima, but we seek to find the global one (see Eq. (1)). We
thus adopt a robust Gaussian optimization algorithm [7] to
approach this goal in minimal time. The algorithm itera-
tively samples the 3 homography parameters from Eq. (3)
randomly in the following ranges: focal f ∈ [Iw/5, 5Iw],
tilt γ ∈ [0, π/2], and height z ∈ [2, 50]. The value of the
error E(H,D) is used to update a tree-based probabilistic
model for drawing the next random samples [7]. We return
the best model found after Γ = 5000 trials.
Network training. We use a stack of 8 encoder layers to
construct the network fθ. We train the network for 10,000
epochs, where each epoch comprises 128 scenes and each
scene contains 32 cars. We feed the network with batches
of 16 scenes and perform gradient descent using Adam [26]
with an exponentially decaying learning rate starting at
3.10−3 and ending at 10−4, without weight decay. We fix
the loss hyper-parameter to λ = 4 to favor an accurate Ja-
cobian Ĵ . At each epoch, we measure the average speed
error using Eq. (10) on a held-out validation set, randomly
generated as well. We select the model with the minimum
validation error and use it for the experiments. Training
curves are shown in Figure 5.

1https://assetstore.unity.com

0 2000 4000 6000 8000 10000
Training epochs

10 6

10 5

10 4

10 3

10 2

Tr
ai

ni
ng

 lo
ss

10 1

100

Va
lid

at
io

n
Er

ro
r

Loss
Validation Error

2 4 6 8 10
Number of 3D models

0

2

4

6

8

10

Av
er

ag
e

Sp
ee

d
Er

ro
r (

km
/h

)

Accuracy versus number of 3D models
3D-Reproj (Mask IoU)
3D-Reproj (Box IoU)

Figure 5. Left: Training curves for the learned approach. Right:
Accuracy as a function of the number of 3D models in the library
on the synthetic benchmark. Variance for each curve is indicated
with a shaded area.

0.01 0.03 0.1 0.3 1 2 5 10 20
Calibration Time per Camera (minutes)

10

100

1000

5

20

50

200

500

Av
er

ag
e

Sp
ee

d
Er

ro
r (

km
/h

)

Accuracy versus Computation tradeoff
3D-Reproj (Box IoU)
3D-Reproj (Mask IoU)
Learned+Jacobian
Learned+RANSAC

Figure 6. Speed error as a function of the time spent to compute
the calibration for different methods.

4.2. Synthetic dataset

We first evaluate our proposed approaches in perfectly
controlled conditions with a synthetic benchmark and ad-
justable noise levels. Using the same procedure than for
the training dataset, we generate 128 short video clips of
128 frames each with a resolution of 1024x768 pixels. For
each clip, vehicles are placed randomly on the road (no col-
lisions are allowed) and are given a random speed in the
range [30, 100] km/h. Sample scenes are presented in Fig-
ure 4.
Number of 3D car categories. We first focus on the re-
projection error minimization method from Section 3.1, de-
noted as ‘3D-reproj’ in the following, in noiseless condi-
tions. We plot in Figure 5 the speed error for different
numbers of 3D models in the catalog A (Section 3.1.3) and
the box error functions (Section 3.1.2). Surprisingly, we
observe no significant difference in accuracy regardless of
the box error function or the number of models used. In
fact, the error even slightly increases when this number aug-
ments, which may be explained by the fact that Eq. (9) be-
comes more complex and thus harder to minimize. Since
computing time is directly proportional to the number of
used 3D models, we limit the catalog A to 3 models for the
reprojection-based method in the remainder of this paper.
Accuracy versus time. We plot the calibration accuracy
as a function of the computation time for each method
in Figure 6. For 3D-reproj, we vary the number of tri-
als Γ ∈ {1, . . . , 5000}. For the learning-based method
(Section 3.2), we measure the average time taken for the

4556

0% 2.5% 5% 10%
Relative bounding box noise

10

100

5

20

50
Av

er
ag

e
Sp

ee
d

Er
ro

r (
km

/h
)

Impact of noise
3D-Reproj (Box IoU)
3D-Reproj (Mask IoU)
Learned+Jacobian
Learned+RANSAC

Figure 7. Impact of noise on the different methods.

