
Detection and Continual Learning of Novel Face Presentation Attacks

Mohammad Rostami1, Leonidas Spinoulas1, Mohamed Hussein1,2, Joe Mathai1, Wael Abd-Almageed1

1USC Information Sciences Institute, Los Angeles, CA, 90292 USA
2Alexandria University, Alexandria, Egypt

{mrostami,lspinoulas,mehussein,jmathai,wamageed}@isi.edu

Abstract

Advances in deep learning, combined with availability
of large datasets, have led to impressive improvements in
face presentation attack detection research. However, state-
of-the-art face antispoofing systems are still vulnerable to
novel types of attacks that are never seen during training.
Moreover, even if such attacks are correctly detected, these
systems lack the ability to adapt to newly encountered at-
tacks. The post-training ability of continually detecting new
types of attacks and self-adaptation to identify these attack
types, after the initial detection phase, is highly appealing.
In this paper, we enable a deep neural network to detect
anomalies in the observed input data points as potential new
types of attacks by suppressing the confidence-level of the
network outside the training samples’ distribution. We then
use experience replay to update the model to incorporate
knowledge about new types of attacks without forgetting the
past learned attack types. Experimental results are provided
to demonstrate the effectiveness of the proposed method
on two benchmark datasets as well as a newly introduced
dataset which exhibits a large variety of attack types.1

1. Introduction

Smartphones with facial authentication features have
made biometric systems remarkably common in our every-
day lives. This is in addition to less prevalent and more
traditional, yet critical, applications of biometric systems,
such as automatic passport control and access control to high-
security facilities. As services based on biometric recogni-
tion technologies gain popularity, presentation attack detec-
tion (PAD) is becoming a more crucial requirement for these
systems. In parallel, attackers continually attempt to gain
unauthorized access by designing new attack types, which
makes developing defense mechanisms against presentation
attacks more challenging. The goal of a PAD algorithm is
to classify whether the presented input to the system is a

1Code is available at github.com/mrostami1366.

bona-fide presentation (BF) or a presentation attack (PA),
so that access is denied for PAs. While recognition systems
for all biometric modalities, such as fingerprint and iris, are
vulnerable to presentation attacks, the face modality poses
a higher risk and extra challenges due to the easy access to
high resolution face images of most people, e.g., through
social media, and due to the relatively easier fabrication of
face PAs. In this paper we exclusively focus on face PAD.

Similar to most sub-fields in computer vision, advances in
deep learning, which is inspired by the nervous system [17],
have led to significant face PAD improvements on bench-
mark datasets using convolutional neural network-based
(CNN) end-to-end representation learning and classifica-
tion [1, 7, 12, 20, 39, 42, 36, 4, 41]. Following the standard
pipeline of supervised learning for deep learning, a large,
labeled training dataset, which consists of known attacks and
bona-fide data points, is collected, and then used to train a
deep network with a suitable architecture [10, 17, 5].

The vulnerability of using the aforementioned pipeline
for PAD is that attackers can continually generate new types
of PAs that are unknown to the system, i.e., absent in the
training dataset. Since deep networks suffer from overconfi-
dence in their predictions [14], the system may not be able to
identify novel attack types, generated at inference time after
the initial training. Even if the unknown attack types can be
identified, the standard deep learning pipeline necessitates
collecting a sufficient number of samples of new attack types
and augmenting the training dataset. The model then needs
to be retrained from scratch (or fine-tuned) on the augmented
dataset [26]. However, collecting labeled data is time con-
suming, model retraining is computationally inefficient, and
both usually involve human intervention [24]. As a result, it
is highly desirable to enable biometric recognition systems
to identify novel attack types on-the-fly, during deployment,
and then to autonomously adapt their classifications models
for recognizing these new attack types in the future.

We develop an algorithm for continual detection of emerg-
ing novel types of face PAs. Our objective is to enable the
system to identify novel PAs. The model then is updated
to learn new attack types such that it does not forget the

14851



past learned attack types. Our idea is based on enabling the
network to identify new attack types as testing samples that
are outside the training distribution samples (OTDS) in an
embedding space [11, 29, 40, 19, 4]. The base model is then
updated to classify these samples as new attacks types in a
continual learning (CL) setting, where catastrophic forget-
ting [3] is addressed using experience replay [23]. Despite
being effective in continual learning (CL) settings, the idea
of detecting OTDS has not been explored for PAD.

The main contributions of our work are as follows:

• A new formulation of face PAD as a continual learning
problem to equip a PAD system with defense mecha-
nisms that allow learning novel attack types continually.

• An algorithm to identify novel attack types as OTDS
anomalies by continually screening the input data rep-
resentations and enable the model to correctly classify
them as attacks, in the future, via experience replay.

• A new face anti-spoofing dataset with diverse attack
types to evaluate our algorithm in CL settings.

2. Related Work
Our work straddles the intersection of two topics: detec-

tion of novel face PAs and continual learning.
Novel Presentation-Attack Detection: Novel class de-

tection has been studied within several learning settings.
The learning setting that we explore is more related to the
zero-shot learning (ZSL) formulation [9, 37, 38, 25]. ZSL
has been studied extensively but works on ZSL for PAD
have been quite limited. Most ZSL works have proposed
to identify novel classes using the standard semantic-based
idea for describing a sample. In these works, it is assumed
that the semantic description of a novel class is accessible a
priori. Novel classes can then be identified by establishing
relationships between known and unknown classes through
their semantic descriptions. Note, however, coming up with
accurate semantic descriptions for PAs is challenging.

To relax the need for knowing the semantic descriptions
a priori, Shao et al. [32] proposed to learn an embedding
space that is discriminative across several source domains to
improve generalizability of the PAD model on novel PAs in
new domains. Liu et al. [13] used similarity between an un-
known type of attack with known attack types for zero-shot
attack detection. Both approaches analyze data representa-
tions in an embedding space and identify new attack types as
unfamiliar data points. Our work follows a similar strategy,
where novel attack data points are identified as OTDS. We
then use the collected OTDS to expand the generalizability
of the base model on the identified novel attack types.

