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Abstract

Research in unpaired video translation has mainly fo-
cused on short-term temporal consistency by conditioning
on neighboring frames. However for transfer from sim-
ulated to photorealistic sequences, available information
on the underlying geometry offers potential for achieving
global consistency across views. We propose a novel ap-
proach which combines unpaired image translation with
neural rendering to transfer simulated to photorealistic sur-
gical abdominal scenes. By introducing global learnable
textures and a lighting-invariant view-consistency loss, our
method produces consistent translations of arbitrary views
and thus enables long-term consistent video synthesis. We
design and test our model to generate video sequences from
minimally-invasive surgical abdominal scenes. Because la-
beled data is often limited in this domain, photorealistic
data where ground truth information from the simulated do-
main is preserved is especially relevant. By extending exist-
ing image-based methods to view-consistent videos, we aim
to impact the applicability of simulated training and evalua-
tion environments for surgical applications. Code and data:
http://opencas.dkfz.de/video-sim2real.

1. Introduction
One of the most promising applications of GAN-based

image translation [14, 47] is the transfer from the simulated
domain to realistic images as it presents great potential for
applications in computer graphics. More importantly, un-
paired translation [52] (i.e. no image correspondences be-
tween domains required during training) enables the gener-
ation of realistic data while preserving ground information
from the simulated domain which would otherwise be dif-
ficult to obtain (e.g. depth maps, optical flow or semantic
segmentation). This synthetic data can then facilitate train-
ing or evaluation in settings where labeled data is limited.

Simulated Surgical 3D Scene

Photorealistic, View-Consistent Images

Neural Rendering

+

Unpaired Image Translation

Figure 1. By combining unpaired image translation with a neu-
ral rendering approach, we produce photorealistic and view-
consistent renderings of simulated surgical scenes. Note that fine
details like vessels are rendered consistently across viewpoints al-
though they were not manually modelled in the simulated domain.

The availability of realistic, synthetic data is especially
crucial in the field of computer-assisted surgery (CAS) [26,
5]. CAS aims at providing assistance to the surgical team
(e.g. visualizing target structures or prediction of compli-
cations) by means of analyzing available sensor data. In
minimally-invasive surgery, where instruments and a cam-
era are inserted into the patient’s body through small ports,
video is the predominant data source. Intelligent assis-
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tance systems are especially relevant here, since performing
surgery through small ports and limited view is extremely
challenging. However, two major factors which currently
limit the impact of deep learning in CAS are the lack of
(a) labeled training data and (b) realistic environments for
evaluation [25]. For instance, evaluating a SLAM (Simul-
taneous Localization and Mapping) algorithm [33, 43] on
laparoscopic video data poses several problems since the
patient’s ground truth geometry is typically not accessible
in the operating room (OR) and recreating artificial testing
environments with realistic and diverse patient phantoms
is extremely challenging. Other CAS applications which
could benefit from temporally consistent synthetic training
data include action recognition, warning systems, surgical
navigation and robot-assisted interventions [26, 25].

Previous research has shown the effectiveness of syn-
thetic, surgical images as training data for downstream tasks
such as liver segmentation [37, 41]. However, their applica-
tions are still limited since many challenges in CAS include
a temporal component. Using the previous example of eval-
uating a SLAM algorithm, realistic as well as temporally
consistent video sequences would have to be generated in
order to provide a useful evaluation environment.

Unpaired video translation has recently garnered inter-
est in various non-surgical specialties [3, 10, 7, 9, 34, 51].
Most approaches thereby condition the generator on pre-
vious translated frames to achieve smooth transitions, i.e.
short-term temporal consistency. However, they are fun-
damentally not designed for long-term consistency. Intu-
itively, when an object entirely leaves the field of view, con-
sistent rendering cannot be ensured when it returns since the
previous frame contains no information regarding the ob-
ject’s appearance. Even when the model is conditioned on
multiple frames, the problem persists in longer sequences.

In the special case of translating from a simulated envi-
ronment, however, the underlying geometry and camera tra-
jectories are often available. Point correspondence between
views are thus known and can be used to ensure globally
consistent translations. The relatively new research area of
neural rendering [45] aims at using the knowledge of the un-
derlying 3D scene for image synthesis but has mainly been
studied in supervised settings to date [45, 24, 42, 46, 32].

