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Abstract

We derive computed tomography (CT) of a time-varying
volumetric scattering object, using a small number of mov-
ing cameras. We focus on passive tomography of dynamic
clouds, as clouds have a major effect on the Earth’s cli-
mate. State of the art scattering CT assumes a static object.
Existing 4D CT methods rely on a linear image formation
model and often on significant priors. In this paper, the an-
gular and temporal sampling rates needed for a proper re-
covery are discussed. Spatiotemporal CT is achieved using
gradient-based optimization, which accounts for the corre-
lation time of the dynamic object content. We demonstrate
this in physics-based simulations and on experimental real-
world data.

1. Introduction

Computed tomography (CT) aims to recover the inner
structure of three dimensional (3D) volumetric heteroge-
neous objects [15, 16]. CT has extensive use in many do-
mains. These include medicine [14, 41], sensing of at-
mospheric pollution [2], geophysics [49] and fluid dynam-
ics [27,51,52]. CT requires multi-view imaging [3, 22].
In nearly all CT approaches, the object is considered static
during the multi-view acquisition. However, often the ob-
ject changes while views are acquired sequentially [8, 53].
Thus, effort has been invested to generalize 3D CT to four-
dimensional (4D) spatiotemporal CT, particularly in the
computer vision and graphics communities [42, 52, 53].
This effort has focused on linear-CT modalities. Linear
CT is computationally easier to handle, thus common for
decades, mainly in medical imaging [19]. Medical CT of-
ten exploits the periodic temporal nature of organ dynamics,
to synchronize sequential acquisitions [41].

This paper deals with a more complicated model: scat-
tering CT. It is important to treat this case for scientific, so-
cietal and practical reasons. The climate is strongly affected
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Time
Figure 1. Multiple moving sensors image a time-varying object
(cloud) from multiple-views. Tomography seeks the inner content.

by interaction with clouds [13]. To reduce major errors in
climate predictions, this interaction requires a much finer
understanding of cloud physics. Current models are based
on remote sensing data that is analyzed under the assump-
tion that the atmosphere and clouds are made of very broad
and uniform layers. This leads to errors in climate under-
standing. To overcome this problem, 3D scattering CT has
been suggested as a way to study clouds [29, 30, 46].

Scattering CT of clouds requires high resolution multi-
view images from space. There are spaceborne and high-
altitude systems that may provide such data, such as AirM-
SPI [6], MAIA [4], HARP [38], AirHARP [35] and the
planned CloudCT formation [43]. These systems are so ex-
pensive, that it is unrealistic to deploy them in large num-
bers to simultaneously image the same clouds from many
angles. Therefore, in practice, platforms move above the
clouds: a sequence of images is taken, in order to span
and sample a wide angular breadth (Fig. 1), but the cloud
evolves meanwhile. Hence there are important reasons to
derive 4D scattering CT of clouds.

We pose conditions for performing this task. These relate
to temporal sampling and angular breadth, in relation to the
correlation time of the evolving object. Then, we general-
ize prior 3D scattering CT, to spatiotemporal recovery using
data taken by moving cameras. We present an optimization-
based method to reach this. The method is demonstrated
both in rigorous simulations and on real data.
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2. Theoretical Background
2.1. Cloud Microphysical Parameters

Warm clouds are composed of water droplets. The
droplet size distribution is typically parameterized by an ef-
fective radius 7° and a dimensionless droplet variance v°®
(see [17] for details). These parameters vary with spatial lo-
cation x, and assumed here to be uniform in a voxel around
x. An additional characterization is the liguid water con-
tent (LWC), L, which increases linearly with the number-
density and volume of droplets in a voxel [17,30].

A common approximation in convective cloud models
is that £ and r° tend to increase with altitude inside a
cloud [32,47,54]. Let zg be the cloud base. For adiabatic
convection, at z > zg

& (2 — zo)% +r5, L~&(z—20), (1)

where r( is the effective radius at the cloud base and
&,&c > 0. The error of this approximation grows as the
cloud mixes with its surroundings air at the cloud shell,
mainly at its top. The values of ¢, v® tend to be rather
uniform per altitude, while £ can change significantly in
3D [21].