Continual Learning: Upon detecting novel attack data
points, the base model needs to be continually updated to
gain the ability to recognize the newly identified attack types

in the future. Recent works of CL [2] for deep neural net-
works have mostly focused on tackling catastrophic forget-
ting [3]. It occurs when a deep neural network is updated to
learn drifts in data distribution in a CL setting which would
lead to underperformance on the past learned tasks.

Several strategies have been proposed to mitigate catas-
trophic forgetting. A group of methods are based on regu-
larizing the deep network weight parameters [8]. The idea
is to identify the network weights that are important for de-
cent performance on past learned tasks, consolidate these
weights according to their importance, and learn new tasks
using the remaining weights that are unimportant to remem-
ber past learned tasks. The main challenge is identifying
the important weights and minimize the negative effects of
weight consolidation on the network learning capacity. A
second group of works are based on the notion of experience
replay [3], where the end-to-end training mechanism of deep
networks is changed, rather than the network itself. The idea
is to replay data points of past learned tasks along with the
current task data to update the model through the pseudo-
rehearsal process [23], i.e., retraining the model jointly on
the past and the current data. Since training the network on
full datasets is computationally expensive and the storage
capacity is limited, only a subset of training data for the
past learned tasks should be used. These samples are stored
in a memory buffer of fixed maximum capacity [30]. The
main challenge is how to select these samples. For example,
Schaul et al. select samples that were uncommon and led
to maximum learning effects in past tasks [30]. To alleviate
the need for a memory buffer, an alternative approach is
to use generative models. The idea is to enable the model
to generate pseudo-data points that are similar to the data
points of the past tasks and use the pseudo-data points for
pseudo-rehearsal [33, 28, 27]. We rely on memory-based
experience replay to update the PAD model in our work.

3. Problem Statement

Consider a PAD task Z0 with initial labeled training data
D0 = ⟨X0,Y 0⟩, where X0 ∈ Rd×n0 is the collection of
BF data points and a number of fixed known PA instances,
and Y 0 ∈ R2×n0 is the corresponding one-hot binary labels
of the PAs and BFs. The training data points are assumed to
be independent and identically distributed (iid) and are drawn
from an unknown probability distribution, x0

i ∼ q0(x).
To solve the initial supervised PAD detection task, we

select a parameterized family of functions fθ : Rd → R2

with learnable parameters θ0. We then search for the optimal
model using empirical risk minimization (ERM):

θ̂0 = argmin
θ

êθ = argmin
θ

Ex∼q0(x)(Ld(f
0
θ (x), f(x)))

≈ argmin
θ

∑
(x0

i ,y
0
i )∈D0

Ld(f
0
θ (x

0
i ),y

0
i ),

(1)

14852



where Ld(·) is a proper discrimination loss function such as
cross-entropy and E(·) denotes the probability expectation
operator. Upon training the base deep network model on the
dataset D0, the PAD system is fielded for testing. We have
depicted this base model as the PAD Module in Figure 1. If
n0 is large enough, the selected deep network structure is
suitable, and observed data during testing are drawn from
the training distribution q0(x) then the model will generalize
well during execution according to theoretical guarantees
of PAC-learning framework [31]. However, if new types of
attacks are introduced after the initial training or any drift in
the input distribution occurs, poor model generalization is
expected. In other words, the model may fail to identify new
attack types and misclassify them as bona-fide samples.

To allow for a robust and adaptive PAD system, we extend
the standard one-shot training/testing formulation of PAD to
a continual learning setting [2]. To this end, we consider that
after the initial training phase, PAD tasks arrive sequentially
and we need to address these tasks at inference time. We
consider that the system encounters sequential PAD tasks
{Zt}TMax

t=1 in a time sequence t = 1, . . . , TMax during execu-
tion time. Each task is specified by an unlabeled training
dataset Dt = ⟨Xt⟩, Xt ∈ Rd×nt , built from observed input
data points over a fixed time period, e.g., a day. The unla-
beled dataset for subsequent tasks may contain new attack
types that were not present when the previous tasks were
learned, i.e., the tasks may have different distributions qt(x).
This means that we need to equip the PAD module with a
mechanism such that the system can identify instances of
unknown types of attacks in the dataset Dt at each time-step
t and then update the model to learn them (see Figure 1).

If labeled data for BFs and all past learned PAs is acces-
sible, expanding the model to learn each attack type would
be a standard supervised learning problem similar to Eq. (1).
We just need to augment the dataset D0 with the detected
instances of novel PA types and then retrain the base model.
However, this would require a memory buffer with unlimited
size to store the growing number of observed attack types.
Retraining the model continually from scratch can also be-
come computationally expensive and time-consuming.

As a solution, our goal is to update the model by in-
corporating the new PAs into the system’s knowledge by
replaying only a subset of training data which are stored
in a replay buffer as representative samples (see Figure 1).
After updating the model, the system proceeds by learning
the subsequent tasks through an iterative procedure. The
major challenge of model updating is that, since the past
learned attack types may always be encountered, the sys-
tem must expand its ability to recognize the identified novel
attack types such that it maintains the ability to recognize
the past learned tasks. This means that the stored samples
in the replay buffer need to be such that they can encode
the information required to retain the past tasks knowledge.

Figure 1. Block-diagram architecture of the proposed continual
PAD learning system: 1. PAD module identifies novel attack sam-
ples among the input data stream during model execution; 2. The
samples from BFs and PA types are stored to build a dataset; 3. The
novel samples and samples stored in the replay buffer are used to
update the model through pseudo-rehearsal and the replay buffer.

E
nc

od
er

BF High
Confidence

Area

PA High
Confidence

Area

BF

PA

C
la

ss
ifi

er

Decision Boundary Between Classes

Embedding Space

Figure 2. Bimodal data representation in a discriminative embed-
ding space after learning a set of PAD types.