Figure 8. Sample frames from the BrnoCompSpeed dataset [44].
Note the lack of diversity, high resolution (2 MPix) and the overall
lack of challenges (e.g. roads are straight, well illuminated, etc.)

direct speed estimation using the Jacobians (10) or using
RANSAC (11). While all methods except Learned-Jacobian
obtain good results (i.e. below 4 km/h in average absolute
error), it is clear that 3D-reproj is many orders of magnitude
slower than learning-based methods. The slowest masked-
IoU version yet achieves the best accuracy overall. In con-
trast, learned methods are almost instantaneous. For the
case of Learned-Jacobian, we observe poor accuracy caused
by noisy regression output Ĵ , further reinforced by the sim-
plistic speed estimation scheme from Eq. (10) that tends to
accumulate errors. Filtering Ĵ with RANSAC instead turns
out very competitive, almost reaching the same accuracy
than 3D-reproj combined with masked IoU.
Impact of noise. We add Gaussian noise to the bounding
box coordinates (i.e. masks are translated). We experiment
with different strengths of noise relatively to the box sizes
and present results in Figure 7. While all methods are af-
fected by noise, we observe that 3D-reproj is much more
sensitive, especially if the pixel mask is not used. There-
fore, we use the mask-based error in all remaining exper-
iments. Surprisingly, the learning-based method is nearly
unaffected and appears very robust, even though it is trained
on noiseless data.

4.3. Results on the BrnoCompSpeed dataset

The BrnoCompSpeed dataset [44] consists of 18 videos
(6 locations, 3 viewpoints per location) and comprises a to-
tal of 20,865 vehicles annotated with ground-truth speed. It
covers viewpoints typical for traffic surveillance (see Fig-
ure 8) and various traffic conditions (low traffic in Session
3, high traffic in Sessions 5 and 6).
Detection and tracking. We use an off-the-shelf object de-
tector and tracker to compute the detections set D. Specif-
ically, we use the default pre-trained Mask-RCNN [20]
model from PyTorch [1]. To track detections, similarly to
Kumar et al. [28] we use SORT [8], an online Kalman-

Recall FPPM
FullACC [16] 0.885 9.77

FullACC++ [43] 0.863 1.91
Ours 0.948 4.61

Table 1. Evaluation of our detection and tracking pipeline on the
BrnoCompSpeed dataset [44] in terms of recall and false positive
per minutes (FPPM).

10 1 100 101 102

Error [km/h]

0

20

40

60

80

100

Pr
op

or
tio

n
of

 v
eh

icl
es

 (%
)

FullACC [16]
3D-Reproj (box IoU)
3D-Reproj (mask IoU)
Learned + Jacobian
NoContext + RANSAC
Learned + RANSAC

Figure 9. Cumulative histogram of absolute errors for the
BrnoCompSpeed dataset [44]. The vertical dashed line indicates
the 3 km/h error threshold.

Abs error (km/h) Rel error (%) Time (s)
avg median avg median avg

3D-reproj (box IoU) 5.70 2.85 7.04 3.61 1.49K
3D-reproj (mask IoU) 2.84 2.03 3.46 2.58 2.84K

Learned+Jacobian 9.21 6.47 11.51 8.12 15.9
NoContext+RANSAC 3.01 2.59 3.69 3.31 2.5

Learned+RANSAC 2.15 1.60 2.65 2.07 2.9
FullACC [16] 8.59 8.45 10.89 11.41 200

FullACC++ [43] 1.10 0.97 1.39 1.22 >200
Table 2. Results for the BrnoCompSpeed dataset. Note that Ful-
lACC++ [43] results are not strictly comparable as they were ob-
tained on a subset of 9/18 videos, the other 9 videos being used to
train their method.