Overall, the vector vy = [L¢, 75, v§] characterizes a voxel
at time t. Concatenating these parameters across all spa-
tial voxels results in a vector v, which expresses the cloud
structure at time ¢.

2.2. The Forward Model

The interaction of radiation with a scattering volumetric
object is modelled by 3D radiative transfer, which includes
multiple scattering. Define M ,[] as a differentiable opera-
tor that maps microphysical parameters to macroscopic op-
tical parameters corresponding to wavelength A, using Mie
theory [12,30]. Let

L(x,9,t) = RT(M[v:]) 2)

be the radiance resulting from radiative transfer at each spa-
tial location x and each direction 2. There are various
algorithms to implement RT (M [v;]), including Monte-
Carlo [32, 34] and the spherical harmonic discrete ordi-
nate method (SHDOM). We use the latter, as it is consid-
ered trustworthy by the scientific community [9] and has an
open-source' online code [28] .

A camera observes the scene from a specific location,
while each pixel in a camera samples a viewing direction

'Egs. (3,6,7,16) use the forward model F and Jacobian OF /Ov as
black boxes, agnostic to a specific implementation. A differential RT
solver as Mitsuba2 [39] can be used, as any other solver. Currently, how-
ever, Mitsuba2 supports neither heterogeneous media having a mixture of
spatially varying materials (both air molecules and water droplets with
varying densities), nor mixtures of Mie phase functions. To comply with
atmospheric science standards, we use SHDOM as our renderer.

2. Hence, imaging (forward model) amounts to sampling
the output of 3D radiative transfer at the camera locations
and the lines of sight of the pixels. This sampling integrates
over the camera exposure time and spectral bands. Camera
sampling is denoted by a projection operator Px q.

The forward image formation model F (v;) yields the
expected graylevel at a pixel, at time ¢:

Lear = F (W) ® 7" Pea {RT(Mu[])} - )

Here ™ expresses camera properties, including the lens

aperture area, exposure time, spectral band, quantum effi-
ciency and lens transmissivity. Eq. (3) assumes that the ex-
posure time is sufficiently short, such that within this time,
the scene and the camera pose vary insignificantly.

Empirical measurements include random noise [2,6,48].
The noise mainly originates from the discrete nature of pho-
tons and electric charges, which yields a Poisson process.
There are additional noise sources, and their parameters can
be extracted from the sensor specifications. Denote incor-
poration of noise into the expected signal by the operator
N. Then, a raw measurement is

Yx,Qt = N{Ix,ﬂ,t} . (4)

Per ¢, all multi-view, multi-pixel measurements are concate-
nated into a vector y,. Concatenating y, over all ¢ yields the
vector y.

2.3. Scattering 3D Tomography of Clouds

This section expresses the state of the art in 3D scattering
tomography [32,44,47], in which v is assumed to be invari-
ant to t. Hence, t is generally dropped from the derivations
here. Estimation of v is done by minimization of a cost &,
which penalizes the discrepancy between y and the forward
model,

U= arg't}niné’ [y, F (v)] . (5)

Eq. (5) can be solved efficiently by gradient-based meth-
ods. By setting

1
Ely. Fw)) =3y - Fw)I3, ©)
the gradient of Eq. (5) with respect to v is

)= EBI 0L _ 27 )

Gradient-based optimization performs per iteration k
v(k+1) =v(k) —nglv(k)] (8)

where 7 is a step size. In scattering CT, computing the Ja-
cobian OF (v) /Ov is complex. However, there are approx-
imations to the Jacobian of 3D RT, which can be computed
efficiently [29,31,32], making recovery tractable.