We propose a novel approach for unpaired video trans-
lation which utilizes the available information of the sim-
ulated domain’s geometry to achieve long-term temporal
consistency. A state-of-the-art image translation model is
extended with a neural renderer which learns global tex-
ture representations. This way, information can be stored in
3D texture space and can be used by the translation mod-
ule from different viewpoints. I.e. the model can learn the
position of details such as vessels and render them consis-
tently (Fig. 1). To ensure texture consistency, we introduce
a lighting-invariant view-consistency loss. Furthermore, we

employ methods to ensure that labels created in the sim-
ulated domain remain consistent when translating them to
realistic images. We show experimentally that our final gen-
erated video sequences retain detailed visual features over
long time distances and preserve label consistency as well
as optical flow between frames.

2. Related Work
2.1. Unpaired Image and Video Translation

Image-based GANs [14, 38] have gathered much atten-
tion showing impressive results as unconditioned generative
models [38, 6, 17, 18, 19] or in conditional settings such as
image-to-image translation [47, 8, 36, 23]. However, their
real-world applications are limited, since the content of gen-
erative models is difficult to control and supervised image
translation requires corresponding image pairs, which are
often not available. The introduction of unpaired trans-
lation through cycle consistency [52] hence widened their
applicability and impact. Since then, several extensions
have been proposed, e.g. shared content spaces [21], multi-
modality [20, 16], few-shot translation [22] or replacing cy-
cle consistency with contrastive learning [35]. From an ap-
plication standpoint, several works [37, 30, 41, 39, 29, 50]
have shown the effectiveness of leveraging synthetic train-
ing data for surgical applications.

There have been several attempts at extending unpaired
translation to videos where generated sequences have to be
temporally smooth in addition to being realistic in individ-
ual frames [3, 10, 7, 9, 34, 51]. Bansal et al. [3] tackle this
problem by introducing a temporal cycle consistency loss
and Engelhardt et al. [10] use a temporal discriminator to
model realistic transitions between frames. Several recent
approaches estimate optical flow to ensure temporal consis-
tency in consecutive frames [7, 9, 34, 51]. While there have
been steady improvements in generating smooth transitions
between frames, these models fail to capture long-term con-
sistency. We aim to overcome this by adding a neural ren-
dering component to our model. To our best knowledge, no
successful solutions for long-term consistent video transla-
tion in the unpaired setting have been published to date.

2.2. Physically-grounded Neural Rendering

While unpaired visual translation methods are also
sometimes categorized as neural rendering, the term most
commonly refers to image synthesis approaches which in-
corporate knowledge of the underlying physical world [45].
By introducing differentiable components to rendering
pipelines, neural representations of 3D shapes [32, 42, 53,
24], lighting [44, 31, 1, 2], textures [46] or view-dependent
appearance [32] can be learned from image data for appli-
cations like novel view synthesis, facial re-enactment or re-
lighting. Most closely related to our work, Thies et al. [46]
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Figure 2. We combine unpaired image translation with neural rendering for view-consistent translation from simulated to photorealistic
surgical videos. The model’s key concept is a learnable, implicit representation of the scene’s global texture. During training, texture
features are projected into image space as atex

i which, combined with a simple rendering aref
i , serve as input to the unpaired image

translation module. To encourage long-term temporally consistent translation, we warp two translated views into a common pixel space
and employ our lighting-invariant consistency loss. Also note that the projected texture maps are part of the translation cycle, i.e. transfer
from B to A includes the prediction of a reference image âref as well as a texture map âtex.

introduce a deferred neural renderer with neural textures,
where implicit texture representations are learned from im-
age sequences with a ground truth 3D model and camera
poses. In contrast to their work, however, our model is
built in an unsupervised setting where no correspondence
between the simulated 3D data and real images is available.
Finally, Alhaija et al. [2] propose a deferred neural renderer
for unpaired translation from fixed albedo, normal and re-
flection maps to realistic output. However, since the texture
representation is not learned, this work is more closely re-
lated to image-to-image translation.

Mallya et al. [27] propose a model for long-term consis-
tent, paired video translation. They estimate information of
the underlying physical world (depth, optical flow, seman-
tic segmentation) to render globally consistent videos. This
is currently the closest attempt at combining neural render-
ing with GAN-based translation. However, the paired data
setting is a major hurdle for real-world applications.