filter-based algorithm that is simple and efficient. Note
that tracking also enables to filter out most false detections.
Namely, we eliminate still tracks (no motion) and spurious
tracks that contain not enough detections. We also remove
non-car tracks (e.g. trucks) based on the label provided by
Mask-RCNN as well as tracks that are in masked regions
according to the provided video mask. This off-the-shelf
pipeline achieves state-of-the-art recall on the BrnoComp-
Speed dataset [44], see Table 1.
Results. To calibrate cameras on the BrnoCompSpeed
dataset [44], we run our methods on a subset of 100 ve-
hicles tracks (or less) detected in the first 6 minutes of each
video. We compute results on the split A using the official
evaluation code and report them in Figure 9 and Table 2.
Overall, the proposed methods perform excellently, being
it handcrafted (3D-reproj) or learned (Learned-RANSAC).
They also largely outperform the fully automatic method
FullACC [16] in terms of absolute and relative errors. Note
that [43] reports even better results for their improved ver-
sion FullACC++, but they are not strictly comparable as

4557

Abs error (km/h) Rel error (%) Time (s)
avg med avg med avg

3D-reproj (mask IoU) 9.51 5.45 31.9 13.8 2500
Learned+Jacobian 20.1 18.6 53.2 45.8 0.11

Learned+RANSAC 12.8 5.82 29.4 16.0 0.45
FullACC++* [43] 32.6 22.4 56.0 52.9 27

Table 3. Results on the CCTV dataset. FullACC++* is our re-
implementation of [43].

they are obtained on a subset only, i.e., on half of the videos.
The other half was used to train and fine-tune their method.
In comparison, we find remarkable that our method yields
a median absolute error below 2 km/h while being trained
solely from synthetic data using off-the-shelf 3D car mod-
els. This shows that car shapes are indeed well normalized,
at least on the long run and in a median sense. Finally, we
also report average calibration times per video on a single
CPU core in Table 2 (not counting the detection and track-
ing steps). Our learned method is orders of magnitude faster
than other methods.
Ablative study. For the learned method, we also report re-
sults with direct speed estimation using Jacobians. Con-
firming earlier findings, this naive way of estimating speeds
performs relatively poorly and emphasizes the necessity of
filtering predictions. We also experiment with a network
trained to process each detection individually (i.e. we set
the transformer attention mask to an identity matrix). This
variant, denoted as ’NoContext+RANSAC’ in Figure 9 and
Table 2, prevents the network to use the context provided
by the other detections to infer the global geometry of the
scene. Yet, results for this variant are only marginally worse
than using full context. This suggests that there exists strong
priors on the representation of individual cars (i.e. their po-
sition, shape, and motion) and the scene geometry, which
the network appears to learn effectively.

4.4. The CCTV dataset

The BrnoCompSpeed dataset was constructed to eval-
uate traffic monitoring algorithms using cameras specifi-
cally designed and installed for this purpose. As a result, it
does not reflect the typical quality of CCTV cameras (com-
pare Figure 8 and 2 for instance) which intent to provide
a rough overview of the traffic situation for human opera-
tors. Namely, it features high-resolution videos (1920x1080
= 2M pixels) shot with a high-quality camera and thus does
not represent the diversity of capturing conditions, includ-
ing motion blur, compression artifacts, and lens imperfec-
tions.

We thus introduce a novel dataset, denoted as the CCTV
dataset, to better reflect the actual content and conditions of
real-life CCTV cameras. It comprises 40 short video clips
sampled from publicly streaming CCTV cameras located in
South Korea. Since the clips originate from actual installed
cameras, the exact camera calibration is unknown. Instead,
in order to obtain ground-truth vehicle speeds, we manu-

ally annotated for each clip a sequence of bounding boxes
corresponding to the passage of a car equipped with a GPS
tracker storing its speed and location.