A high-level block-diagram visualization of our continual
learning framework for PAD is provided in Figure 1.

4. Proposed Method
To solve the challenges of novel attack detection and

model updating in a CL setting, we continually screen data
representations in a discriminative embedding space which
is modeled as the output of a deep encoder. We assume
that the deep network can be decomposed into an encoder
subnetwork ϕt

v(·) : Rd → Z ⊂ Rk with learnable parame-
ters v, e.g., convolutional layers of a CNN, and a classifier
subnetwork ht

w(·) : Rk → R2 with learnable parameters w,
e.g., a sequence of fully connected layers. Here, Z is the dis-
criminative embedding space in which the input data points
become separable after performing supervised learning. In
the case of a deep neural network with good generalization
performance, the embedding space should be discriminative
and the data representation would form a bimodal distribu-
tion [35], similar to the visualization presented in Figure 2.

Figure 2 illustrates that the input data distribution is trans-
formed into a bimodal distribution in the embedding space
by the encoder subnetwork after learning a PAD task. PAs
and BFs each form one mode of this distribution. A decision
boundary between these two modes is learned by the clas-
sifier subnetwork to classify the input images in the future.
The more a data point lies away from the learned decision
boundary in the embedding space, the more confident the
classifier subnetwork becomes about its prediction. Over-

14853



confident area in the embedding space on the BF side of the
decision boundary is a major vulnerability of the PAD model
(i.e., high-confidence false negatives). If a novel attack is
designed such that it lies in this overconfident region, the
model would fail to identify it. Our goal is to make the model
robust and stable towards this type of attacks by screening
the embedding space, using the intuition above.

4.1. Novel Attack Detection

To tackle the vulnerability of PAD systems in the over-
confident regions, we need to suppress the confidence of
the model in those regions. To this end, we fit a paramet-
ric distribution to model the learned bimodal distribution in
the embedding space. Our idea is based on expanding the
base classifier subnetwork and classify the data points into
three classes, namely BFs, PAs, and OTDS (see Figure 3).
The intuition behind this idea is that novel PA instances are
expected to be different from the training data in the em-
bedding space. This means that we can identify them if the
input lies outside the components of the bimodal distribution
ϕ(q(·)) fitted on the embedding. Hence, if we can gener-
ate samples that lie outside this distribution, i.e., intuitively
the gray region in Figure 3, we can augment the samples
from this region with the training data and retrain the classi-
fier subnetwork. As a result, the system will be capable of
identifying OTDS data points during execution.

To implement the above rationale, we need to estimate
the distribution p(·) = ϕ(qt(·)) before moving forward
to start learning at t + 1. The empirical version of the
learned training distribution at time-step t p̂t(·) is encoded
by the training data representations in the embedding space,
{(ϕt

v(x
t
i),y

t
i)}Ni=1

2 Inspired by prototypical networks [34],
we model p̂t(z) as a Gaussian mixture model (GMM):

p̂t(z) =

2∑
j=1

αt
j p̂

t
i(z|j) =

2∑
j=1

αt
jN t

j (z|µt
j ,Σ

t
j), (2)

where αt
j denotes weights for each data modal, i.e., prior

probability for BFs and PAs, p̂ti(z|j) is the empirical class
conditional probability distribution, and µt

j , Σt
j denote the

mean and co-variance for each component, respectively. Es-
timating the GMM parameters is usually performed through
expectation maximization (EM) [16], which can be a compu-
tationally expensive procedure. However, since we have ac-
cess to labels of data points, we can decouple the GMM com-
ponents and compute the GMM parameters for each compo-
nent independently, using MAP estimates. Consider St

j to be
the support set for BFs (j = 0) and PAs (j = 1) in the train-
ing dataset, i.e., St

j = {xt
i ∈ Xt| argmaxc p̂

t
i(x

t
i|c) = j}.

2We have used a slight abuse of notation. We have assumed that (xt
i,y

t
i)

denotes all the samples that are accessible for training at time t. As we
will see, these labeled samples consist of novel attack types that have been
detected at time t, combined with the samples that are selected and stored
in the replay buffer from the previous model update at time t− 1.

E
nc

od
er

E
nc

od
er

C
la

ss
ifi

er

Embedding
Space

Embedding
Space

Adding
Third Class

Outside Training
Distribution
Distribution

Matching
Sampling outside the
training distribution

Novel

BF
PA

BF
PA

C
la

ss
ifi

er

B
F/

PA
N

ov
el

Figure 3. Novel PA detection approach: (left) GMM distribution;
(right) adding a third output to the classifier for identifying PAs
that may lie in the overconfident regions of the embedding space,
visualized as the dark gray region.

Then, we can simply estimate the GMM parameters as:

α̂t
j =

|St
j |

N
, µ̂t

j =
1

|St
j |

∑
xt
i∈St

j

ϕt
v(x

t
i),

Σ̂t
j =

1

|St
j |

∑
xt
i∈St

j

(
ϕt
v(x

t
i)− µ̂t

j

)⊤(
ϕt
v(x

t
i)− µ̂t

j

)
.

(3)

We rely on the prototypical distributional estimate to
generate samples that are outside the training distribution.
We draw random samples from the GMM distribution such
that the samples lie in the overconfident region (See Figure 3).
For this purpose, we draw random samples from the standard
multidimensional Gaussian distribution u ∼ N (0, I) and
then generate samples according to the transformation µ̂j +

2Σ̂
1
2
j u, j = 1, 2. It is easy to check that these samples are

distributed according to the Gaussian distribution of the jth

GMM component. Since we have drawn them to be twice the
root of the covariance matrix away from the mean, it is more
likely that they lie outside the jth data cluster, as presented
in Figure 3. We use this sampling strategy to generate data
points from the overconfident region to expand our model.

