
ELF-VC: Efficient Learned Flexible-Rate Video Coding

Oren Rippel*, Alexander G. Anderson*, Kedar Tatwawadi, Sanjay Nair, Craig Lytle, Lubomir Bourdev
WaveOne, Inc.

{oren, alex, kedar, sanjay, craig, lubomir}@wave.one

Abstract

While learned video codecs have demonstrated great
promise, they have yet to achieve sufficient efficiency for
practical deployment. In this work, we propose several
novel ideas for learned video compression which allow for
improved performance for the low-latency mode (I- and P-
frames only) along with a considerable increase in compu-
tational efficiency. In this setting, for natural videos our ap-
proach compares favorably across the entire R-D curve un-
der metrics PSNR, MS-SSIM and VMAF against all main-
stream video standards (H.264, H.265, AV1) and all ML
codecs. At the same time, our approach runs at least 5x
faster and has fewer parameters than all ML codecs which
report these figures.

Our contributions include a flexible-rate framework al-
lowing a single model to cover a large and dense range of
bitrates, at a negligible increase in computation and pa-
rameter count; an efficient backbone optimized for ML-
based codecs; and a novel in-loop flow prediction scheme
which leverages prior information towards more efficient
compression.

We benchmark our method, which we call ELF-VC (Ef-
ficient, Learned and Flexible Video Coding) on popular
video test sets UVG and MCL-JCV under metrics PSNR,
MS-SSIM and VMAF. For example, on UVG under PSNR,
it reduces the BD-rate by 44% against H.264, 26% against
H.265, 15% against AV1, and 35% against the current best
ML codec. At the same time, on an NVIDIA Titan V GPU
our approach encodes/decodes VGA at 49/91 FPS, HD 720
at 19/35 FPS, and HD 1080 at 10/18 FPS.

1. Introduction
The trends of growth of video capture and consumption

are staggering. Every day, 1.5 billion hours of videos are
watched across YouTube, Netflix and Facebook, and 23 mil-
lion new cameras are added into circulation [44, 20, 36, 21].

In the last few years, ML-based compression algorithms
have shown promise in their potential to mitigate some of
this global video congestion. The ML subfield of end-to-

*Equal contribution

100 200 400 800
Encode time (ms)

-20%
0%

20%
40%
60%
80%

100%
120%
140%

BD
-ra

te
 re

la
tiv

e
to

 A
V1

Ours

Liu et al.

Habibian et al.

DVC

Wu et al.

50 200 600
Ours

Liu et al.

DVC

105 106 107

Habibian et al.
Wu et al.

0.0 0.2 0.4 0.6 0.8 1.0
Decode time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: BD-Rate for ML-based codecs relative to AV1
as a function of encode/decode time on HD 1080 videos
[41, 13, 28, 26] (UVG dataset, PSNR metric). Our approach
reduces the BD-rate by 54% relative to the current fastest
ML codec which reports speed [26], while running 5x faster.

end methods for image compression has grown rapidly with
hundreds of papers (for instance, [4, 32, 5]) which demon-
strate unequivocally that learned approaches can achieve
improved coding efficiency relative to their hard-coded
counterparts.

These approaches have, in turn, planted the seeds for
ML-based video coding algorithms. Even though end-to-
end video coding research has only taken its first few steps,
it is clear that learned approaches have the potential to
yield significant bitrate savings over the existing standards
[33, 28, 13, 12, 27]. However, there still exists an ele-
phant in the room: is it possible for ML-based approaches to
achieve sufficient flexibility and efficiency to become prac-
tical in the real world?

We propose a new ML video codec, ELF-VC (Effi-
cient, Learned and Flexible-Rate Video Coding) for the
low-latency mode, which aims to improve three key weak-
nesses of ML-based video compression: bitrate flexibility,
compression efficiency, and speed.

Bitrate flexibility Traditional codecs can dynamically ad-
just the bitrate to achieve a target bandwidth or target com-
pression quality as a function of the complexity of the
video and changing network conditions. Most existing ML
codecs, however, represent each point on the R-D curve
with a separate model, which is impractical due to param-

14479

eter explosion and model loading inefficiency. In contrast,
ELF is able to support a large and dense range of bitrates on
a per-frame basis with a single set of parameters.

Compression Efficiency While ML-based codecs have
shown improved compression efficiency over H.265, no ML
codec has yet to outperform the standards across the en-
tire PSNR curve. Moreover, no benchmarks have been pre-
sented on the VMAF metric, nor against AV1, as ML codecs
have not compared favorably in these settings. We bench-
mark ELF on popular video test sets UVG and MCL-JCV
under metrics PSNR, MS-SSIM and VMAF. In the low-
latency mode, for natural videos ELF compares favorably
across the entire R-D curve against the standards, and all
other ML codecs. For example, on UVG under PSNR, ELF
reduces the BD-rate by 44% against H.264, 26% against
H.265, 15% against AV1, 35% against the next-best ML
codec [2], and 54% against the next-fastest ML-codec [26]
(while running 5x faster).

Speed For any practical application encoding must run
at a reasonable frame rate, and decoding must run in real-
time. Research on learned video compression has focused
on improving the R-D curve, often at the expense of speed.
For instance, autoregressive approaches inherently cannot
be parallelized, resulting in methods that take many seconds
to decode a single frame. In contrast, ELF runs at least 5x
faster than all other ML codecs which report timings, and
with fewer parameters. On an NVIDIA Titan V GPU, ELF
encodes/decodes VGA at 49/91 FPS, HD 720 at 19/35 FPS,
and HD 1080 at 10/18 FPS.