F)—yl. O
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We stress that traditional CT methods cannot apply to
cloud recovery. To see this, let L°"" be the solar irradiance.
Let a#°"d ~ 0.05 be the ground albedo. The range of
the optical depth T¢'°d of warm clouds is typically 10-100.
The albedo of warm clouds is a®°"? ~ 0.5. The radiance
directly transmitted from the ground through a cloud to a
sensor above is

D ~ Lsunagroundexp(_Tcloud) ) 9)
Sunlight reflected above by a cloud has radiance
S ~ Lsunacloud ) (10)

From these orders of magnitude, D < S. The measured
signal is dominated by S. Suppose a naive approach fol-
lowing traditional CT, associating a measured signal with
direct transmission i.e., S &~ D. Then from Egs. (9,10),
CT estimates T ~ log(a#°""4 /gc*"d). From these or-
ders of magnitude, Teloud () which is not-physical. Thus,
traditional CT is irrelevant for cloud tomography in visible
light.

2.4. Temporal Sampling of a Random Object

A temporal sample indexed [ corresponds to continuous
time ¢;. The time interval between consecutive samples is
T = |t;,, —t;|. Consider a continuously varying object 3.
A temporal sample is denoted B;}&mple. The Nyquist sam-
pling theorem [40] relates to objects whose time-spectrum
is limited to temporal frequencies w satisfying |w| < B,
where B is a cutoff frequency. Then, time domain samples
satisfying T' < (2B) ™! can yield reconstruction of 3, using
a linear superposition:

By(x) ~ > wy(H|T)BF(x) . (11)
t/

There, the superposition uses w; (t'|T) = sinc[(t — ¢')/T.

There is a generalization, however, to cases where the
object 3, is random and not strictly band-limited. The tem-
poral auto-correlation of 3, is

a(rlo) = (B:(x), Br—r (¥))tx - (12)

The function a(7|o) generally decays with |7|, where o
is the effective decay time of «, termed correlation time.
Two limiting cases are illustrative. For 0 — oo, we have
a(r|o) — constant. This means that the object 3 is ef-
fectively static. In contrast, for o — 0, we have a(7|0) —
d(t — t'), i.e., a Dirac delta function. This means that the
object 3 varies so fast, that at any time ¢ its state is uncor-
related to the state at other times.

Once again, 3, can be linearly reconstructed from tem-
poral samples using Eq. (11), but w;(¢'|T") can be general.
Any sampling rate and reconstruction kernel can be used,

18
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Figure 2. Illustration of Eq. (13) for Gaussian or triangular spectra.
but then there is a reconstruction error. The reconstruction
mean squared error (MSE) has a bound [36]. Let A(w) be

the time-spectrum of the random object, i.e., the Fourier
transform of «(7|o). The MSE bound [36] is then

> A?lw — (27/T)q]

T [T q€Z

MSE(T) = o /_ﬂ Aw) — S Alw — (20/T)q] dw .
qEZ

(13)

For illustration, Fig. 2 plots MSE(T") for objects that have
Gaussian or triangular spectra. When T < ¢, the error is
negligible, but error accumulates significantly as the sam-
pling interval 7" increases beyond o. Hence, to keep recon-
struction error small, an efficient temporal sampling interval
should satisfy T =~ o.

3. Clouds: Correlation Time and Sampling

Warm convective clouds are governed by air turbulence
of decameter scale. In these scales [13], the correlation time
of content in a voxel is about 20 to 50 seconds. This indi-
cates that 4D spatiotemporal clouds can be recovered well
using 4D spatiotemporal samples, if the temporal samples
are about 25 seconds apart. The lifetime of a warm convec-
tive cloud is typically measured in minutes.

Consider a cloud simulation, described in detail in
Sec. 6. The cloud evolves for about 10 minutes. For each
cloud voxel, we calculated the temporal auto-correlation of
L. Similarly, temporal auto-correlations were derived for
horizontally-averaged r; and v;. The auto-correlation func-
tions of £, and r{ are plotted in Fig. 3a (Eq. 12). The auto-
correlation function of r{ behaves similarly to that of vg.
Clearly, the correlation times of 77 and of vy are very long,
comparable to the lifetime of a cloud, and longer than the
typical time it takes to acquire multi-view data of clouds.
Hence, when recovering microphysical parameters r® and
v°, we neglect temporal variations.

