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Abstract

Universal Domain Adaptation (UNDA) aims to handle
both domain-shift and category-shift between two datasets,
where the main challenge is to transfer knowledge while
rejecting “unknown” classes which are absent in the la-
beled source data but present in the unlabeled target data.
Existing methods manually set a threshold to reject ”un-
known” samples based on validation or a pre-defined ratio
of “unknown” samples, but this strategy is not practical.
In this paper, we propose a method to learn the thresh-
old using source samples and to adapt it to the target do-
main. Our idea is that a minimum inter-class distance in
the source domain should be a good threshold to decide be-
tween “known” or “unknown” in the target. To learn the
inter- and intra-class distance, we propose to train a one-
vs-all classifier for each class using labeled source data.
Then, we adapt the open-set classifier to the target domain
by minimizing class entropy. The resulting framework is the
simplest of all baselines of UNDA and is insensitive to the
value of a hyper-parameter, yet outperforms baselines with
a large margin. Implementation is available at https://
github.com/VisionLearningGroup/OVANet.

1. Introduction
Deep neural networks can learn highly discriminative

representations for image recognition tasks [6, 30, 14, 26,
12] given a large amount of training data, but do not gen-
eralize well to novel domains. Collecting a large amount
of annotated data in novel domains incurs a high annota-
tion cost. To tackle this issue, domain adaptation trans-
fers knowledge from a label-rich training domain to a label-
scarce novel domain [1]. Traditional unsupervised domain
adaptation (UDA) assumes that the source domain and the
target domain completely share the sets of categories, i.e.,
closed-set DA. But, this assumption does not often hold in
practice. There are several possible situations: the target
domain contains categories absent in the source (unknown
categories), i.e., open-set DA (ODA) [4, 29]; the source do-
main includes categories absent in the target (source pri-

Figure 1: Existing open-set or universal domain adaptation meth-
ods handle unknown samples by manually setting a threshold to re-
ject them, either by validation or prior knowledge about the target
domain. If set incorrectly, it can mistakenly reject known classes
as shown here, e.g., car and truck. Instead, we propose to learn the
threshold by training one-vs-all classifiers for each class.

vate categories); i.e., partial DA (PDA) [5]; a mixture of
ODA and PDA, called open-partial DA (OPDA). Many ap-
proaches have been tailored for a specific setting, but a true
difficulty is that we cannot know the category shift in ad-
vance.

The task of universal domain adaptation (UNDA) was
proposed [37, 28] to account for the uncertainty about the
category-shift. The assumption is that the label distributions
of labeled and unlabeled data can be different, but we can-
not know the difference in advance. Since estimating the
label distributions of unlabeled data is very hard in real ap-
plications, the setting is very practical. Although we focus
on a domain shift problem in this paper, the setting also ap-
plies to a semi-supervised learning problems [11].

In this task, our goal is to have a model that can cate-
gorize target samples into either one of the correct known
labels or the unknown label. The main technical difficulty
is that no supervision is available to distinguish unknown
samples from known ones; that is, we do not know how
many of them are unknown nor the properties of the un-
known instances. Obtaining this prior knowledge without
manual labeling is hard in practice.

To allow a model to learn the concept of unknown,
existing UNDA and ODA methods employ various tech-
niques: rejecting a certain ratio of target samples [3], vali-
dating a threshold to decide unknown by using labeled tar-
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get samples [7], and synthetically generating unknown in-
stances [15]. Rejecting some ratio of target samples works
well if the ratio is accurate. But, estimating the ratio is
hard without having labeled target samples. Validation with
labeled target samples violates the assumption of UNDA.
Synthesized unknown instances define the concept of the
unknown for a learned model, but tuning the generation
process requires validation with labeled samples since the
generated data is not necessarily similar to real unknown
data. In summary, as the center of Fig. 1 describes, these
existing methods manually define the threshold to reject un-
known instances. To achieve a practical solution, we need
an approach that does not need the ratio of unknown sam-
ples nor any validation to set the threshold.

We cast a question to solve the problem: can we leverage
the inter-class distance between source categories to learn
the threshold? We assume that the minimum inter-class dis-
tance is a good threshold to determine whether a sample
comes from the class since it defines a minimum margin
from other classes. If the distance between a sample and a
class is smaller than the margin, the sample should belong
to the class. If the sample does not lie within the margin
for any classes, it should be unknown. Fig. 1 illustrates
the idea. Car and truck share similar features but belong to
different classes. If a model knows the margin between the
two classes, it can distinguish unknown classes, e.g., bug
and bone, from car and truck.

Given this insight, we explore a simple yet powerful
idea: training a one-vs-all (OVA) classifier for every class
in the source domain. We train the classifier to categorize
inputs other than the corresponding class as negatives. The
classifier learns a boundary between positive and negative
classes, i.e., employs inter-class distance to learn the bound-
ary. If all of the classifiers regard the input as negative,
we assume the input is from unknown classes. Therefore,
a model can learn the threshold to reject unknown classes
by using source samples. In addition, we propose novel
hard-negative classifier sampling, which updates open-set
classifiers of a positive and a hard negative class for each
source sample, to efficiently learn the minimum inter-class
distance for each class. The technique makes a model scal-
able to a large number of classes. For unlabeled target sam-
ples, we propose to apply open-set entropy minimization
(OEM), where the entropy of the one-vs-all classifiers is
minimized. This allows a model to align unlabeled target
samples to either known or unknown classes. Our method
is significantly simpler than existing methods since it has
only one unique hyper-parameter that controls the trade-off
between the classification loss of source samples and OEM,
yet shows great robustness to different label distributions of
the target domain.