Consider that we generate m samples for the jth compo-
nent as Xj ∈ Rd×m. We fix a probability threshold τ < 1
for the GMM component and then build a pseudo-dataset:

XNeg = [X1
Neg,X

2
Neg],YNeg = [Y 1

Neg,Y
2
Neg]

Xj
Neg = [xj

1, . . .x
j
mj

],xj
k ∼ N (µj ,Σj), j = 1, 2

p̂(y = j|xj
k) ≤ τ, j = 1, 2,yj

k = [0, 0, 1]⊤.

(4)

In Eq. (4), by using the membership probability, predicted
by the GMM, we ensure to exclude all the generated sam-
ples that are close to the means of the GMM components as
samples that are inside the distribution. We then build the
augmented dataset Dt

aug = (Xaug = [XNeg,X
t],Yaug =

[YNeg,Y
t]) for training the ternary classification and then

retrain the expanded classifier subnetwork. Note that
(Xt,Y t) denote the original binary classification dataset
of BFs/PAs on which the network was initially trained.

As a result of the above process, when the system pro-
ceeds to time-step t+ 1 and samples of the dataset Dt+1 are

14854



encountered during the model execution, the system is able
to identify OTDS samples at the third output of the classifier.
Let Dt

nov denote the OTDS samples in the dataset Dt. We
can consider them to be in the attack class. If we retrain the
model on the concatenated dataset D0 ∪ D1

nov ∪ . . .Dt
nov,

the model would generalize well on the novel attack types.
However, this requires storing all observed samples. In the
following section, we describe a more efficient approach.

4.2. Experience Replay for Continual Learning

To update the model after forming Dt
nov at time t, we per-

form experience replay [23] by relying on a replay memory
buffer that stores a subset of the observed data after learning
each task and before starting learning a subsequent task. Let
Dt

buf denote the data points stored in the memory buffer (see
Figure 1). At each batch of optimization, we include samples
from both Dt

nov and Dt
buf in the data batch to update the

model. As a result, the model learns to identify novel attacks
while retaining the learned knowledge about the past tasks.
The only remaining challenge in our framework is a strategy
for selecting the samples to be stored in the buffer.

A simple selection strategy is to randomly select BD
samples for each of the BF and the PA classes to store in the
memory buffer. Multiple strategies have been used in the CL
literature to improve upon this baseline sampling strategy,
including, mean of features (MoF) [21], ring buffer [15],
and reservoir sampling [22]. Since we learn the prototypical
distribution as a GMM, we can also rely on a strategy similar
to MoF. After training the model in the binary classification
setting and fitting the GMM, we can compute the distance
of all BFs and PAs from their corresponding Gaussian com-
ponent’s mean as dtj,k = ∥µt

j − xt
k∥22 ∀xt

k s.t. ŷt
k = j. We

sort these distances, for each class separately, and given the
per-class memory budget BD, we store the samples that
are closest to the cluster means. Note that as opposed to a
normal CL setting, the labels are predicted for novel PAs in
our setting, for t ≥ 1. Hence, it is more likely that labels for
samples close to the means are predicted correctly. However,
information about higher moments of the distribution is lost
when these samples are used for pseudo-rehearsal. As a
result, the model prediction accuracy may reduce in the area
close to the boundary of the classes in the future.

Given the samples stored in the buffer at t− 1, we solve
the following pseudo-rehearsal problem for model updating:

θ̂t = argmin
θ

(∑
i

Ld(f
t
θ(x

t
i,nov),y

t
i,nov)+∑

i

Ld(f
t
θ(x

t
i,buff ),y

t
i,buff )+

λ
∑
i

Lr(ϕ
t
v(x

t
i,buff ), ϕ

t−1
v (xt

i,buff ))
)
,

(5)

where λ is a trade-off parameter. The first and the second
terms in Eq. (5) are simply the supervised loss terms for

Algorithm 1 NACL (λ,BD, ITR)

1: Initial Training:
2: Input: Base dataset D0 = (X0,Y 0),
3: Initial Training:
4: θ̂0 = (ŵ0, v̂0) = argminθ

∑
i L(fθ(x

0
i ),y

0
i )

5: Prototypical Distribution Estimation:
6: Use Eq. (3) and estimate α0

j ,µ
0
j , and Σ0

j

7: Fill the buffer with D0
buf given the budget BD

8: Continual Learning:
9: for t = 1, . . . , TMax do

10: Model Expansion
11: Use Eq. (4) to build the pseudo-dataset and then Dt

aug

12: Retrain ht
w(·) on Dt

aug for ternary classification
13: Novel Attack Detection
14: Build Dt

nov from Dt to form Dt
nov ∪ Dt−1

buf

15: Update the network weights using Eq. (5)
16: Prototypical Distribution Estimation:
17: Use Eq. (3) and update αt

j ,µ
t
j , and Σt

j

18: Fill the buffer with Dt
buf given the budget BD

19: end for

the identified novel samples and the samples stored in the
memory buffer, respectively. The third term is added for
updating the encoder subnetwork, consistently, according to
the past experiences. This term enforces the samples in the
memory buffer to be mapped to the proximity of the same
location in the embedding space ϕt−1

v (xt
i,buff ) after updat-

ing the model to enhance past leaned features. This term
can be thought of as a regularization term to mitigate catas-
trophic forgetting further in addition to pseudo-rehearsal.
Our algorithm, called Novel presentation Attack detection
in Continual Learning (NACL), is described in Algorithm 1.