On the other hand, £; has a short correlation time:
o ~ 25sec. Hence, 4D recovery is necessary for L;, if data
is sparsely sampled in time. Following the conclusion of
Sec. 2.4, it is advisable to sample warm convective clouds
at temporal sampling interval of T' ~ ¢ ~ 25 sec.

From Sec. 2.4, at an arbitrary ¢, reconstruction of £,
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Figure 3. (a) Auto-correlation of cloud field microphysics. The
auto-correlation of LWC and r° decrease to 0.5 after 25 sec and
185 sec, respectively. Typical cloud multi view sensing is about a
minute, during which the LWC auto-correlation decreases to 0.26,
while the auto-correlation of r° is 0.82. (b) MSE (Eq. 13) of LWC
and 7°.

from samples would use a temporal kernel whose effective
width is o. In CT, however, we do not have direct access to
the object samples. We only have noisy projections of radi-
ance scattered by the object. Thus, reconstruction does not
involve direct application of the optimal kernel [36], which
achieves the bound in Eq. (13). Reconstruction involves a
tomographic process, which we describe in Sec. 5.

4. Tomographic Angular Extent

Section 2.4 dealt with sampling of an object, as if 4D
measurements are done in-situ. However, in CT, we have no
direct access to v;: we only measure projections y,. As we
discuss now, projections must have a wide angular breadth,
while object evolution is small.

Consider an extreme case. Let a cloud be temporally
constant and reside only in a single voxel, over the ocean.
Viewed from space by two cameras simultaneously, cloud
recovery here amounts to triangulation. In triangulation, the
best cloud-localization resolution is obtained if the angular
range between the two cameras is 90°. At small baselines,
localization decreases linearly with a decreasing angular ex-
tent. When more than two cameras operate, the trend is
similar. Consider an error measure that has been used in 3D
cloud scattering CT [20,29,30,32],

_ Hﬁtruc _ zHl

rue (14)
[V B

W 1 \ J
k A Cloud

0 50 100 150
Angle span [deg]

Figure 4. A static heterogeneous cloud and a single-voxel “cloud”
(having size 20 m x 20 m x 20 m) are recovered from nine view-
points using [30]. The plots are of errors defined in Eq. (14).

Here L is the estimated 3D cloud LWC field. Fig. 4 plots
¢ when CT attempts to recover a single-voxel of a static
cloud (extending 20 m), when 9 cameras surround it from
500 km away, while the true ¢, v® are used. Above ~ 60°
total angular extent, recovery reaches a limiting excellent
quality, but quality is very poor at narrow angle spans.

In general, objects have multiple voxels. In linear-CT (as
in medical X-ray CT), information loss due to limited-angle
imaging is known as the missing cone of frequencies [1,33].
In scattering CT, with the exception of very sparse objects,
the missing cone linear theory does not apply. While a pure
theory for nonlinear CT does not exist, the implication of
angular span can be assessed numerically. Let us consider a
static cloud in a single state, simulated as in Sec. 6. There
are no dynamics. We can then see how angular sampling
alone affects the quality of recovery. Results are shown in
Fig. 4. There is a marked degradation of quality if the an-
gular extent is narrow.

So far, this section dealt with static clouds. Clouds are
considered nearly static between times ¢,¢' if [t — ¢/| < o.
The viewing angular extent covered in those times (and
in intermediate times) is denoted ©(¢,t'), in radians. So,
within time span approximately equal to o, good recovery
can be achieved only if 20(¢,t’) / is large. If it is low, then
spatial (altitude) resolution in CT recovery is lost. Most CT
systems cover wide angular extent, eventually. So, quality
is set by the angular rate. Define a dimensionless figure

20(t,t) o

P =

15)

Good 4D recovery requires p 2 1, while T < o (Sec. 3).
The more these conditions are violated, the worse 4D CT is
expected to perform.