In contrast to the BrnoCompSpeed dataset, it encom-
passes all challenges that are normally encountered in prac-
tice: image resolution is variable and often low, quality
ranges between poor and mediocre, roads are not necessar-
ily straight, camera lens is imperfect, etc. Detailed statistics
can be found in the Supplementary (Figure A.1) and exam-
ples of frames in Figure 2. Compared to the BrnoComp-
Speed dataset, the image resolution is up to 20x smaller,
making cars appear sometimes as small as 20 pixels at their
maximum size, and the overall amount of noise is much
higher.
Results. We use the same detection and tracking pipeline
than earlier for all methods. Results are presented in Ta-
ble 3. As expected, results are noticeably worse than those
obtained on the clean BrnoCompSpeed dataset. Still, the
3D-reproj and Learned-RANSAC methods both yield a me-
dian absolute error of about 5 km/h, which is reasonably low
given the dataset challenges mentioned above.

We also compare with a re-implementation of Ful-
lACC++ [43] based on code snippets shared by the au-
thors. We try several parameter ranges for the initialization
of the focal and the camera roll and report the best results
in the last row of Table 3. FullACC++, a method based on
subpixel-accurate image processing, performs dramatically
poorly (over 20 km/h absolute speed error). This is logi-
cally explained by the poor resolution and quality of CCTV
cameras that prevent any accurate estimates of the vanishing
point positions, as exemplified in Figure 1.

Finally, our Learned+RANSAC method is 2 orders of
magnitude faster than FullACC++ [43] and also much sim-
pler, both conceptually and practically as it does not require
additional components to categorize vehicle sub-types, de-
tect keypoints nor requires specific 3D CAD models.

5. Conclusion
We have presented two novel approaches for auto-

matically estimating vehicle speeds in traffic surveillance
footage. In contrast to existing methods, both approaches
require minimal input (that is, a small set of tracked bound-
ing boxes) to output a fully-calibrated homography from
which velocities can be computed directly given pixel mo-
tion. By doing so, we reduce most problems caused by the
poor resolution and other types of noise inevitably present
in traffic surveillance footage. Extensive experiments on
different datasets, including a realistic CCTV benchmark,
validate our calibration-from-boxes concept while empha-
sizing the shortcomings of state-of-the-art methods.

Given the wide availability of public CCTV streams, we
believe that our method can be applied broadly as a low-cost
traffic speed sensor in order to improve traffic analysis.

4558

References
[1] https://pytorch.org/vision/stable/

_modules/torchvision/models/detection/
mask_rcnn.html. 7

[2] Heba A. Kurdi. Review of Closed Circuit Television (CCTV)
Techniques for Vehicles Traffic Management. International
Journal of Computer Science and Information Technology,
6:199–206, Apr. 2014. 1

[3] Junaid Ahmed Ansari, Sarthak Sharma, Anshuman Majum-
dar, J. Krishna Murthy, and K. Madhava Krishna. The Earth
Ain’t Flat: Monocular Reconstruction of Vehicles on Steep
and Graded Roads from a Moving Camera. In IEEE/RSJ
International Conference on Intelligent Robots and Systems,
IROS, Madrid, Spain, pages 8404–8410. IEEE, 2018. 3

[4] V. Bartl and A. Herout. OptInOpt: Dual Optimization
for Automatic Camera Calibration by Multi-Target Obser-
vations. In 2019 16th IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS), pages
1–8, Sept. 2019. ISSN: 2643-6213. 1, 3

[5] Vojtěch Bartl, Roman Juranek, Jakub Špaňhel, and Adam
Herout. PlaneCalib: Automatic Camera Calibration by Mul-
tiple Observations of Rigid Objects on Plane. In 2020 Digital
Image Computing: Techniques and Applications (DICTA),
pages 1–8, Melbourne, Australia, Nov. 2020. IEEE. 1, 2, 3