5. PADISI-Face Dataset
To validate our algorithm in a meaningful setup, we need

PAD datasets with a diverse set of PAs but such datasets are
scarce in the literature. A secondary, yet important, contri-
bution of our work is the introduction of the Face Presenta-
tion Attack Detection from Information Sciences Institute
(PADISI-Face) dataset which includes various major face
spoofing attack types. To the best of our knowledge, the
only other comparable dataset that is accessible at the mo-
ment is the recently released HQ-WMCA face anti-spoofing
dataset [6]3. In PADISI-Face Dataset, each capture consists
of a 60-frame sequence of 1984× 1264 pixel images. The
PADISI-Face dataset contains comparable variety of spoof-
ing attacks to HQ-WMCA. Table 1 presents statistics of
the collected dataset as well the HQ-WMCA, for compari-

3The Wild with Multiple Attacks Database (SiW-M) face anti-spoofing
dataset [13] is another existing dataset with various PA types. SiW-M
dataset includes various attack types, similar to PADISI-Face. However,
that SiW-M is temporarily inaccessible. Hence, PADISI-Face can serve as
a possible substitute for SiW-M. The PADISI-Face dataset is publicly avail-
able at https://github.com/ISICV/PADISI_USC_Dataset.

14855



Table 1. Summary of statistics of the captured data for the PADISI-
Face dataset and comparison to HQ-WMCA [6].

Dataset Participants # Captures # Frames Bona-Fide Captures Attack Captures Attack Species Attack Types
PADISI-Face 360 2029 121740 1105 924 37 9

HQ-WMCA [6] 51 2904 58080 555 2349 N/A 11

Print Partial AttacksMakeup/Tattoo
Makeup

Makeup Tattoo

Funny Eye

Paper Glasses

Mask Attacks
Mannequin

HalfSiliconeTransparent

Transparent

Figure 4. Instances of attacks in the PADISI-Face dataset.

son. Figure 4 visualizes instances of all the attack types in
the dataset. For comprehensive details on the PADISI-Face
dataset and its characteristics, please refer to the Appendix.

6. Experimental Validation
For our experiments, we adapt suitable benchmark

datasets and build incremental PA detection tasks. Given a
dataset with several classes, we assume that the base network
is initially trained on a subset of attack types and bona-fide
samples. The remaining attack types are observed in a set
of sequentially arriving tasks. During each task, new attack
types are detected and the model is updated to learn them.

6.1. Experimental Setup

Datasets: We preform experiments using the HQ-
WMCA [6] and the new PADISI-Face datasets that are suit-
able for our learning setting. The provided unknown attack
protocols of these datasets contain only unknown attack
types in the testing set and are not suitable for CL setting.
As such, we used the Grandtest protocol of HQ-WMCA [6]
to first divide samples into a training and testing set. This
protocol contains about 1/3 of the samples in the test set,
with proportional division of each attack type between the
training and testing sets, while ensuring that BF samples in
the two sets are participant disjoint. For the PADISI-Face
dataset, we followed the same division scheme. For both
datasets, the CL tasks are constructed using the training set
and evaluation is performed on the test set.

Baselines for comparison: Since no prior method in
the literature addresses the continual PAD setting explored
in this work, we use three baselines to compare the pro-
posed method with. The presented performance is compared
against static training (ST), joint training (JT), and full re-
play (FR). In the ST setting, we report the performance of
the base model after initial training without further updating
when new attack types in the dataset are encountered. This
setting represents performance of existing PAD algorithms
when novel PAs are observed and serves as a lower bound.
Improvement over this baseline demonstrates relative effec-

tiveness of our approach. In the JT setting, we train the
model on the whole labeled training dataset including all
attacks types in the initial training. This setting serves an
upper-bound which assumes all attack types are known a
priori. FR is a variation of Algorithm 1 in which we assume
that the memory budget is unlimited. As a result, we can
save and replay all the stored data points in the buffer. We
also report performance of NACL when random sampling
(RS) is used to select the buffer samples. In the RS setting,
we randomly store selected samples in the memory buffer.
Comparison with RS is performed to investigate the effect
of using the proposed sampling selection technique. For a
fair comparison, we use the same buffer size for both RS and
NACL methods. We set the buffer size equal to a fixed size
of 100 samples, filled evenly with BF and PA samples.

Evaluation protocol: We evaluate the performance of all
algorithms using the three standard PAD performance met-
rics: Attack Presentation Classification Error Rate (APCER),
Bona-Fide Presentation Classification Error Rate (BPCER),
and Average Classification Error Rate (ACER). As opposed
to the common PAD evaluation setting in which evaluation
is performed after training on the full dataset, in one-shot,
and only a single number is reported, we generate learning
curves to report the PAD performance versus time during
execution to encode learning dynamics in our evaluation.
In our experiments, we use the original index-order of the
classes for each dataset, as the order that the attacks are en-
countered. At each time-step t , we compute performance of
the model on the testing set when the corresponding task is
learned and before proceeding to learning the next task. We
report average performance of 10 randomly initialized runs.

For details of the experimental setup, including the net-
work structure, hyper-parameter values, optimization param-
eters, and our implementation, please see the Appendix.

6.2. Results

Similar to most works in the CL literature, there is a
boundary between two subsequent tasks in our formulation.
This boundary can be attributed to the instances at which
the model is updated after a period of data collection. Dur-
ing each task or period at which the model is not updated,
the system may encounter more than one attack types. We
consider two sets of experiments for a thorough validation.

First, we consider that the initial training task in our ex-
periments consists of training on bona-fide samples and only
the first type of PA, according to the index used in the dataset
(see the order of attack types in the Appendix). Each sub-
sequent task is constructed by introducing one novel attack
type. We report the performance of our algorithm and the
baselines in Figure 5(a). At each time step, we reported the
model performance on the full testing split of the datasets.
We have used (1-APCER), (1-BPCER), and (1-ACER) for
visualization because learning curves are usually perceived

14856



0 4 5321 0 4 5321 0 4 5321

0 4321

ST RS FR NACL JT
D

ir
ec

tio
n 

of
 p

er
fo

rm
an

ce
 im

pr
ov

em
en

t

HQ-WMCA Dataset

PADISI-Face Dataset PADISI-Face Dataset

HQ-WMCA Dataset

(a) Learning curves for single-attack learning setting. (b) Learning curves for bi-attack learning setting.