5. 4D Scattering Tomography
5.1. Estimation of the Liquid Water Content

We now generalize Eq. (8) to 4D CT. Data is captured se-
quentially at the time set 7 = {¢;, ta, ..., tpstate }, while
the object evolves. At each ¢’ € T, the object is viewed
simultaneously from a set of viewpoints Cy/, yielding a con-
catenated data vector y,,. At that time, the modelled LWC
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is the vector L. The set of LWC values in all sampled
times is denoted B = {Ly }r 7. At optimization iteration
k, the set of all modelled LWC values is B(k).
Let w¢(t'|o) be a normalized weighting function. Con-
sider the vector
2(8) = 3 wilo) 2 E (7 () g, . a6
veT v

and an iteration move to assess L£; at arbitrary time ¢
Li(k+1) = Li(k) — nge[B(E)] - (17)

We use Eqgs. (16,17) iteratively for 4D scattering tomogra-
phy. We use w;(t'|c’) which decays in effective time o.

Sec. 2.4 serves as a guideline for the kernel properties.
However, as said in Sec. 3, we do not have access to the
LWC, but to noisy images. Hence we approximate the opti-
mal kernel using a cropped Gaussian,

202

_ 42
wy(t'|o) = sexp (—'t d ) : (18)

Here s is a normalization factor, set s0 ) _,, . w(t'|0) =1
while w¢(t’ ¢ T|o) = 0. In the limiting case where
wy (tlo) — 1/N®t3 the cloud is considered static (cor-
relation time is very long). Then, Eqs. (16,17) degenerate
to Egs. (7,8). That is, recovery of L, is tightly related to
{Ly }+'e7. More generally, the correlation time ¢ has a fi-
nite value. Thus, when estimating £;, there is gradually
lower information carried by £/, as |[t' — t| increases, and
particularly as |[t' — ¢| > o. Thus, an iteration to refine an
estimate of £, should give less weight to L,/. Egs. (16,17)
provide this capacity in a natural way.

Eq. (16) is equivalent to a gradient of a cost function.
This interpretation is detailed in the Supplementary mate-
rial. The complexity of Eqs. (16,17) is similar to static 3D
CT (5), as discussed in the Supplementary material. We
performed iterations using L-BFGS-B [55]. Following [30],
prior to iterations, the set of voxels to estimate is bounded
using space-carving [25]. Space-carving bounds a 3D shape
by back-projecting multi-view images. A voxel is labeled
as belonging to the object, if the number of back-projected
rays that intersect this voxel is greater than a threshold. We
adapt this bounding to dynamic scenarios using two ways:
(7) by setting a coarse spatial grid for carving and (i%) using
a low threshold for labeling voxels as potentially being part
of a cloud.

5.2. Estimation of the Effective Radius

We exploit simplifications with regards to 7° and v®. As
discussed in Sec. 3, we may treat ° and v°® as time-invariant
per voxel, in the scale of minutes. Furthermore, by Sec. 2.1,
r® can be approximated as laterally uniform (varying verti-
cally) [21], using a parametric model (1) [47]. Moreover, it
can be often assumed that v¢ = 0.1 [30].

Hence, we focus here on time-invariant estimation of 7€,
using the model in Eq. (1), namely, estimating the global
parameters &, 7, 20. This is done intermittently, among
optimization of the LWC (Sec. 5.1). Overall we estimate
both LWC and 7° using the following steps:

{i} Perform exhaustive search on &, &, r§, 2o, in a coarse
grid of values, to minimize Eq. (6), assuming time invari-
ance. This sets the initial values of ¢, {L; }+e T

{ii} Hold r° temporally fixed. Run the gradient-based op-
timization described in Sec. 5.1, to estimate { L; }1c7 in 4D.
Here 10 iterations are run.

{iii} Hold {L;}+c7 fixed. Perform exhaustive line-search
on &, in a fine grid of values, to minimize Eq. (6).

{iv} Return to step {ii}.