[6] Vojtěch Bartl, Jakub Špaňhel, Petr Dobeš, Roman Juránek,
and Adam Herout. Automatic camera calibration by land-
marks on rigid objects. Machine Vision and Applications,
32(1):2, Oct. 2020. 1, 2, 3

[7] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. Algorithms for Hyper-Parameter Optimization.
In NeurIPS, page 9, 2011. 6

[8] Alex Bewley, ZongYuan Ge, Lionel Ott, Fabio Tozeto
Ramos, and Ben Upcroft. Simple online and realtime track-
ing. In ICIP, pages 3464–3468. IEEE, 2016. 2, 7

[9] Romil Bhardwaj, Gopi Krishna Tummala, Ganesan Rama-
lingam, Ramachandran Ramjee, and Prasun Sinha. Auto-
calib: Automatic traffic camera calibration at scale. ACM
Transactions on Sensor Networks (TOSN), 14(3-4):1–27,
2018. 1, 2, 3

[10] Huikun Bi, Zhong Fang, Tianlu Mao, Zhaoqi Wang, and Zhi-
gang Deng. Joint Prediction for Kinematic Trajectories in
Vehicle-Pedestrian-Mixed Scenes. In ICCV, page 10, 2019.
1

[11] Frederick W. Cathey and Daniel J. Dailey. Mathematical the-
ory of image straightening with applications to camera cali-
bration. In IEEE Intelligent Transportation Systems Confer-
ence, ITSC 2006, Toronto, Ontario, Canada, 17-20 Septem-
ber 2006, pages 1364–1369. IEEE, 2006. 2

[12] A.B. Chan and N. Vasconcelos. Classification and retrieval
of traffic video using auto-regressive stochastic processes.
In IEEE Proceedings. Intelligent Vehicles Symposium, pages
771–776, 2005. 2

[13] Roberto Cipolla, Tom Drummond, and Duncan Robertson.
Camera Calibration from Vanishing Points in Image of Ar-
chitectural Scenes. In BMVC, volume 2, 1999. 2

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-

formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
Volume 1, pages 4171–4186, 2019. 5

[15] Markéta Dubská and Adam Herout. Real Projective Plane
Mapping for Detection of Orthogonal Vanishing Points. In
Procedings of the British Machine Vision Conference 2013,
pages 90.1–90.11, Bristol, 2013. British Machine Vision As-
sociation. 2

[16] Markéta Dubská, Adam Herout, Roman Juranek, and Jakub
Sochor. Fully Automatic Roadside Camera Calibration for
Traffic Surveillance. IEEE Transactions on Intelligent Trans-
portation Systems, 16(3):1162–1171, June 2015. 1, 2, 4, 7

[17] Markéta Dubská, Adam Herout, and Jakub Sochor. Au-
tomatic Camera Calibration for Traffic Understanding. In
Proceedings of the British Machine Vision Conference 2014,
pages 42.1–42.12, Nottingham, 2014. British Machine Vi-
sion Association. 1, 2

[18] Panagiotis Giannakeris, Vagia Kaltsa, Konstantinos Avgeri-
nakis, Alexia Briassouli, Stefanos Vrochidis, and Ioannis
Kompatsiaris. Speed Estimation and Abnormality Detec-
tion from Surveillance Cameras. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 93–936, Salt Lake City, UT, USA,
June 2018. IEEE. 1, 2

[19] Lazaros Grammatikopoulos, George Karras, and Elli Petsa.
Automatic estimation of vehicle speed from uncalibrated
video sequences. In International Symposium on Modern
Technologies, Education and Professional Practice in the
Geodesy and Related Fields, 2005. 2

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. arXiv:1703.06870 [cs], Jan. 2018.
arXiv: 1703.06870. 4, 7