We rather aim at bringing unpaired translation and neural
rendering closer together. We believe that requiring knowl-
edge of the simulated 3D geometry in an unpaired setting
is often less restrictive than paired video translation, which
requires rich ground truth in the real domain.

3. Method
We propose a method for unpaired, view-consistent

translation from the domain of simulated surgical scenes A

to the domain of realistic surgical images B. The method
consists of three components: learnable neural textures, an
unpaired image translation module and a lighting-invariant
view-consistency loss (Fig. 2).

1) For a given viewpoint viewi of the simulated scene,
learnable features are projected from the neural texture tex
to their pixel locations in the image plane and form a spatial
feature map atexi :

atexi = project(tex, viewi) (1)

2) Additionally, a simple but unrealistic rendering arefi

of the same view is used as a prior for translation. Com-
bined, (atexi , arefi ) ∈ A serves as input to the unpaired im-
age translation module to get the fake image b̂i ∈ B:

b̂i = translateθ(a
ref
i , atexi ) (2)

Errors can be backpropagated into tex since project(·) is
differentiable and enables the model to learn the global tex-
ture representation tex end to end with the network param-
eters θ of the translation module.

3) To ensure globally consistent rendering, pairs of trans-
lated views b̂i, b̂j are sampled during training, warped into
a common pixel space and constrained using our lighting-
invariant view-consistency loss.

b̂i
view←−−−−→

consist.
b̂j (3)
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The main insight of our model is that neural textures al-
low the model to learn global information about the scene
independent of time-point and view, e.g. material properties
or locations of details such as vessels. After projecting tex-
ture features into the image plane, the translation module
serves as a deferred renderer to synthesizing realistic im-
ages. Since the translation module operates on individual
views, view-dependent effects such as specular reflections
or changing lighting conditions are synthesized here. We
jointly learn one neural texture for each of the 7 simulated
scenes and common translation networks for all scenes.

3.1. Neural Texture & Projection Mechanism

For true long-term consistency, we require a method
which can store information independent of time-point or
view. To do so, we use a learnable, global texture tex,
named neural texture by Thies et al. [46]. For each object in
the scene (liver, gallbladder, ligament, abdominal wall and
fat), tex contains learnable, spatial feature maps as an im-
plicit texture representation. At each spatial location (texel),
N features are learned and enable the model to learn consis-
tent tissue properties or locations of details such as vessels.
The shape of tex is O × P ×H ×W ×N with O = 5 ob-
jects, P = 6 projection planes of size H ×W = 512× 512
per object and N = 3 learnable texture features per texel.

To learn tex end-to-end with the translation module, we
only require a differentiable projection mechanism (Eq. 1)
which maps features from the global texture tex into the
image plane for a given view viewi. The resulting image-
sized feature map atexi serves as an input to the translation
module and thus errors can be propagated back into tex.

atexi [x, y] =

tri(s)∑
xp,yp

(nT
s · np)

2 · tex[o, p, xp, yp] (4)

We define the projection into atexi by means of ray cast-
ing [49], triplanar mapping [13] and bilinear interpola-
tion [12] (Fig. 3 and Eq. 4). For each pixel (x, y), we cast
a ray onto its 3D surface point s ∈ R3 in the scene and de-
termine the object o it belongs to. The neural texture tex[o]
of an object consists of 6 axis-aligned texture planes sur-
rounding the mesh. Through triplanar mapping tri(s), we
obtain one texture coordinate (xp, yp) for each of the three
planes p ∈ {1..P} which face s (Fig. 3). Texture features
are weighted by the dot-product of plane and surface normal
np, ns to obtain the aggregated features atexi [x, y] in pixel
space. Since texture planes are discrete grids, we use bilin-
ear interpolation to obtain texture features tex[o, p, xp, yp]
from arbitrary, continuous locations. Hence, a total of 12
texels contribute to one pixel (4 discrete texels for each of
the 3 plane coordinates). For details, see the supplementary.
Note that triplanar mapping was chosen for its simplicity
but could easily be replaced by other UV mappings.
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Figure 3. Neural texture projection. A ray (red) is cast for every
pixel to the scenes’s surface. Triplanar mapping (green) is used to
map surface points to learnable texture planes (with bilinear inter-
polation in texture space). This differentiable mapping allows us
to backpropagate errors from image space to global texture space.