6. Simulations

We now test the feasibility of 4D cloud scattering tomog-
raphy. The tests demonstrate the effect of varying o, the
kernel parameter in Eq. (18), and the importance of the an-
gular breadth. The evolving concentration of cloud water
droplets is the main unknown we sense and seek.”

For realistic complexity, we use a rigorous simulation
based on cloud physics. Clouds are simulated using the
System of Atmospheric Modeling (SAM) [24], which is a
non-hydrostatic, inelastic large eddy simulator (LES) [18,

,50]. It describes the turbulent atmosphere using equa-
tions of momentum, temperature, water mass balance and
continuity. We couple SAM to a spectral (bin) microphys-
ical model (HUJI SBM) [11, 23] of the droplets’ size. It
propagates the evolution of the droplet size distribution,
by solving the equations for nucleation, diffusional growth,
collision-coalescence and break-up. This is done on a loga-
rithmic grid of 33 size bins in the domain [2 gm, 3.2 mm).

The simulation runs according to the BOMEX case [45]
of trade wind cumulus clouds near Barbados. Humidity and
potential temperature profiles are used as initial conditions,
while the surface fluxes and large-scale forcing are constant.
The mean horizontal background wind is zero. The hori-
zontal boundary condition is cyclic. The domain is 5.12 km
long (cloud diameter is ~ 800 m) at 10 m resolution. The
vertical resolution is 10 m from sea level to 3 km, coarsen-
ing to 50 m above. Cloud tops reach 2 km. The simulation
expresses an hour, of which 30 minutes includes the cloud’s
lifetime. The temporal resolution is 0.5 sec.

We present results using two different time-varying
clouds: Cloud (i) has size 43 x 30 x 45 voxels (see Fig. 5).
Cloud (ii) has size 60 x 40 x 45 (see Supplementary mate-
rial). A voxel sizeis 10m x 10m x 10 m.

2Scatter by droplets is usually more dominant and spatiotemporally
variable than aerosols. Molecular density changes mainly vertically and
is usually known using non-imaging sensors. Molecules then scatter ac-
cording to the known Rayleigh theory. Thus, we focus on droplets.
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Figure 5. Cloud (i). Results of recovery by the Baseline and
Setup A are compared to the ground-truth by a 3D presentation
and scatter plots that use 20% of the data points, randomly selected
for display clarity. The Baseline and Setup A scatter plot
correlations are 0.9 and 0.86, respectively.

6.1. Rendered Measurements

The scene is irradiated by the sun, whose illumination
angle changes in time, relative to the Earth’s coordinates,
while cameras overfly the evolving cloud. The solar
trajectory in Earth coordinates corresponds to Feb/03/2013
at 13:54:30 - 14:01:00 local time, around 38N 123W. We
tested several types of imaging setups :

Setup A: Three satellites orbit at 500 km altitude, one
after the other. Their velocity is 7.35 km/s. The orbital arc-
length between nearest-neighboring satellites is 500 km.
At mid-time of the simulation, ¢t = (t; + tpstate)/2, the
setup is symmetric around the nadir direction. Then, the
setup spans an angular range of 114°. Each satellite carries
a perspective camera. The camera resolution is such that at
nadir view, a pixel corresponds to 10m at sea level. Images
are taken every 10 sec, during 60 sec, i.e., N5t = 7. This
setup is illustrated in Fig. 1.

Time
Figure 6. Illustration of Setup C. A domain is viewed at 21 push-
broom angles, sequentially.

Baseline: The baseline uses all the accumulated 21
viewpoints of Setup A. However, all viewpoints here
have perspective cameras that simultaneously acquire the
cloud. In other words, this baseline is not prone to errors
that stem from temporal sampling. The baseline is used for
recovery only at time ¢ = (1 + ¢ ystate ) /2.

Setup B: This setup is similar to Setup A, but it uses
only two satellites. Thus, at mid-time of the simulation, the
setup spans a 57° angular range.