Our primary contributions are:

1. A novel framework for efficient rate control for learned
video coding. This allows a single model to encode
each frame with a wide range of bitrates, at a negligible
increase to computation and parameter count.

2. A backbone specifically optimized to achieve strong
performance on compression tasks while remaining
computationally efficient.

3. An in-loop flow predictor, a novel module that utilizes
previously transmitted information to get a strong ini-
tial estimate of the motion for the current frame.

1.1. Related work

Traditional video compression There has been a long
history of hand-designed video codecs, such as H.263 and
H.264 [40], which form the basis of video standards widely
used today. More recently, H.265 [35], VP9 [30] and AV1
[8] have made significant improvements over the legacy
video standards, and continue to be an active research

area. The traditional codecs have been exceptionally well-
engineered and tuned, and have been difficult for the ML
community to match both in terms of compression fidelity
but also computational efficiency.

ML-based flexible-rate compression Compared to pre-
vious work, this paper is the first efficient flexible-rate video
compression paper. Beyond the loss formulation, the fun-
damental challenge of learned flexible-rate compression is
supporting a large dynamic range of bitrates in a single
model. As the range gets larger and denser, performance of-
ten degrades. The topic of flexible-rate modeling has been
addressed in a number of previous learned image coding pa-
pers which use conditional convolution [9], variable quan-
tization width [10, 1], and recurrent networks [37]. While
the former methods are slow due to an autoregressive prob-
ability model for the codelayer or a recurrent network, our
work doesn’t use such methods.

In the learned video compression literature, [33] use a
spatial multiplexer to achieve flexible rates with a single
model. However, this approach requires a slow and com-
plex search at encode-time in order to produce the spatial
multiplexer map.

ML-based video compression Due to the inherent com-
plexity of designing video compression algorithms, vari-
ous works formulate end-to-end solutions to conquer sub-
sets of the grand problem. One class of approaches such
as [41, 11, 31] focuses directly on interpolation and omit
P-frames. Another popular direction (which this work fol-
lows) is to design a low-latency ML-based codec, which
only features keyframe compression and forward frame ex-
trapolation (i.e I/P-frames only) [28, 23, 26]. Promising re-
cent directions involve modeling motion using scale-space
flow [2] and resolution-adaptive flow [24, 15], propagat-
ing a latent state [33, 12], and explicitly mitigating error
propagation [27]. Yet another promising approach [13] re-
volves around using spatiotemporal autoencoders to encode
chunks of frames.

Efficient ML-based compression Research on computa-
tionally efficient ML codecs is still in its nascence. In the
image compression world, several approaches explore effi-
cient codec modeling, relying on architecture optimizations
[32, 18, 25]. To our knowledge, the only other ML video
codec work with focus on the topic is [26], whose approach
is to remove inter-dependency between frames and instead
rely on entropy conditioning to capture redundancy.

2. Problem setup and baseline model

We aim to encode a video with frames x1, . . . ,xT ∈
[0, 1]3×H×W using the low-latency mode including I- and
P-frames only. In this section, we describe a baseline model

14480

Figure 2: The overall architecture of ELF-VC. The predictor block (Section 3.3) uses previously transmitted information
to get a strong initial estimate of the motion for the current frame, without sending any bits. The flow block refines this
motion estimate and the residue block reconstructs the remaining residual. The level map is provided as input to different
parts of the model to facilitate conditional modeling (Section 3.1). The learned operators are powered by the neural network
backbone described in Section 3.2. The details of the state propagation and layer specifications are omitted for clarity and
can be found Appendix B.

which is a combination of ideas from previous state-of-the-
art ML codecs.

Baseline I-frame model The keyframe compressor (I-
frame) is an image codec which encodes individual frames.
As discussed in Section 1.1, there is a well-established body
of work on learned techniques for image compression. For
the baseline I-frame model, we use the backbone presented
in Section 3.2, combined with a simplified variant of the
hyperprior coding scheme presented in [5] (see Appendix
A for details) and avoid any context modeling.

Baseline P-frame model The starting point for our base-
line P-frame model is the common flow-residue model
[28, 3], where an autoencoder (“flow block”) is used to
reconstruct an optical flow field, and the residue — the
leftover difference with the target — is compressed with a
second autoencoder (“residue block”). Similar to [33], we
propagate a state across blocks and across frames, which
results in a significant improvement in the model (Table 3).

The flow block is an autoencoder which takes in the
target xt, previous reconstruction x̂t−1 and previous state
st−1 as inputs. Through a bottleneck, it updates the state
and then produces a flow output f̂ t to compensate from
x̂t−1 to xt using the warping transform F(x̂t−1, f̂ t). We
build on [2] and for F(·, ·) adopt the scale-space flow op-
erator which elegantly handles uncertainty in motion esti-
mation. Such a flow f̂ t is made of 3 channels: horizon-
tal and vertical displacements along with a blurring param-

eter (scale-space sigma). The compensated frame is then
x̂comp
t = F(x̂t−1, f̂ t).

The residue block then takes in the leftover signal xt −
x̂comp
t and the state returned by the flow block to produce a

residue r̂t which is added to the warping to produce final
reconstruction x̂t = x̂comp

t + r̂t. It also outputs a final state
st that is passed to the next frame.