[21] Xiao-Chen He and N. H. C. Yung. A Novel Algorithm for
Estimating Vehicle Speed from Two Consecutive Images.
In 8th IEEE Workshop on Applications of Computer Vision
(WACV 2007), 20-21 February 2007, Austin, Texas, USA,
page 12. IEEE Computer Society, 2007. 2

[22] Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun,
Philipp Krahenbuhl, Trevor Darrell, and Fisher Yu. Joint
Monocular 3D Vehicle Detection and Tracking. In ICCV,
page 10, 2019. 2

[23] Tingting Huang. Traffic speed estimation from surveillance
video data. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 161–
165, 2018. 1, 2

[24] Sabbani Imad, Perez-uribe Andres, Bouattane Omar, and
El Moudni Abdellah. Deep convolutional neural network
architecture for urban traffic flow estimation. IJCSNS, 2018.
1

[25] Roman Juranek, Adam Herout, Markéta Dubská, and Pavel
Zemcik. Real-Time Pose Estimation Piggybacked on Object
Detection. In 2015 IEEE International Conference on Com-
puter Vision (ICCV), pages 2381–2389, Santiago, Dec. 2015.
IEEE. 3

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,

4559

editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 6

[27] Viktor Kocur. Perspective transformation for accurate detec-
tion of 3D bounding boxes of vehicles in traffic surveillance.
In Proceedings of the 24th Computer Vision Winter Work-
shop, 2019. 2

[28] Amit Kumar, Pirazh Khorramshahi, Wei-An Lin, Prithvi-
raj Dhar, Jun-Cheng Chen, and Rama Chellappa. A Semi-
Automatic 2D Solution for Vehicle Speed Estimation from
Monocular Videos. In CVPRW, pages 137–1377, Salt Lake
City, UT, USA, June 2018. IEEE. 1, 2, 7

[29] Abhijit Kundu, Yin Li, and James M. Rehg. 3D-RCNN:
Instance-Level 3D Object Reconstruction via Render-and-
Compare. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pages 3559–3568. IEEE Computer
Society, 2018. 3

[30] A Kurniawan, A Ramadlan, and EM Yuniarno. Speed
monitoring for multiple vehicle using closed circuit televi-
sion (cctv) camera. In 2018 International Conference on
Computer Engineering, Network and Intelligent Multimedia
(CENIM), pages 88–93. IEEE, 2018. 1, 2

[31] Matthew J. Leotta and Joseph L. Mundy. Vehicle surveil-
lance with a generic, adaptive, 3d vehicle model. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33(7):1457–1469, 2011. 3

[32] Adrien Lessard, Francois Belisle, Guillaume-Alexandre
Bilodeau, and Nicolas Saunier. The Counting App, or How
to Count Vehicles in 500 Hours of Video. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 1592–1600, Las Vegas, NV, USA,
June 2016. IEEE. 1

[33] Jing Li, Shuo Chen, Fangbing Zhang, Erkang Li, Tao Yang,
and Zhaoyang Lu. An Adaptive Framework for Multi-
Vehicle Ground Speed Estimation in Airborne Videos. Re-
mote Sensing, 11(10):1241, Jan. 2019. 2

[34] David Fernández Llorca, Antonio Hernández Martı́nez, and
Iván Garcı́a Daza. Vision-based Vehicle Speed Estimation
for ITS: A Survey. arXiv:2101.06159 [cs], Jan. 2021. arXiv:
2101.06159. 2

[35] Diogo Luvizon, Bogdan Tomoyuki Nassu, and Rodrigo
Minetto. A Video-Based System for Vehicle Speed Measure-
ment in Urban Roadways. IEEE Transactions on Intelligent
Transportation Systems, PP:1–12, Sept. 2016. 1, 2

[36] C. Maduro, K. Batista, P. Peixoto, and J. Batista. Estimation
of vehicle velocity and traffic intensity using rectified im-
ages. In 2008 15th IEEE International Conference on Image
Processing, pages 777–780, Oct. 2008. ISSN: 2381-8549. 2