Setup C: A single camera, similar to the Multi-angle
Spectro-Polarimeter Imager (AirMSPI) [6], is mounted on
an aircraft flying 154° relative to North at 20 km altitude.
Imaging has a pushbroom scan geometry, having 10 m spa-
tial resolution at Nadir view. AirMSPI scans view angles
in a step-and-stare mode [6]. Based on AirMSPI PODEX
campaign [5], we set 21 viewing angles along-track:
+65°, £62°, +£58°, +54°, +50°, +44°, +38°, £30°,
4 21°,4+11° off-nadir and 0° (nadir). For example, three
sample angles are illustrated in Fig. 6. It takes ~ 1sec
to scan a cloud domain in any single view angle, during
which the cloud and solar directions are assumed constant.
Dynamics are noticeable between view angles.

A spherical harmonic discrete ordinate method
(SHDOM) code [10] provides the numerical forward
model F. Simulated measurements {y, } ;<7 include noise.
The noise model follows the AirMSPI sensors parame-
ters [6,48]. There, the sensor full-well depth is 200,000
photo-electrons, readout noise has a standard deviation of
20 electrons, and the overall readout is quantized to 9 bits.

6.2. Results of 4D Tomography of the LWC

The rendered and noisy images, in the spectral band of
A = 660 nm, served as input to 4D tomographic reconstruc-
tion. The voxel size in the recovery was set to 10m x 10 m
horizontal, 25 m vertical and 10 sec resolution. For paral-
lelization, optimization ran on a computer cluster, where
each computer core was dedicated to rendering a modelled
image from a distinct angle.

In this section, we recover only the cloud LWC. Hence,
we set 7° = 10 pm and v® = 0.1 to be uniform constants
during optimization (though they were not uniform in the
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Figure 7. Cloud (i). The errors ¢, are marked by colored circles,
whose saturation decays the farther the sampling time is from (¢1 +
t ystate ) /2. The measure ¢ is marked by solid or dashed lines, with
corresponding colors. The setting o = oo refers to the solution by
the state of the art, i.e. 3D static scattering tomography.
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Figure 8. Setup C. The error € of Cloud (i), for different acqui-
sition inter-angular temporal intervals, T'. The setting 0 = oo
refers to the solution by the state of the art, i.e. 3D static scattering
tomography.

simulated data). The LWC optimization was initialized by
{L+}re7 = 0.018/m3. Convergence was reached in several
dozen iterations. Depending on the number of input images,
it took between minutes to a couple of hours to converge.

For result assessment, we generalize Eq. (14) to the
whole sample set ¢t € 7 by

B ||L:ttrue o 2:t||1

1
€= — E €, where, g; =
N state P t )y <t ||£ttruC||l

. (19)

From Sec. 2.4, we assess that a value o ~ 20 sec is natural.
Indeed, this is supported numerically in the plots of €,  for
Cloud (i) (Fig 7). A naive solution may only use measure-
ments captured at each sampled time ¢, to solve L;, inde-
pendently of other times. This solution is reached by o = 0
and presented in Figs. 7 and 8. The 3D tomographic results
of Cloud (i) at t = (t; + tpystate)/2 using Setup A are
shown in Fig. 5. Recovery used o = 20sec. In the Supple-
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Figure 9. Cloud (i), joint recovery of r°, L. (a) The errors £ of the
LWC are marked by colored circles, whose saturation decays the
farther the sampling time is from (¢1 + ¢state ) /2. The measure
¢ is marked by solid or dashed lines, with corresponding colors.
The setting o = oo refers to solution by the state of the art, i.e. 3D
static scattering tomography. (b) The estimated r° is presented in
blue dashed line. The true horizontally-averaged ry are presented
in solid lines, for different time samples.

mentary material we present analogous plots for Cloud (ii)
and additional results using Setup B.

Setup C uses a single platform, which is challenging.
Results depend significantly on how fast the aircraft flies,
i.e., how long it takes to capture the cloud from a variety
of angles (up to 21 angles). Fig. 8 compares the results
for inter-angle time interval of 5 sec, 10 sec and 20sec. As
expected, quality (¢) improves with velocity. Moreover, if
the camera moves slowly (long time interval between an-
gular samples), results improve by using a longer temporal
support, observing the cloud from a wider angular range,
despite its dynamics.