The architecture for this baseline is essentially the flow
and residual blocks in Figure 2 without level maps. The
backbones for both blocks are presented in 3.2. Each
block of the P-frame model uses the same hyperprior cod-
ing scheme as the I-frame model. Similarly to the I-frame
model, autoregressive context models are avoided because
they are are prohibitively slow for practical use in their cur-
rent formulation.

3. Novel Contributions

In this section, we describe new ideas building on top of
the baseline model (Section 2). Section 4.4 presents abla-
tion studies of their individual contributions.

3.1. Flexible-rate framework for ML video codecs

Rate control, or the optimization of visual quality under
real-world constraints (e.g. bandwidth and latency), is es-
sential for the practical deployment of a video codec. For
example, in order to minimize bandwidth-induced latency,
it is important to constrain the average bitrate of the video
and the maximum bitrate for any frame.

14481

While there exist methods for flexible-rate ML-based
image compression (Sec. 1.1), it is challenging to extend
these to video without suffering a loss of performance. Our
work introduces two main innovations: a novel loss modu-
lation scheme which improves BD-rate by 10% (see 4.4) by
better training the model for high rates, and a novel embed-
ding scheme which allows the rate to be smoothly varied
across the rate-distortion curve.

For each frame we initially aim to support L different
points on the R-D curve (we refer to them as levels) us-
ing a single model. In order for the network to optimize a
level-dependent loss, the discrete level is converted into a
one-hot vector of dimension L. This vector is tiled spatially
and concatenated to the input of each of the neural network
encoder and decoder (level map, Figure 2), and as an input
to the in-loop flow predictor (Sec. 3.3). The I-frame model
also uses a learned level and channel-dependent quantiza-
tion width for the quantized codelayer, similar to [10]. Vari-
able quantization width was not sufficient to achieve com-
petitive performance — we found that giving the rate as in-
put to all of the listed places to the network was necessary
for optimal performance.

Multi-level loss setup The multi-level loss consists of the
typical rate and distortion terms, with added level condi-
tioning:

Lrec =
1

T

∑
t

El

[
µ
(l)
t D(xt, x̂

(l)
t)

]
(1)

Lent =
1

T

∑
t

Elλ
(l)
regR

(l)
t . (2)

The compression level l for frame t is sampled during train-
ing (see 4.1). D(·, ·) is the distortion metric (e.g. MSE
loss), and R

(l)
t is the total codelength of the encoded frame

(see Appendix A) for the flow and residual blocks. µ
(l)
t

is a dynamically-chosen weight that substantially improves
multi-level training as explained below (see Table 3). The
loss encourages the model to achieve different points on the
R-D curve by using different regularization weights λ(l)

reg for
different levels.

Dynamic loss modulation During training, the recon-
struction loss for each frame and level is multiplied by a
dynamically-changing weight µ(l)

t ≥ 1 in order to encour-
age better performance for the levels and frames where the
PSNR of the P frame is much lower than the PSNR for the
I frame. The motivation for this idea is that when train-
ing the baseline unmodulated models (with µ

(l)
t = 1), we

observed that the higher bitrate levels of the variable-rate
model trained much more slowly than lower ones. We fur-
ther noticed that frames later in the GOP train more slowly
than the earlier frames.

One natural idea for the loss modulation was to increase
the weight associated with the parts of the model that were

under-performing. We developed the following method in
order to avoid needing to set the weights manually. We fix
the I-frame weights µ

(l)
0 for each level to be 1. Then for a

particular level, we increase the P-frame weight if the PSNR
of the P-frame is much lower than the PSNR of the I-frame
for that level. Specifically, the moving averages ED(l)

t for
the t-th frame and l-th level are computed. If PSNR(l)

t <

PSNR(l)
0 − δ, then µ

(l)
t is increased by a small value. If the

opposite is true, µ(l)
t is decreased. See the ablation studies

4.4 and Appendix D for additional details and discussion.

Level embedding While a discrete set of L levels is use-
ful for accumulating moving averages to modulate the loss
during training, for practical purposes typical values of
L ≈ 8 are too coarse for precise rate control. We introduce
a technique which allows smoothly varying the bitrate at en-
code time, without any additional training. We achieve this
by linearly interpolating the one-hot level vectors to achieve
intermediate levels arbitrarily fine-grained. Having trained
the model with Le levels, during inference we achieve a
denser sampling of the bitrate range by embedding a more
fine-grained level l ∈ {0, 1, . . . L − 1} within the original
Le-dimensional space. Specifically, we implement the lin-
ear interpolation scheme

le = (1− {sl}) · onehot(ul|Le) + {sl} · onehot(vl|Le) (3)

where sl = lLe−1
L−1 , ul = ⌊sl⌋, vl = ul + 1, {sl} is the

fractional part of sl, and onehot(n|N) is an N -dimensional
one-hot vector where the n-th component is one. See Ap-
pendix E for details.

Previous work in the image compression world [9] that
used two knobs (discrete rate and quantization width) re-
sulted in non-monotonic behavior. In contrast, our method
has one continuous knob that results in the quality increas-
ing monotonically as the bitrate increases. Furthermore, our
method does not require any additional training in order to
interpolate the rate with competitive performance.