3.2. Unpaired Image Translation Module

Our translation module is a deterministic, style-less vari-
ant of Pfeiffer et al.’s model [37], which itself is based on
MUNIT [16]. The model enforces cycle consistency as well
as a shared content space through interchangeable encoders
EA, EB and decoders GA, GB for each domain [21].

Given a projected texture map and reference image
(atexi , arefi ) ∈ A, the encoder EA extracts a domain-
independent content code cai and decoder GB predicts a
fake image b̂i ∈ B from cai . EB then reconstructs content
cai
rec and GA translates back to domain A to complete the cy-

cle. Additionally, the input is directly reconstructed through
(atexi,rec, a

ref
i,rec) = GA(EA(a

tex
i , arefi )). Translation from B

to A is done analogously. Finally, Multi-Scale Discrimina-
tors [47] DA, DB distinguish fake and real images.(

atexi

arefi

)
EA−−→ cai

GB−−→ b̂i
EB−−→ cai

rec
GA−−→

(
atexi,cyc

arefi,cyc

)
(5)

We use the LS-GAN loss [28] as adversarial loss Ladv ,
and L1 losses for Lcyc, Lrec, Lc to ensure cycle consis-
tency as well as image and content reconstruction. Finally,
we enforce a Multi-Scale Structural-Similarity loss [48, 37]
Lssim on the brightness of arefi and b̂i as well as b and âref

to encourage label-preserving translation. Details on net-
works and losses can be found in the supplementary.

Ltranslation = Ladv + Lcyc + Lrec + Lc + Lssim (6)

3.3. View Consistency Loss

To enforce view consistency, two random views i, j of
the same simulated scene are sampled and translated dur-
ing each training iteration. Using the knowledge about the
scene’s geometry, the second view is warped into the pixel
space of the first view and consistent rendering is enforced
through a pixel-wise view-consistency loss. In minimally-
invasive surgery, however, the only source of light is a lamp
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mounted on the camera. This results in changing light con-
ditions whenever the field of view is adjusted and the image
center typically being brighter than its surroundings. This
poses an additional challenge for view-consistency. There-
fore, we propose to minimize the angle between RGB vec-
tors instead of a channel-wise loss. For a pair of translated
views b̂i, b̂j , the loss is defined as

Lvc =
1

|Mb̂ib̂j
|

Mb̂ib̂j∑
(x,y)

cos−1

(
b̂xyi · wi(b̂j)

xy

∥b̂xyi ∥∥wi(b̂j)xy∥

)
, (7)

where (x, y) ∈Mb̂1b̂2
are the pixel locations in b̂i that have

a matching pixel in b̂j . b̂xyi is the RGB vector at this lo-
cation. wi(·) is the warping operator into b̂i’s pixel space.
Note that the angle between vectors u, v can be computed
by cos−1((u·v)/(∥u∥∥v∥)). This enforces consistent hue in
corresponding locations while allowing varying brightness.

Ltotal = Ltranslation + λLvc (8)

Equation 8 shows the final loss function. To avoid an im-
balance between domains A and B, Ltranslation is not en-
forced on b̂j and errors from Lvc are only backpropagated
through b̂i and not b̂j . λ is initialized with 0 and set to 20
after 104 training steps to avoid forcing consistency on un-
refined translations in early stages of training. Complete
training details can be found in the supplementary.

3.4. Data

For the domain of real images B, we collected 28 record-
ings of robotic, abdominal surgeries from the University
Hospital Carl Gustav Carus Dresden and manually selected
sequences which contain views of the liver. The institu-
tional review board approved the usage of this data. Frames
were extracted at 5fps, resulting in a total of 13,334 training
images. During training, images are randomly resized and
cropped to size 256x512.

For the simulated domain A, we built seven artificial ab-
dominal 3D scenes in Blender containing liver, liver liga-
ment, gallbladder, abdominal wall and fat/stomach. The
liver meshes were taken from a public dataset (3D-IRCADb
01 data set, IRCAD, France) while all other structures were
designed manually. For each scene, we generated 3,000 ran-
dom views of size 256x512, resulting in a total of 21,000
training views. To evaluate temporal consistency, we man-
ually created seven 20-second sequences at 5fps which pan
over each scene with varying viewpoints and distances.