6.3. Microphysics Estimation

In this section, we recover both LWC and ¢ as described
in Sec. 5.2. We use Setups A,B and Baseline, as
described in Sec. 6.1, with an additional spectral band at
A = 865 nm. Fig. 9 shows the results for Cloud (i).
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Figure 10. (a) Recovered 3D LWC field using real data. (b) A raw
AirMSPI nadir image. Corresponding rendered views of a cloud,
that was estimated using data that had excluded the nadir, either
by our 4D CT approach (c) or current static 3D CT (d). Gamma
correction was applied on (b,c,d) for display clarity. (e) A scatter
plot of rendered vs. raw AirMSPI images at nadir. The scatter plot
correlations of our solution and the static solution are 0.862 and
0.656, respectively.

7. Experiment: Real World AirMSPI Data

We follow the experimental approach of [29], and use
real-world data acquired by JPL’s AirMSPI, which flies on
board NASA’s ER-2. The geometry is exactly as described
in Setup C in Sec. 6.1, including location and time. An
atmospheric domain of size 1.5km x 2km x 2km in the
East-North-Up coordinates is examined. We discretized the
domain to 80 x 80 x 80 voxels. Because IN5t2t°S = 21 the
total number of unknowns is 10,752,000.

The inter-angle time interval in this experiment is around
20 sec. Based on Fig. 8, we set here ¢ = 60 sec in Eq. (18).
We want to focus on dynamic tomography of the evolving
cloud, and not on global motion due to wind in the cloud
field. Hence, we used the pre-processing approach of [29]
to align the cloud images. Additionally, the ground albedo
is estimated to be 0.04. The pre-processing and albedo esti-
mation are described in the Supplementary material.

A recovered volumetric reconstruction for one time in-
stant is displayed in Fig. 10. We have no ground-truth for
the cloud content in this case. Hence we check for con-
sistency using cross-validation. For this, we excluded the
nadir image (Fig. 10b) from the recovery process. Thus to-
mography used 20 out of the 21 raw views. Afterward, we
placed the recovered cloud in SHDOM physics-based ren-

+54° view | nadir view | —b54° view
Static solution 1.73 0.94 0.61
Ours 0.96 0.38 0.24

Table 1. Analysis of empirical data in different view angles. Quan-
titative fit (6) of our 4D result to the data, as compared to the error
of state-of-the-art static 3D CT.

derer [10], to generate the missing nadir view. The result
is then compared to the ground-truth missing view. Fig. 10
compares the result of this process for two solutions: our
4D tomographic solution, and the state-of-the-art, i.e., 3D
static scattering tomography.

The same cross-validation process was repeated for the
+54° view angles. Quantitatively, we measure the fitting
error using Eq. (6). The results are summarized in Table 1.

8. Discussion

We derive a framework for 4D CT of dynamic objects
that scatter, using moving cameras. The natural temporal
evolution of an object indicates the temporal and angular
sampling needed for a good reconstruction. Given these
conditions, 4D CT recovery can be done, even with a small
number of cameras. Fig. 7 and specifically Setup A may
indicate that 4D CT may be achieved using ¢ = 0 and
strong priors. This possibility should be a welcome topic for
further computer vision research. In a sense, our work also
uses a cloud prior, which is temporal correlation in clouds
(Sec. 3): the correlation is analyzed using signal processing
tools, and implemented by gradient weights w;.

The model introduced in Sec. 5 to account for temporal
correlations is independent of the differentiable renderer.
Egs. (16-18) can be combined with any differentiable
renderer that can compute the derivative term 0F /0L in
Eq. (16). This can be either a differentiable renderer based
on SHDOM, or a Monte Carlo differentiable renderer
like those of [15,39]. Additionally, some of our findings
may be helpful in other fields. Bio-medical CT [7] and
flow imaging [26] already have tools exploiting controlled
illumination. Elements of this work may add to that toolkit.
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