250 300 350 400
Frame index

0.03

0.06

0.12

BP
P

Unconstrained
Minimum quality
Maximum bitrate

250 300 350 400
Frame index

35

36

37

38

PS
NR

Unconstrained
Minimum quality
Maximum bitrate

Figure 3: The flexible-rate nature of ELF facilitates deploy-
ment in the presence of different constraints. We present
examples of 3 different rate controllers: maximum BPP
(caps of 0.081 on I, 0.037 on P), minimum quality (PSNR
of 37), and constant level. A complex event around frame
300 (Jockey video, UVG dataset) causes the BPP to spike
under guaranteed minimum quality (orange curve). If we
constrain the bandwidth, the quality drops (green curve).

14482

Fl
ow

BPP: 0.006 BPP: 0.040

x t
x t

Sp
at

ia
l B

its

Figure 4: Visual comparison for an HD 1080 video encoded
using the same model at two different levels. The top row
shows the final flow f̂ t, the middle row shows difference
between the target and the final reconstruction, and the bot-
tom row shows the spatial bit allocation (Appendix A). The
error is boosted by a factor of 4 and clipped for visualization
purposes. The spatial bits plots use the same color mapping
where yellow corresponds more bits spent.

3.2. Compression-centric backbone

We propose an efficient backbone that achieves compet-
itive results for ML-based coding, which lowers the BD-
rate by 30% and improves speed by 75% (Table 4.4) rela-
tive to popular video backbones. This is based on a block
that we refer to as the Delayed Merge (DM) block (Fig-
ure 6). We experimented with various common backbones
such as DenseNet [17], ResNet [14], multiscale dual path
[7, 16, 33], and inverted residual modules [34], and found
that a DenseNet-like (and optionally multiscale) representa-
tion achieves a balanced tradeoff between expressivity and
computational performance. However, in its original formu-
lation, DenseNet features many concatenation operations
and convolutions with a small number of filters. As such,
it does not lend itself to efficient computation. This issue
also affects multiscale approaches presented in [16, 33].

Instead, after experimentation (see Appendix) we con-
verge on a mix between residual and dense blocks where
several convolutions, each with C channels, are ran with
additive accumulation, at which point the intermediate acti-
vations are concatenated only a single time and the dimen-
sionality is reduced back down. We refer to such a block as
a DM-C block.

In addition to the backbone structure, we also explored
various forms of attention popularized for image compres-
sion — but did not find these to enhance coding efficiency.

For increased efficiency, all blocks are exclusively ran in

scales at least 4x downsampled relative to pixel space. De-
tailed descriptions of the end-to-end architectures are found
in Appendix B.

Optimizing for a light decoder There exists an inher-
ent asymmetry between encoding and decoding, since in
many use-cases the decoder must run in computationally-
constrained environments (such as phones). In order to op-
timize the decoding speed given a fixed encoding speed,
we shift computation from the decoder branches (inputs
� codelayer) to the encoder branches (codelayer � out-
puts). In our ablations, we find that an asymmetric encoder-
decoder pair has better R-D performance in addition to
being faster during decoding as compared to a symmetric
encoder-decoder pair (Table 3). For both flow and residue
encoders we use three DM-256 blocks sequentially in scales
4x-8x-16x. For the flow and residue decoders we use three
DM-64 or DM-128 respectively in scale sequence 16x-8x-
4x. Complete layer specification is found in Appendix B.

3.3. In-loop flow prediction

We propose a novel in-loop flow predictor which pre-
dicts the current flow from previously transmitted frames
and flows. It does not transmit any additional bits itself, and
is ran prior to flow/residual encoding or decoding. It allows
for BD-rate savings of 13% (Table 3).

Intuitively, designing video codecs revolves around ex-
ploiting redundancy across frames. Clearly, such similari-
ties are captured well using optical flow; however, we ob-
serve that there also exists further redundancy among the
optical flow fields themselves. Since consecutive flow fields
are similar to one another due to linearity for motion, the
current flow field can be predicted reasonably well from in-
formation already available on the decoder side — with-
out transmitting any additional information. This predicted
flow can then be refined using the flow autoencoder.

The predictor structure can be found in Figure 2. It
takes in as inputs the previous flow f̂ t−1 and two previ-
ous frame reconstructions x̂t−2 and x̂t−1, and produces a
base flow prediction f̄ t. The flow autoencoder produces a
sigmoid map mt masking the predicted flow element-wise,
and sparse flow delta ∆f̂ t, which is added to the masked
predicted flow. The final flow is then f̂ t = mt ⊙ f̄ t +∆f̂ t.
The original baseline model in Section 2, then, is a special
case with a predicted flow of zero and no mask. The predic-
tor computation is shared by both the encoder and decoder.

In Figure 5, it is seen that the zero-bit predicted flow (top
left) is already similar to the final flow (top right). Hence,
the flow block only needs to output sparse flow touchups,
thereby spending less bits. The neural network backbone
used within the predictor is based upon the DM block de-
scribed in Section 3.2 but it additionally computes features
at two scales for each block (see Appendix B for details).

A similar idea was proposed by [22]. We note that this
approach does not include learned mask mt to allow turning

14483

Predictor Flow Predictor Mask Flow Delta Final Flow

Scale-Space Sigma Decoded Residual Reconstruction Target

Figure 5: Intermediate tensors in the P-frame decoder for a typical HD 1080 video. The in-loop flow predictor uses previously
transmitted information to generate an initial estimate of the motion (predictor flow), which is then masked by the predictor
mask. A flow delta is decoded from the state in the first block and added to the predicted flow to generate the final flow.
It can be seen that the predicted flow, which was computed without transmitting any additional bits, captures much of the
motion — allowing for a sparser flow delta. The flow and the scale-space sigma (also decoded from the state) are applied to
the previous frame to generate a compensated frame. The last block generates an estimate of the remaining residue and adds
it to the compensated frame to generate the final reconstruction. The residue is multiplied by a factor of 4 and clipped for
visualization purposes. All flows are normalized so that a fully saturated color is a flow with a magnitude of 15 pixels.

the predictor off in areas that are difficult to predict. Also,
in this approach only the predictor has a runtime of 17 FPS
for resolution 320 × 256. In contrast, our entire decoder,
predictor included, runs in 139 FPS for resolution 352×288
(which has 20% more pixels).