90

0

10

20

30

40

50

60

70

80

1
-A

PC
ER

 (%
)

100

80
82
84
86
88
90
92
94
96
98

1
-B

PC
ER

 (%
)

90

50

55

60

65

70

75

80

85

1
-A

C
ER

 (%
)

Tasks Tasks Tasks

100

90

20

30

40

50

60

70

80

1
-A

PC
ER

 (%
)

100

84

80
82

86
88
90
92
94
96
98

1-
B

PC
ER

 (%
)

100

55

60

65

70

75

80

85

90

95

1-
A

C
ER

 (%
)

Tasks Tasks Tasks

90

0

10

20

30

40

50

60

70

80

1
-A

PC
ER

 (%
)

0 10987654321

100

70

75

80

85

90

95

1
-B

PC
ER

 (%
)

90

50

55

60

65

70

75

80

85

1
-A

C
ER

 (%
)

Tasks Tasks Tasks

100

20

30

40

50

60

70

80

90

1
-A

PC
ER

 (%
)

0 87654321 0 87654321

100

70

75

80

85

90

95

1-
B

PC
ER

 (%
)

100

55

60

65

70

75

80

85

90

95

1-
A

C
ER

 (%
)

Tasks Tasks Tasks

0 10987654321

0 87654321

0 10987654321

0 4321 0 4321

Figure 5. Algorithmic performance for the two experiments (best viewed in color and enlarged on screen).

to be increasing functions. Since the testing split is fixed,
successful learning is analogous to rising learning curves.
For a quantitative comparison, we have included the numeri-
cal values for the metrics in tabular format in the Appendix.
By inspecting Figure 5(a), we observe, as expected, that
ST is highly vulnerable with respect to novel attack types
leading to high values for the APCER and ACER metrics.
Note that the high value for BPCER is expected but is not
sufficient. This baseline demonstrates the vulnerability of
current PAD systems, when novel attacks are encountered,
and justifies the necessity of developing algorithms for PAD
in CL settings. When we use the designed novel attack
detection mechanism, we can clearly see that performance
improves significantly towards the JT upper-bound as more
attacks are identified and learned. Performance degradation
in terms of BPCER metric is expected due to occurrence of
catastrophic forgetting but we see improvements in APCER
outweigh this degradation (see ACER plots). Note that RS,
FR, and NACL are all equipped with the proposed mech-
anism and their major difference is in the implementation
of the experience replay procedure. We do not see a clear
winner between these methods across all metrics but note
that NACL and RS offer storing significantly less amount
of data in the memory compared to FR (only 100 samples).
We also note that in the majority of the time-steps NACL
outperforms RS. We conclude that experience replay is an
effective approach to address catastrophic forgetting.

An initially counter-intuitive looking result is that, as op-
posed to the CL literature, FR does not clearly outperform
NACL, despite storing and replaying all samples. However,
note that in all RS, FR, and NACL methods, the predicted
labels by the model (not the ground truth) are used in the
retraining process. Therefore, FR can be more prone to
label pollution, because all samples are stored, leading to

Table 2. Label pollution comparison: percentage of polluted labels
per task are reported when learning PADISI-Face.

Task No 1 2 3 4 5 6 7 8
NACL 0.0 3.2 0.5 5.7 3.8 2.0 10.5 9.8

FR 0.0 4.4 10.0 13.9 12.9 11.4 10.4 9.3
RS 0.0 15.3 5.2 8.9 9.5 9.7 10.1 10.6

performance degradation over time. To verify this intuition,
in Table 2, we provide a comparison of the percentage of
polluted labels (stored in the buffer and used for retraining)
between the FR, RS, and NACL methods for each learn-
ing time-step for the tasks of the PADISI-Face dataset. As
observed, FR indeed faces the challenge of label pollution,
leading to performance degradation values similar to RS and
NACL. We also observe label pollution is less for NACL
at initial time-steps which may explain why after t = 6 in
Figure 5(a), learning curves are saturated. This observation
suggests that, as opposed to the normal situation in CL, FR
is not necessarily a better option for experience replay even
when there is no memory budget limit, due to label pollution.

In the second set of our experiments, we consider that
the initial training task consists of training on bona-fide
samples and only the first PA type, according to the index
used in the datasets. Subsequent tasks are constructed by
introducing two novel attack types at each time-step. This
setting is closer to a realistic situation. We have visualized
the learning curves for our algorithm and the baselines in
Figure 5(b). Comparing the results with those of Figure 5(b),
we see that improvements in terms of the ACPER metric
are similar. This observation suggests that our algorithm is
robust even when multiple attacks are encountered in each
time-step. We also note that performance degradation in
terms of the BPCER metric is less than Figure 5(a). This
observation is expected because the base model has been
updated less compared to the single-attack per task scenario.

14857



Table 3. Ablation studies using the tasks for the PADISI-Face
dataset during execution time in the single PA/task scenario.

Task APCER (%) BPCER (%) ACER (%)
No. FRR NG ED DE FRR NG ED DE FRR NG ED DE
1 66.2 74.6 65.3 62.4 1.2 0.1 4.4 7.1 33.7 37.3 34.8 34.8
2 40.2 74.8 37.8 39.7 0.3 0.1 8.8 15.0 20.3 37.5 23.3 27.4
3 41.8 74.5 29.8 34.6 0.3 0.0 10.1 18.4 21.0 37.3 19.9 26.5
4 31.6 74.6 27.0 24.2 0.3 0.0 11.1 19.4 15.9 37.3 19.1 21.8
5 17.7 74.8 23.2 18.0 1.0 0.0 11.1 21.0 9.3 37.4 17.1 19.5
6 15.7 75.2 16.4 13.9 0.7 0.0 12.7 21.0 8.2 37.6 14.5 17.5
7 14.9 75.0 20.4 13.8 0.6 0.0 13.3 19.9 7.7 37.5 16.9 16.8
8 13.0 75.2 24.9 35.3 0.6 0.0 13.6 14.4 6.8 37.6 19.2 24.9

As a result, catastrophic forgetting has been less severe. We
conclude that our approach is effective for automatically
identifying novel attacks and retraining the model.