4. Experiments
To establish that our method produces both realistic and

long-term consistent outputs, we need to evaluate the qual-
ity of individual images as well as consistency between con-

secutive or non-consecutive frames. Thus, we establish sev-
eral baselines and evaluate them using various metrics. We
place a special focus on both detailed and temporally con-
sistent translation, since correct re-rendering of details such
as vessels is crucial for obtaining realistic videos.

4.1. Baselines

SSIM-MUNIT: This is Pfeiffer et al.’s [37] model for
surgical image translation trained on our dataset of real and
synthetic images b and aref . It corresponds to our image
translation module but with added styles and noise injected
into generator input. We remove these components in our
model since they are disadvantageous for view consistency.

ReCycle and SSIM-ReCycle: We compare to Bansal et
al.’s unpaired video translation approach ReCycle-GAN [3]
which is trained on triplets of consecutive video frames to
maintain temporal consistency. We use the variant with ad-
ditional non-temporal cycles (https://github.com/
aayushbansal/Recycle-GAN). Additionally, we im-
plement a variant with MS-SSIM loss for label preservation.

OF-UNIT: State-of-the-art unpaired video translation
models condition the generator on translations from previ-
ous time-steps to ensure short-term temporal consistency.
Many methods thereby warp the previous image by estimat-
ing optical flow (OF) and achieve incremental improvement
through better OF estimation [7, 9, 34]. We argue, how-
ever, that even perfect OF is not enough for long-term con-
sistency and can even have detrimental effects as we show
later. To demonstrate this, we build a variant of our model
which uses ground-truth OF to warp the previous transla-
tion, i.e. it can potentially produce perfect transitions be-
tween frames. We replace the input (atex, aref ) of the en-
coder EA with (w(b̂prev), a

ref ), where b̂prev is the gener-
ated frame of the previous time step and w is the perfect
warping operator using ground-truth optical flow. Thus,
OF-UNIT serves as an upper-bound for the state of the art
in unpaired video translation, where OF has to be estimated
and is therefore imperfect.

Ours w/o vc and Ours w/o tex, vc: Finally, we ablate
our model by removing first the view-consistency loss and
then also neural textures. The second model corresponds to
SSIM-MUNIT without styles or noise in the generator.

4.2. Metrics

Realism: We compare the realism of models through
the commonly used metrics Frechet Inception Distance
(FID) [15] and Kernel Inception Distance (KID) [4] for
which we sample 10,000 random images from the set of
real and generated training images, each. Further, we train
a U-Net variant for liver segmentation on a dataset of 405 la-
paroscopic images from 5 patients and report the Dice score
when evaluated on all 21,000 generated images. This metric
measures both realism and label preservation.
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Figure 4. Qualitative comparison: View-consistent areas are marked green, inconsistent ones red. Our model can render fine-grained details
consistently across views. SSIM-ReCycle often produces consistent outputs but lacks detail and realism. SSIM-MUNIT produces realistic
but flickering results. Quality and consistency can best be judged in videos at http://opencas.dkfz.de/video-sim2real.

Method Data Realism Temp. Consistency
FID ↓ KID ↓ Dice ↑ OF ↓ ORB-1 ↑ ORB-5 ↑ ORB-10 ↑

% % (# per pair) % (# per pair) % (# per pair)
SSIM-MUNIT [37] img 28.3 .0132 59.2 8.64 60.5% (32.5) 36.1% (15.7) 19.1% (7.0)
ReCycle [3] vid 61.5 .0454 40.7 8.89 69.6% (16.3) 43.9% (7.0) 23.5% (2.7)
SSIM-ReCycle vid 80.6 .0622 50.9 8.75 88.9% (13.3) 67.4% (6.2) 43.2% (2.8)
OF-UNIT vid 26.8 .0125 57.7 8.53 93.5% (32.4) 59.0% (11.1) 30.7% (4.4)
OF-UNIT (revisit) vid - - - 8.91 69.9% (15.7) 43.8% (7.3) 24.7% (3.4)
Ours w/o tex,vc img 27.3 .0114 56.8 8.43 81.7% (31.2) 51.3% (13.3) 29.5% (6.2)
Ours w/o vc vid 27.0 .0134 55.2 8.35 88.3% (27.9) 66.8% (14.6) 44.5% (7.5)
Ours vid 26.8 .0124 57.1 7.62 91.8% (49.7) 73.0% (27.2) 49.6% (13.9)

Table 1. Quantitative results with best scores printed bold. For metrics ORB-1, ORB-5 and ORB-10, we report the accuracy of feature
matches and the total number of correct matches per image pair, indicating both consistency as well as level of detail.