4. Results
4.1. Experimental setup

We train our models on the Vimeo-90k dataset [42]
and on MSE using the Adam optimizer [19] for a total of
800, 000 iterations with a batch size of 8, crop sizes of
256 × 256, and GOP of IPPP. During inference we unroll
over P-frames to complete the 16-frame GOP. We train in
RGB for PSNR and MS-SSIM, and in YUV for VMAF. We
start with a momentum of 0.9, and learning rate of 7×10−5

which we lower by 5x at 80% and 95% into the training.

Figure 6: The Delayed Merge (DM-C) block with C base
channels. Our CNN backbones use this as the primary
building block with processing across different scales. The
DM block allows for the benefits of DenseNet while being
faster due to the reduced number of concatenation opera-
tions (Section 3.2).

Codec PSNR MS-SSIM
UVG MCL-JCV UVG MCL-JCV

H.264 -44.3% -33.7% -52.9% -51.2%
H.265 -26.1% -17.0% -46.0% -46.1%
AV1 -14.8% -1.0% -50.0% -50.9%

Agustsson et al. (2020) [2] -35.3% -29.4% -32.6% -34.8%
RLVC (2020) [43] -35.0% -35.3% -28.6% -38.4%
NVC (2020)[24] -37.9% - -31.1% -
Lu et al. (2020) [27] - -42.3% -40.4% -
Liu et al. (2020) [26] -54.2% -46.8% -60.0% -60.7%
DVC (2019) [28] -47.6% - -59.9% -
Habibian et al. (2019) [13] -57.3% - -53.6% -
Wu et al. (2018) [41] -62.9% - -69.5% -

Table 1: BD-rate savings of ELF relative to common video
standards, and state-of-the-art ML codecs (full R-D curves
available in Figure 7). Numbers are reported on the PSNR
and MS-SSIM metrics for the UVG and MCL-JCV datasets.

We train for another 40, 000 iterations on a crop size of
320 × 320 on a Vimeo90k-like dataset we generated with
a larger crop size (Appendix F). Finetuning on a larger crop
size improved results a small amount. For models reporting
on MS-SSIM or VMAF, we fine-tune for 80, 000 iterations
on the respective metrics.

We train a total of 2 models which together cover the
entire bitrate range. During training, each model aims to
optimize L = 8 different points on the R-D curve where the
regularization weights λreg are chosen linearly in logspace
in the range [10−1.7, 10−3.7] for the lower BPP model and
[10−3, 10−5] for the higher. The level for the initial I-frame,
l0, is chosen randomly. The following levels are then chosen
as lt = lt−1 + vt rounded to the nearest integer and clipped
to the range [0, L − 1], where vt ∼ N (µ = 0, σ = 0.5) is

14484

U
V

G
D

at
as

et

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
BPP

34

35

36

37

38

39

40

PS
NR

 R
GB

ELF (Ours)
AV1
Agustsson et al. (2020)
DVC (2019)
H.264
H.265
Habibian et al. (2019)
Liu et al. (2020)
NVC (2020)
RLVC (2020)
Wu et al. (2018)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
BPP

0.94

0.95

0.96

0.97

0.98

0.99

M
S-

SS
IM

 R
GB

ELF (Ours)
AV1
Agustsson et al. (2020)
DVC (2019)
Golinski et al. (2020)
H.264
H.265
Habibian et al. (2019)
Liu et al. (2020)
Lu et al. (2020)
NVC (2020)
RLVC (2020)
Wu et al. (2018)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
BPP

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

VM
AF

ELF (Ours)
AV1
H.264
H.265

M
C

L
-J

C
V

D
at

as
et

0.0 0.1 0.2 0.3 0.4 0.5
BPP

34

35

36

37

38

39

40

PS
NR

 R
GB

ELF (Ours)
AV1
Agustsson et al. (2020)
H.264
H.265
Liu et al. (2020)
Lu et al. (2020)
RLVC (2020)

0.0 0.1 0.2 0.3 0.4 0.5
BPP

0.94

0.95

0.96

0.97

0.98

0.99
M

S-
SS

IM
 R

GB

ELF (Ours)
AV1
Agustsson et al. (2020)
H.264
H.265
Liu et al. (2020)
RLVC (2020)

0.0 0.1 0.2 0.3 0.4 0.5
BPP

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

VM
AF

ELF (Ours)
AV1
H.264
H.265

Figure 7: Rate-distortion curves of traditional codecs and state-of-the-art ML codecs [2, 28, 12, 13, 26, 27, 24, 43, 41] on the
UVG and MCL-JCV video datasets.

sampled from a normal distribution.
To generate all R-D curves in this paper (apart from the

maximum bitrate and minimum quality rate controllers in
Figure 7), we sweep over levels and keep the level constant
across all frames of each video.