6.3. Analysis and Ablation Studies

To demonstrate the importance of the ideas used in the
NACL algorithm, we preform ablative experiments. We
considered the single-attack per task scenario and used the
PADISI-Face dataset in these experiments. We first demon-
strate the importance of detecting OTDS samples. Consider
that OTDS samples are not detected but the model is up-
dated using a binary prediction baseline. This means that
in a CL setting, we always store all the testing samples that
are identified as PAs during execution, assuming all to be
new attack types, and use them to update the model at each
time-step. We refer to this approach as No GMM (NG). In
a second experiment, we reported performance of the FR
setting when real labels (FRR) are used, i.e., performance in
the absence of label pollution. This means that upon identify-
ing the novel attack data points, rather than using the labels
predicted by the model, we use the real labels to update the
model. Performance results for these setting are summarized
in Table 3. Extremely poor performance of NG, measured in
the APCER, demonstrates that detecting OTDS is necessary
for PAD in a continual learning setting. We also observe that,
when real labels are used, as expected from the previous
discussion, FRR converges to an upper-bound for NACL,
close to the visualized JT performance in Figure 5(a). This
observation suggests a future direction for improving our
algorithm is tackling the challenge of label pollution [18].
We can also conclude that to mitigate catastrophic forgetting
further, a larger buffer size should be used.

We also study the effect of the temporal observation-order
at which the PAs are encountered on our algorithm perfor-
mance. The order we used in our experiments is arbitrary
and preset. But in practice, the user does not have any con-
trol on the temporal order at which the PAs are observed
during execution. For this reason, we consider two extreme
cases of ordering. We use the pre-update difficulty of PA
detection by the model to set a synthetic temporal ordering
on PA types. To this end, we start learning the PA with the
class index 1 in the dataset. After learning the first task, for
all time-steps, we compute the performance of the model
on all the remaining PA types. The detection rates for the

remaining PAs are a measure of difficulty of detecting (or
learning) them by the model. We performed experiments
using two easy to difficult (ED) and difficult to easy (DE)
orderings. In the ED scenario, we pick the PA with largest
detection rate as the next observed PA. This PA is the easiest
PA for the system to learn among the remaining PAs. It is
the most similar PA to learned PAs from the model’s point of
view. We continue until all the attacks are observed. In the
DE scenario, we pick the PA with the least detection rate.

Results for ED and DE temporal orderings are reported
in Table 3. We observe that in both cases, NACL algorithm
is able to improve the performance of the model as more PA
types are encountered and learned. The final model perfor-
mance after observing all PAs denotes that learning in the
ED scenario is easier for the algorithm. This observation
accords with our intuition because learning novel attacks that
are less similar to the previously observed attack types is
more challenging. We conclude that the particular PA obser-
vation ordering influences the performance of our algorithm,
but our algorithm is effective in the worst-case scenario.

Finally, we highlight that our method is stronger is re-
ducing false-negative predictions. In the Appendix, we have
demonstrated that by benefiting from manual annotation of
the novel samples, i.e., reducing the label pollution, we can
considerably reduce the false-positive predictions.

7. Conclusions

We study the problem of PA detection in a continual learn-
ing setting. Our proposed approach is based on screening
the data representations in an embedding space. We estimate
the learned training data distribution in the embedding space
using a GMM distribution. We use this distribution to en-
able the base model to identify novel attack types as outside
training distribution samples. Experience replay is then used
to update the model to tackle catastrophic forgetting. We
also collect a new dataset that contains various types of face
spoofing attacks. Experiments on two datasets demonstrate
that our method is effective for a continual learning setting.
Future research direction includes tackling label pollution
and considering tasks without sharp temporal boundaries.

8. Acknowledgment

This research is based upon work supported by the Office
of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via IARPA
R&D Contract No. 2017-17020200005. The views and
conclusions contained herein should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the ODNI, IARPA, or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
not withstanding any copyright annotation thereon.

14858



References
[1] Y. Atoum, Y. Liu, A. Jourabloo, and X. Liu. Face anti-

spoofing using patch and depth-based cnns. In 2017 IEEE
International Joint Conference on Biometrics (IJCB), pages
319–328, 2017. 1

[2] Z. Chen, B. Liu, R. Brachman, P. Stone, and F. Rossi. Lifelong
Machine Learning. Morgan & Claypool Publishers, 2nd
edition, 2018. 2, 3

[3] R. M. French. Catastrophic forgetting in connectionist net-
works. Trends in Cognitive Sciences, 3(4):128–135, 1999.
2

[4] A. George and S. Marcel. Learning one class representations
for face presentation attack detection using multi-channel
convolutional neural networks. IEEE Transactions on Infor-
mation Forensics and Security, 16:361–375, 2021. 1, 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[6] G. Heusch, A. George, D. Geissbühler, Z. Mostaani, and S.
Marcel. Deep models and shortwave infrared information
to detect face presentation attacks. IEEE Transactions on
Biometrics, Behavior, and Identity Science, 2(4):399–409,
2020. 5, 6

[7] A. Jourabloo, Y. Liu, and X. Liu. Face de-spoofing: Anti-
spoofing via noise modeling. In V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, editors, Computer Vision
– ECCV 2018, pages 297–315, Cham, 2018. Springer Interna-
tional Publishing. 1

[8] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G.
Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A.
Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran,
and R. Hadsell. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017. 2

[9] Soheil Kolouri, Mohammad Rostami, Yuri Owechko, and
Kyungnam Kim. Joint dictionaries for zero-shot learning. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018. 2

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 25:1097–
1105, 2012. 1

[11] S. Liang, Y. Li, and R. Srikant. Enhancing the reliability of
out-of-distribution image detection in neural networks. In
International Conference on Learning Representations, 2018.
2

[12] Y. Liu, A. Jourabloo, and X. Liu. Learning deep models
for face anti-spoofing: Binary or auxiliary supervision. In
2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 389–398, 2018. 1