Temporal Consistency: We introduce two met-
rics to evaluate the temporal consistency of the se-
quences generated from each scene. Firstly, we mea-
sure the mean absolute error for the estimated optical
flow OF of consecutive translated frames b̂t, b̂t+1 and
their corresponding simulated reference images areft , areft+1

by mean(|OF (areft , areft+1) − OFGF (b̂t, b̂t+1)|) where
OF (areft , areft+1) is the ground truth optical flow of the syn-
thetic scene and OFGF (b̂t, b̂t+1) is the optical flow esti-
mated by the Gunnar-Farneback method [11] on the gen-

erated frames. As argued by Chu et al. [9], this is better
than the more common RGB error on warped images, since
the latter favors blurry sequences. Secondly, the metrics
ORB-1, ORB-5 and ORB-10 measure how consistently im-
age features are rendered. For ORB-1, we compute all ORB
feature [40] matches in consecutive frames and determine
whether the matched feature points correspond the the same
3D location. We report the accuracy of matches as well as
the average number of correct matches per image pair. A
blurry but consistent sequence might yield a high accuracy,
so the number of matches gives additional information on
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Channel #3 of neural texture Output

Figure 5. Details are stored in our neural textures. We found the
3rd feature channel often to correspond to vessels.

how detailed the results are. A match is considered cor-
rect if its distance is smaller than 1mm in the underlying
3D scene. To investigate consistency beyond consecutive
frames, we do the same with pairs that are 5 and 10 frames
apart (i.e. 1 and 2 sec.) as ORB-5 and ORB-10.

Time-independence: Finally, we show the pitfalls of
previous approaches which condition on previous time
steps. We extend each test sequence by running it first
forward and then backward such that each view is visited
twice with varying temporal distance. I.e. given a sequence
1, . . . , T , we extend it to 1, . . . T, T, . . . , 1 similar to Mallya
et al.’s [27] evaluation. We then compute the same metrics
OF and ORB-1. But instead of comparing frame t to its suc-
cessor t+1, we use the time point in the extended sequence
which corresponds to its successor, namely 2T − t. For all
methods except OF-UNIT, this is equivalent to the original
metric since they depend only on the current view. Analo-
gously for ORB-5 and ORB-10, we compare to time points
2T − t − 4 and 2T − t − 9, respectively. We denote these
experiments as OF-UNIT (revisit).

5. Results

5.1. Realism

Table 1 shows our model achieves similar FID and KID
scores as image-based approaches (SSIM-UNIT and Ours
w/o tex,vc) while strongly outperforming video-based meth-
ods ReCycle and SSIM-ReCycle. We hypothesize that their
temporal cycle-loss favors blurry images since they are eas-
ier to predict for the temporal prediction model. Fig. 4 sup-
ports this hypothesis as our and image-based models show
more detailed and realistic translations than SSIM-ReCycle.
For OF-UNIT, similar realism scores to ours are expected,
since it uses the same translation module.

Further, we evaluate a pretrained liver segmentation net-
work on the generated data. Again, our model yields com-
parable results to image-based methods while outperform-
ing ReCycle and SSIM-ReCycle. This indicates that our re-
sults are not only realistic but content of the simulated do-
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Figure 6. Estimated optical flow in a scene with camera motion
(where hue indicates the direction of the flow). In our results, con-
sistent motion is detected on textured surfaces while blurriness or
flickering lead to poor flow estimates in other models.

main is also translated correctly. The gap between ReCycle
and SSIM-ReCycle additionally shows the importance of the
MS-SSIM loss for label-preservation. Example 2 in Fig. 4
shows a failure case of our model where a stomach-like tex-
ture with vessels is rendered on the liver. Introducing neu-
ral textures supposedly improves the sharpness and level of
detail in translations but increases the model’s freedom to
change content in the scene. The quantitative results, how-
ever, suggest that this is only a minor effect.