The model is trained in FP32. The graph is converted
to FP16, apart from the subnet decoder where the output
probabilities are sensitive to minor perturbations. This does
not lead to any reduction in R-D performance. At inference
time, we run all models using TensorRT. Entropy encod-
ing and decoding are implemented on CPU and are paral-
lelized over channels and space (see Appendix A). The en-
tropy coding portion takes about 10% of the total runtime.

4.2. Benchmarking procedure

Baseline codecs We benchmark against modern commer-
cial codecs H.264/AVC, H.265/HEVC, and AV1, as well
as the most competitive ML codecs to our knowledge. We
use FFmpeg to encode H.264 and H.2654. We emphasize
that while some existing works restrict the baselines to the
veryfast preset, we use the default preset, which is a
much more competitive and realistic baseline. We do not
constrain the codecs in any way apart from disabling B-
frames. We use the SVT-AV1 encoder for AV1. See Ap-
pendix I for the exact commands used. For the ML-based

1[43] only reports runtimes for 240p; to enable comparison on CIF the
numbers were scaled proportionally to the number of pixels.

2For [26], we only count their fast C++ implementation; the authors
further report that the Python interface leads to an overhead of 1,190ms for
encoding and 650ms for decoding, but we ignore these counts.

Method FPS
Encode Decode

CIF 352x288

RLVC1 [43] 12 25
Rippel et al. [33] 6 30
DVC [28] 25 41
ELF no-opt (Ours) 45 106
ELF (Ours) 71 139

VGA 640x480

Rippel et al. [33] 2 10
ELF no-opt (Ours) 24 59
ELF (Ours) 47 91

Method FPS
Encode Decode

HD 720 1280x720

Rippel et al. [33] 0.5 3
ELF no-opt (Ours) 10 21
ELF (Ours) 19 35

HD 1080 1920x1080

Habibian et al. [13] 1.5 10−3.7

Wu et al. [41] 2.4 10−3

Rippel et al. [33] 0.2 1.0
DVC [28] 1.5 1.8
Liu et al.2 [26] 2.0 3.0
ELF no-opt (Ours) 5.0 12
ELF (Ours) 10 18

Table 2: Comparison of runtimes for different resolutions
of all ML codecs which report timings, for BPP 0.2. For
HD 1080, ELF runs at least 5x faster than other ML codecs.
“ELF no-opt” is the fully unoptimized variant: FP32, no
TensorRT, and non-parallelized entropy coding.

codecs, we compare against all recent approaches including
[41, 28, 13, 12, 27, 2, 24, 26, 43]3.

Metrics We evaluate all reconstructions on popular video
metrics PSNR, MS-SSIM [39], and VMAF5. We run
VMAF using its hook into FFmpeg. In order to com-
pare against existing ML-based approaches, PSNR and MS-
SSIM are evaluated in the RGB colorspace. This is not ideal

3[13]’s PSNR results on the UVG dataset were taken from [26].
4We use the latest FFmpeg to benchmark the standards. Our H.264

and H.265 curves are slightly better than the ones in [2], but we validated
we do match them with an older FFmpeg version.

14485

by any means and YUV 4:2:0 is preferable for perceptual
quality optimization.

We found that it is easy for ML codecs to perform well
on MS-SSIM and VMAF by the numbers, but that percep-
tual quality is not commensurate with these gains. We took
extra measures to avoid overfitting on VMAF by training it
jointly with PSNR.

Test sets We benchmark all codecs on popular video
datasets UVG [29] and MCL-JCV [38]. These datasets are
commonly used for video codec evaluation, and contain re-
spectively 7 and 30 diverse HD 1080 videos with totals of
3,900 and 4,115 frames.

4.3. Performance

Coding efficiency Figure 7 presents the rate-distortion
curves for all approaches, and Table 1 provides BD-rate [6]
summaries of these curves. It can be seen that ELF com-
pares favorably against all standards and ML codecs, under
all metrics — with the exception of BPP (bits per pixel) 0.25
and higher for the MCL-JCV dataset against AV1. In ana-
lyzing as to why, we observed that our model, similar to [2],
performs very poorly on the four non-photorealistic/cartoon
videos within MCL-JCV. Excluding these videos we outper-
form AV1 across the entire range (Appendix G).

Computational efficiency We benchmark the runtime of
our codec across different resolutions on an NVIDIA Titan
V GPU, and include all time spent on network execution,
entropy encoding/decoding, and so on. We only exclude
CPU↔GPU memory transfer overhead: this is not a fun-
damental limitation but rather an artifact of TensorFlow’s
inability to pin data to GPU memory across model itera-
tions. The benchmarks and comparisons against all other
approaches which report timings6 can be found in Table 2.
For example, for HD 1080, ELF runs at 98ms/frame for en-
coding and 55ms/frame for decoding; this is 5x faster than
the second-fastest ML codec [26], while reducing the BD-
rate by 55% on average relative to it (Table 1). The tables
also provide benchmarks for “ELF no-opt”, which is the
fully unoptimized variant: FP32, no TensorRT, and non-
parallelized entropy coding.

4.4. Ablation studies

We study the individual contributions of the proposed
ideas. For the ablation environment we follow exactly same
training and inference procedures described in 4.1, apart
from training each model for 250,000 iterations and only
training the lower bitrate range model. The results can be
found in Table 3.

5See repository at https://github.com/Netflix/vmaf.
6Many of the timings were taken from [26], who were able to gather

these from the original authors of the respective papers. We were further
able to contact [33] who generously provided detailed benchmarks. [28,
43, 26] use an NVIDIA 1080 Ti GPU, and [33] uses an NVIDIA Titan V.