[13] Y. Liu, J. Stehouwer, A. Jourabloo, and X. Liu. Deep tree
learning for zero-shot face anti-spoofing. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4675–4684, 2019. 2, 5

[14] V. S. Lokhande, S. Tasneeyapant, A. Venkatesh, S. N. Ravi,
and V. Singh. Generating accurate pseudo-labels in semi-

supervised learning and avoiding overconfident predictions
via hermite polynomial activations. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 11432–11440, 2020. 1

[15] D. Lopez-Paz and M.’A. Ranzato. Gradient episodic memory
for continual learning. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems,
NIPS’17, page 6470–6479, Red Hook, NY, USA, 2017. Cur-
ran Associates Inc. 5

[16] T. K. Moon. The expectation-maximization algorithm. IEEE
Signal Processing Magazine, 13(6):47–60, 1996. 4

[17] Yaniv Morgenstern, Mohammad Rostami, and Dale Purves.
Properties of artificial networks evolved to contend with natu-
ral spectra. Proceedings of the National Academy of Sciences,
111(Supplement 3):10868–10872, 2014. 1

[18] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep Ravikumar,
and Ambuj Tewari. Learning with noisy labels. In NIPS,
volume 26, pages 1196–1204, 2013. 8

[19] P. Oza, H. V. Nguyen, and V. M. Patel. Multiple class nov-
elty detection under data distribution shift. In A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, editors, Computer
Vision – ECCV 2020, pages 432–449, Cham, 2020. Springer
International Publishing. 2

[20] D. Pérez-Cabo, D. Jiménez-Cabello, A. Costa-Pazo, and R. J.
López-Sastre. Deep anomaly detection for generalized face
anti-spoofing. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages
1591–1600, 2019. 1

[21] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.
iCaRL: Incremental classifier and representation learning.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5533–5542, 2017. 5

[22] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, , and
G. Tesauro. Learning to learn without forgetting by maximiz-
ing transfer and minimizing interference. In International
Conference on Learning Representations, 2019. 5

[23] A. Robins. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123–146, 1995. 2, 5

[24] Mohammad Rostami, David Huber, and Tsai-Ching Lu. A
crowdsourcing triage algorithm for geopolitical event fore-
casting. In Proceedings of the 12th ACM Conference on
Recommender Systems, pages 377–381, 2018. 1

[25] Mohammad Rostami, David Isele, and Eric Eaton. Using
task descriptions in lifelong machine learning for improved
performance and zero-shot transfer. Journal of Artificial
Intelligence Research, 67:673–704, 2020. 2

[26] Mohammad Rostami, Soheil Kolouri, Eric Eaton, and Kyung-
nam Kim. Sar image classification using few-shot cross-
domain transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pages 0–0, 2019. 1

[27] Mohammad Rostami, Soheil Kolouri, Praveen Pilly, and
James McClelland. Generative continual concept learning. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5545–5552, 2020. 2

[28] Mohammad Rostami, Soheil Kolouri, and Praveen K Pilly.
Complementary learning for overcoming catastrophic forget-

14859



ting using experience replay. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages
3339–3345, 2019. 2

[29] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A.
Siddiqui, A. Binder, E. Müller, and M. Kloft. Deep one-class
classification. In J. Dy and A. Krause, editors, Proceedings
of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pages 4393–4402, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR. 2

[30] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized
experience replay. ArXiv, abs/1511.05952, 2015. 2

[31] S. Shalev-Shwartz and S. Ben-David. Understanding Ma-
chine Learning: From Theory to Algorithms. Cambridge
University Press, USA, 2014. 3

[32] R. Shao, X. Lan, J. Li, and P. C. Yuen. Multi-adversarial dis-
criminative deep domain generalization for face presentation
attack detection. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10015–10023,
2019. 2

[33] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning
with deep generative replay. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 2

[34] J. Snell, K. Swersky, and R. Zemel. Prototypical networks
for few-shot learning. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. 4

[35] Serban Stan and Mohammad Rostami. Unsupervised model
adaptation for continual semantic segmentation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 2593–2601, 2021. 3

[36] Z. Wang, Z. Yu, C. Zhao, X. Zhu, Y. Qin, Q. Zhou, F. Zhou,
and Z. Lei. Deep spatial gradient and temporal depth learning
for face anti-spoofing. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
5041–5050, 2020. 1

[37] G. Xie, L. Liu, X. Jin, F. Zhu, Z. Zhang, J. Qin, Y. Yao, and
L. Shao. Attentive region embedding network for zero-shot
learning. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9376–9385, 2019. 2

[38] G.-S. Xie, L. Liu, F. Zhu, F. Zhao, Z. Zhang, Y. Yao, J. Qin,
and L. Shao. Region graph embedding network for zero-
shot learning. In A. Vedaldi, H. Bischof, T. Brox, and J.-M.
Frahm, editors, Computer Vision – ECCV 2020, pages 562–
580, Cham, 2020. Springer International Publishing. 2

[39] X. Yang, W. Luo, L. Bao, Y. Gao, D. Gong, S. Zheng, Z.
Li, and W. Liu. Face anti-spoofing: Model matters, so does
data. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3502–3511, 2019. 1

[40] Q. Yu and K. Aizawa. Unsupervised out-of-distribution detec-
tion by maximum classifier discrepancy. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
9517–9525, 2019. 2

[41] Z. Yu, X. Li, X. Niu, J. Shi, and G. Zhao. Face anti-spoofing
with human material perception. In A. Vedaldi, H. Bischof,

T. Brox, and J.-M. Frahm, editors, Computer Vision – ECCV
2020, pages 557–575, Cham, 2020. Springer International
Publishing. 1

[42] Z. Yu, C. Zhao, Z. Wang, Y. Qin, Z. Su, X. Li, F. Zhou, and G.
Zhao. Searching central difference convolutional networks
for face anti-spoofing. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
5294–5304, 2020. 1

14860