5.2. Temporal Consistency

Using the established ORB feature detector, we evaluate
how consistently visual features are re-rendered in follow-
ing frames of generated video sequences. We report how of-
ten detected feature matches are correct as well as the num-
ber of correct matches per pair of frames. For neighboring
frames, our model achieves an accuracy of 91.8%, outper-
forming all baselines except OF-UNIT. However, this is not
surprising since the latter uses the perfectly warped previ-
ous frame as input. For larger frame distances, however, our
model outperforms OF-UNIT, showing its superiority w.r.t.
long-term consistency. Additionally, the absolute number
of correct matches per image pair is drastically higher than
in OF-UNIT and other models even for neighboring frames.
This indicates that our neural textures not only enable con-
sistent translation but also encourage more detailed render-
ing. Fig. 4 shows several translated views with detailed as
well as consistent textures. In Fig. 5, we show how the
location of vessels is stored in the neural texture.

We observe that other methods fail to generate detailed
as well as temporally consistent sequences. While SSIM-
MUNIT produces detailed translations (indicated by the
high number of matches), it achieves the lowest accuracies.
Oppositely, video-based ReCycle and SSIM-ReCycle pro-
duce more consistent but less detailed renderings, indicated
by their high accuracy but low number of correct matches.
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Figure 7. When revisiting a previous view, time-dependent models
such as OF-UNIT fail to render textures consistently. Our model
maintains consistency independently of the duration between vis-
its by storing information in texture-space.

Note that SSIM-MUNIT induces flickering since noise is
injected into the generator. Temporal consistency can al-
ready be strongly improved by removing this component
(Ours w/o tex,vc). Adding neural textures without enforcing
view-consistency (Ours w/o vc) further improves results.

Evaluating temporal consistency through optical flow
(OF) supports our previous findings. This metric mea-
sures both temporal consistency as well as level of detail,
since Gunnar-Farneback flow often fails on smooth sur-
faces. Image- and other video-based methods yield high
errors, since the former tend to produce detailed but flick-
ering sequences, while the latter often generate blurry but
consistent views (Fig. 6). By learning textures in 3D space,
our model achieves both detailed and consistent renderings.

5.3. Time-independence

We have seen that the time-dependent baseline OF-UNIT
achieves very consistent transitions between frames and
still achieves respectable results for larger frame distances.
However, if the second frame is replaced with the same
view revisited at a later point of the sequence, then perfor-
mance drastically degrades. This is because the model does
not have the capacity to remember the appearance of areas
which have left the field of view. It even underperforms
compared to its unconditioned variant Ours w/o tex,vc. We
hypothesize that dependence on the previous trajectory ac-
tually encourages appearance changes over time (Fig 7). We
believe time-independence is therefore an important fea-
ture for achieving long-term consistency, even in non-static
scenes. With our approach, moving objects as well as defor-
mations can potentially be handled by moving or deforming
the neural texture accordingly.

5.4. Lighting-invariant View Consistency

We proposed an angle-based loss for view consistency
which only keeps the hue of corresponding areas consistent.
Fig. 8 shows that our angle loss allows for more realistic

Lighting

Angle loss (ours) L1 loss

Figure 8. Our angle loss allows the translation module to adjust
brightness of areas according to the current view. In real images,
the center is often brightest since the light source is mounted on
the camera.

lighting since the translation module can change brightness
according to the current view. On the other hand, an L1 loss
enforces static brightness from arbitrary viewpoints. This
results in incorrect lighting like in the left image where the
light appears to come from the bottom right. More examples
can be found in the supplementary material.

6. Conclusion
We combine neural rendering with unpaired image trans-

lation from simulated to photorealistic videos. We target
surgical applications where labeled data is often limited and
realistic but simulated evaluation environments are espe-
cially relevant. Through extensive evaluation and compar-
ison to related approaches, we show that our results main-
tain the realism of image-based approaches while outper-
forming video-based methods w.r.t. temporal consistency.
We show that optical flow is consistent with the underly-
ing simulated scene and that our model can render fine-
grained details such as vessels consistently from different
views. Also, data generation can easily be scaled up by
adding more simulated scenes. A crucial observation about
the model is that it leverages the rich information contained
in the simulated domain while requiring only an unlabeled
set of images on the real domain. This way, consistent
and label-preserving data can be generated without limit-
ing its relevance for real-world applications. Specifically,
ground truth which would be unobtainable in surgical set-
tings can be generated (e.g. depth, optical flow, point corre-
spondences). This work is a step towards more expressive
simulated environments for e.g. surgical assistance systems,
robotic applications or training aspiring surgeons. While we
focus on surgical applications (where access to labeled data
is especially restricted), the model can potentially be used
for any setting with a simulated base for translation.
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