Property Option
BD-rate
Increase

FPS for HD 720 # Param
Enc. Dec. Enc. Dec.

Flow
predictor

Yes 0% 19 35 38M 11M
No 13% 21 (+10%) 37 (+6%) 37M (-3%) 10M (-9%)

Bitrate
coverage

Range 0% 19 35 38M 11M
Point 1% 19 35 220M (+500%) 70M (+500%)

Backbone

DM 0% 19 35 38M 11M
Common 128 76% 18 (-5%) 24 (-31%) 24M (-37%) 12M (+9%)
Common 192 43% 14 (-26%) 20 (-43%) 28M (-18%) 14M (+27%)
DM-Sym 128 31% 20 (+5%) 28 (-20%) 25M (-34%) 13M (+18%)
DM-Sym 192 18% 15 (-21%) 22 (-37%) 35M (-8%) 17M (+55%)

Loss
modulation

Yes 0% 19 35 38M 11M
No 10% 19 35 38M 11M

State
Yes 0% 19 35 38M 11M
No 37% 19 36 (+3%) 37M (-3%) 11M

Table 3: Ablation studies of different modeling choices.
The BD-rate values were computed under PSNR on UVG.

Using 2 flexible-rate models instead of 12 single-rate
models reduces the number of required parameters by 6x
without harming compression performance at all.

Swapping to the common backbone often used in the im-
age/video coding literature [5, 3], with base channels 128 or
192 (”Common” in the ablation table) worsens BD-rate by
at least 43% and slows the decoder down by 31% (we do
our best to tune the model for this backbone).

Swapping to a symmetric DM-based backbone where the
encoder and decoder have the same number of channels
(”Sym” in the ablation table) increases the BD-rate by at
least 18% and slows down the decoder by at least 20%.

Removing the predictor results in a BD-rate increase of
13%, without changing runtimes dramatically. Removing
the dynamic loss modulation worsens BD-rate by 10%.

5. Conclusion

Compared to the video coding standards, ML-based
video compression is still in its infancy. While ML video
codecs have achieved impressive R-D performance, some
of this success can be attributed to the huge investment in
general in neural network research, software, and hardware.
There still remains considerable work to be done towards
practical deployment of ML codecs.

In this work, we propose ELF-VC, which makes signif-
icant improvements in terms of R-D performance, bitrate
flexibility and speed. We believe there still exists significant
room for improvement across all modeling decisions: archi-
tectural choices for the different modules, rate control, and
so on. Moreover, while our approach is close to real-time on
a mid-range desktop GPU, it still requires further optimiza-
tion to achieve real-time performance on edge devices such
as phones. Another important direction for future work in
ML-based video compression is a visual perception metric
for video that is suitable for backpropagation and closely
aligns with human visual perception.

14486

References
[1] Variable rate image compression with content adaptive opti-

mization. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 2020-June:533–
537, 2020. 2

[2] Eirikur Agustsson, David Minnen, Nick Johnston, Johannes
Balle, Sung Jin Hwang, and George Toderici. Scale-space
flow for end-to-end optimized video compression. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8503–8512, 2020. 2, 3, 6, 7,
8

[3] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,
Radu Timofte, and Luc Van Gool. Generative adversarial
networks for extreme learned image compression. arXiv
preprint arXiv:1804.02958, 2018. 3, 8

[4] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-
to-end optimization of nonlinear transform codes for percep-
tual quality. In Picture Coding Symposium (PCS), 2016,
pages 1–5. IEEE, 2016. 1

[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compres-
sion with a scale hyperprior. In International Conference
on Learning Representations, 2018. 1, 3, 8

[6] G. Bjontegaard. Calculation of average psnr differences be-
tween rd-curves. 2001. 8

[7] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,
Shuicheng Yan, and Jiashi Feng. Dual path networks. In
Advances in Neural Information Processing Systems, pages
4467–4475, 2017. 5

[8] Yue Chen, Debargha Murherjee, Jingning Han, Adrian
Grange, Yaowu Xu, Zoe Liu, Sarah Parker, Cheng Chen, Hui
Su, Urvang Joshi, et al. An overview of core coding tools in
the av1 video codec. In 2018 Picture Coding Symposium
(PCS), pages 41–45. IEEE, 2018. 2

[9] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable
rate deep image compression with a conditional autoencoder.
Proceedings of the IEEE International Conference on Com-
puter Vision, 2019-Octob:3146–3154, 2019. 2, 4

[10] Ze Cui, Jing Wang, Bo Bai, Tiansheng Guo, and Yihui Feng.
G-VAE: A Continuously Variable Rate Deep Image Com-
pression Framework. 2020. 2, 4

[11] Abdelaziz Djelouah, Joaquim Campos, Simone Schaub-
Meyer, and Christopher Schroers. Neural inter-frame com-
pression for video coding. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 6421–6429,
2019. 2

[12] Adam Golinski, Reza Pourreza, Yang Yang, Guillaume
Sautiere, and Taco S Cohen. Feedback recurrent autoencoder
for video compression. arXiv preprint arXiv:2004.04342,
2020. 1, 2, 7

[13] Amirhossein Habibian, Ties van Rozendaal, Jakub M Tom-
czak, and Taco S Cohen. Video compression with rate-
distortion autoencoders. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 7033–7042,
2019. 1, 2, 6, 7