[37] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian
Goodfellow, and Brendan Frey. Adversarial autoencoders.
arXiv preprint arXiv:1511.05644, 2015. 5

[38] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. ROI-
10D: Monocular Lifting of 2D Detection to 6D Pose and
Metric Shape. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 2069–2078. Computer Vision Foun-
dation / IEEE, 2019. 3

[39] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and
Jana Kosecka. 3D Bounding Box Estimation Using Deep
Learning and Geometry. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pages 5632–5640. IEEE
Computer Society, 2017. 3

[40] Julian Nubert, Nicholas Giai Truong, Abel Lim, Herbert Il-
han Tanujaya, Leah Lim, and Mai Anh Vu. Traffic den-
sity estimation using a convolutional neural network. arXiv
preprint arXiv:1809.01564, 2018. 1

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149, June
2017. Conference Name: IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2

[42] Todd Nelson Schoepflin. Algorithms for estimating mean ve-
hicle speed using uncalibrated traffic management cameras.
University of Washington, 2003. 1, 2

[43] Jakub Sochor, Roman Juránek, and Adam Herout. Traf-
fic Surveillance Camera Calibration by 3D Model Bound-
ing Box Alignment for Accurate Vehicle Speed Measure-
ment. Computer Vision and Image Understanding, 161:87–
98, Aug. 2017. arXiv: 1702.06451. 1, 2, 7, 8

[44] Jakub Sochor, Roman Juránek, Jakub Špaňhel, Lukáš
Maršı́k, Adam Široký, Adam Herout, and Pavel Zemčı́k.
Comprehensive Data Set for Automatic Single Camera Vi-
sual Speed Measurement. IEEE Transactions on Intelligent
Transportation Systems, 20(5):1633–1643, May 2019. 1, 2,
7

[45] Jakub Sochor, Jakub Špaňhel, and Adam Herout. BoxCars:
Improving Fine-Grained Recognition of Vehicles using 3-
D Bounding Boxes in Traffic Surveillance. IEEE Trans.
Intell. Transport. Syst., 20(1):97–108, Jan. 2019. arXiv:
1703.00686. 3

[46] Jakub Sochor, Jakub Spanhel, Roman Juranek, Petr Dobes,
and Adam Herout. Graph@FIT Submission to the NVIDIA
AI City Challenge 2018. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 77–777, Salt Lake City, UT, USA, June
2018. IEEE. 2

[47] Zheng Tang, Milind Naphade, Stan Birchfield, Jonathan
Tremblay, William Hodge, Ratnesh Kumar, Shuo Wang, and
Xiaodong Yang. PAMTRI: Pose-Aware Multi-Task Learn-
ing for Vehicle Re-Identification Using Highly Randomized
Synthetic Data. In ICCV, page 10, 2019. 3

[48] Zheng Tang, Gaoang Wang, Tao Liu, Young-Gun Lee, Ad-
win Jahn, Xu Liu, Xiaodong He, and Jenq-Neng Hwang.
Multiple-Kernel Based Vehicle Tracking Using 3D De-
formable Model and Camera Self-Calibration. CoRR,
abs/1708.06831, 2017. eprint: 1708.06831. 3

[49] Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao,
Shuai Yi, Jing Shao, Junjie Yan, Shengjin Wang, Hongsheng
Li, and Xiaogang Wang. Orientation Invariant Feature Em-
bedding and Spatial Temporal Regularization for Vehicle Re-
identification. In IEEE International Conference on Com-
puter Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 379–387. IEEE Computer Society, 2017. 3

4560

[50] Paul Wohlhart and Vincent Lepetit. Learning descriptors for
object recognition and 3D pose estimation. In IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages 3109–3118.
IEEE Computer Society, 2015. 3

4561