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[15] Zhihao Hu, Zhenghao Chen, Dong Xu, Guo Lu, Wanli
Ouyang, and Shuhang Gu. Improving deep video compres-
sion by resolution-adaptive flow coding. In European Con-
ference in Computer Vision (ECCV), 2020. 2

[16] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Weinberger. Multi-scale dense
networks for resource efficient image classification. In In-
ternational Conference on Learning Representations, 2018.
5

[17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. 5

[18] Nick Johnston, Elad Eban, Ariel Gordon, and Johannes
Ballé. Computationally efficient neural image compression.
arXiv preprint arXiv:1912.08771, 2019. 2

[19] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[20] LDV. 2017 on netflix - a year in bingeing. 2017. 1
[21] LDV. 45 billion cameras by 2022 fuel business opportunities.

2017. 1
[22] Jianping Lin, Dong Liu, Houqiang Li, and Feng Wu. M-lvc:

Multiple frames prediction for learned video compression.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3546–3554, 2020. 5

[23] Haojie Liu, Tong Chen, Ming Lu, Qiu Shen, and Zhan
Ma. Neural video compression using spatio-temporal priors.
arXiv preprint arXiv:1902.07383, 2019. 2

[24] Haojie Liu, M. Lu, Zhan Ma, Fan Wang, Zhihuang Xie, Xun
Cao, and Yao Wang. Neural video coding using multiscale
motion compensation and spatiotemporal context model.
ArXiv, abs/2007.04574, 2020. 2, 6, 7

[25] Jiaheng Liu, Guo Lu, Zhihao Hu, and Dong Xu. A unified
end-to-end framework for efficient deep image compression,
2020. 2

[26] Jerry Liu, Shenlong Wang, W. Ma, Meet Shah, Rui Hu,
Pranaab Dhawan, and R. Urtasun. Conditional entropy cod-
ing for efficient video compression. European Conference
on Computer Vision (ECCV), 2020. 1, 2, 6, 7, 8

[27] Guo Lu, Chunlei Cai, Xiaoyun Zhang, Li Chen, Wanli
Ouyang, Dong Xu, and Zhiyong Gao. Content adaptive
and error propagation aware deep video compression. arXiv
preprint arXiv:2003.11282, 2020. 1, 2, 6, 7

[28] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chun-
lei Cai, and Zhiyong Gao. Dvc: An end-to-end deep video
compression framework. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
11006–11015, 2019. 1, 2, 3, 6, 7, 8

[29] Alexandre Mercat, Marko Viitanen, and Jarno Vanne. Uvg
dataset: 50/120fps 4k sequences for video codec analysis and
development. In Proceedings of the 11th ACM Multimedia
Systems Conference, pages 297–302, 2020. 8

[30] Debargha Mukherjee, Jim Bankoski, Adrian Grange, Jingn-
ing Han, John Koleszar, Paul Wilkins, Yaowu Xu, and
Ronald Bultje. The latest open-source video codec vp9-an
overview and preliminary results. In 2013 Picture Coding
Symposium (PCS), pages 390–393. IEEE, 2013. 2

[31] Woonsung Park and Munchurl Kim. Deep predictive video
compression with bi-directional prediction. arXiv preprint
arXiv:1904.02909, 2019. 2

14487

[32] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-
age compression. In Doina Precup and Yee Whye Teh, ed-
itors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2922–2930, International Conven-
tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. 1,
2

[33] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson,
Alexander G Anderson, and Lubomir Bourdev. Learned
video compression. arXiv preprint arXiv:1811.06981, 2018.
1, 2, 3, 5, 7, 8

[34] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 5

[35] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (hevc) standard. IEEE Transactions on circuits and
systems for video technology, 22(12):1649–1668, 2012. 2

[36] TechCrunch. Facebook hits 100m hours of video watched a
day. 2018. 1

[37] George Toderici, Sean M O’Malley, Sung Jin Hwang,
Damien Vincent, David Minnen, Shumeet Baluja, Michele
Covell, and Rahul Sukthankar. Variable rate image com-
pression with recurrent neural networks. arXiv preprint
arXiv:1511.06085, 2015. 2

[38] Haiqiang Wang, Weihao Gan, Sudeng Hu, Joe Yuchieh Lin,
Lina Jin, Longguang Song, Ping Wang, Ioannis Katsavouni-
dis, Anne Aaron, and C-C Jay Kuo. Mcl-jcv: a jnd-based
h. 264/avc video quality assessment dataset. In 2016 IEEE
International Conference on Image Processing (ICIP), pages
1509–1513. IEEE, 2016. 8

[39] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-
scale structural similarity for image quality assessment. In
Signals, Systems and Computers, 2004., volume 2, pages
1398–1402. Ieee, 2003. 7

[40] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and
Ajay Luthra. Overview of the h. 264/avc video coding stan-
dard. IEEE Transactions on circuits and systems for video
technology, 13(7):560–576, 2003. 2

[41] Chao-Yuan Wu, Nayan Singhal, and Philipp Krähenbühl.
Video compression through image interpolation. In ECCV,
2018. 1, 2, 6, 7

[42] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV),
127(8):1106–1125, 2019. 6

[43] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu Tim-
ofte. Learning for video compression with recurrent auto-
encoder and recurrent probability model. arXiv preprint
arXiv:2006.13560, 2020. 6, 7, 8

[44] YouTube. Youtube for press. 2020. 1

14488