In experiments, we extensively evaluate our method on
universal domain adaptation benchmarks and vary the pro-

Method No. of HP Threshold
UAN [37] 2 Validated
CMU [7] 3 Validated
USFDA [15] 3 Synthesize unknown samples
ROS [3] 4 Reject 50% of target data
DANCE [28] 3 Decide by No. of classes
OVANet 1 Learned by source

Table 1: Comparison of open-set and universal DA methods.
HP denotes hyper-parameter. Note that USFDA [15] leverages
synthetically generated negatives, which requires a complicated
process to generate them.

portion of shared and unknown classes. This simple method
outperforms various baselines that explicitly or implicitly
employ the ratio of unknown samples. Moreover, the pro-
posed way of detecting unknown classes is effective to set
a threshold to reject unknown classes in semi-supervised
learning.

2. Related Work
Domain Adaptation. Unsupervised domain adaptation

(UDA) [27] aims to learn a good classifier for a target do-
main given labeled source and unlabeled target data. Let
Ls and Lt denote the label space of a source and a tar-
get domain respectively. A closed-set domain adaptation
(Ls = Lt) is a popular task in UDA, and distribution align-
ment [9, 32, 17] is one of the popular approaches. Open-
set DA (presence of target-private classes, |Lt − Ls| >
0, |Lt ∩ Ls| = |Ls|) [22, 29], and partial DA (presence of
source-private classes |Ls − Lt| > 0, |Lt ∩ Ls| = |Lt|) [5]
are proposed to handle the category mismatch problem.
Universal DA (UNDA) [37] is proposed to handle the mix-
ture of these settings. Saito et al. [28] emphasize the im-
portance of measuring the robustness of a model to various
category-shifts since we cannot know the detail of the shifts
in advance. Prior works [37, 7, 28] compute a confidence
score for known classes, and samples with a score lower
than a threshold are regarded as unknown. Fu et al. [7] seem
to validate the threshold using labeled data, which is not a
realistic solution. Bucci et al. [3] set the mean of the confi-
dence score as the threshold, which implicitly rejects about
half of the target data as unknown. Saito et al. [28] set a
threshold decided by the number of classes in the source,
which does not always work well. We summarize how our
approach, OVANet, is different from existing methods in
Table 1. Our approach trains a model to learn the threshold
by using source samples and attempts to adapt the threshold
to a target domain. Our model is trained in an end-to-end
manner, requires only one hyper-parameter, and is not sen-
sitive to its value.

Open-set recognition. Open-set recognition [2] han-
dles both known and unknown samples in the test phase
given known samples during training. Many methods fo-
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Figure 2: Conceptual overview of OVANet. Open-set classifiers are trained on labeled source samples (leftmost), and we attempt to
increase the confidence in the predictions by open-set entropy minimization on unlabeled target samples (middle and rightmost). We show
the training procedure in a step-by-step manner for better understanding but employ end-to-end training in practice.

Figure 3: Overview of the open-set classifier training. For each
sample, a positive and a nearest negative class boundary are up-
dated. This is to let the classifier learn the distance between the
positive and nearest negative class. We hypothesize that the dis-
tance should be a good threshold to reject “unknown” examples.

cus on how to build a better measurement of anomaly [2] or
to let a model learn features effective to distinguish known
or unknown samples [36, 25, 20]. Recent works show that
contrastive learning is effective to learn representations suit-
able to detect out of distribution samples [31, 35]. These
methods have a common issue with existing UNDA and
ODA methods. The threshold to determine unknown is val-
idated or pre-determined [10]. These approaches provide a
metric or method of training effective to calibrate the uncer-
tainty score, but it is still necessary to determine the thresh-
old by validation. By contrast, we introduce a technique
that learns the threshold using labeled samples without a
need for validation.

A One-vs-All (OVA) classifier is employed to apply a bi-
nary classifier to multi-class classification [8], aggregating
the output of the binary classifier. Padhy et al. [21] pro-
pose to handle out-of-distribution detection by training neu-
ral OVA classifiers. A key difference from this work is that
we train open-set classifiers by letting them focus on hard-
negative samples. Open-set classifiers need to distinguish
positive and nearest negative samples to effectively identify
unknown samples. Our proposed hard-negative sampling is
effective in building a threshold as shown in Sec. 3.1 and
Table 4.

3. OVANet

Fig. 2 introduces the conceptual overview of OVANet.
Our open-set classifier employs the learned distance be-
tween categories to identify unknown samples (Sec. 3.1).
The learned classifiers are adapted to the target domain by
open-set entropy minimization (Sec. 3.2).

Notation. We are given a labeled source domain Ds =
{(xs

i , yi
s)}Ns

i=1 with “known” categories Ls and an un-
labeled target domain Dt = {(xt

i)}
Nt

i=1 which contains
“known” categories and “unknown” categories, where Ls

and Lt denote the label spaces of the source and target re-
spectively. Our goal is to label the target samples with either
one of the Ls labels or the “unknown” label. We train the
model on Ds ∪Dt and evaluate on Dt. To handle the open-
set classification, we introduce two classifiers: (1) open-set
classifiers, O, to detect unknown samples and (2) a closed-
set classifier, C, to classify samples into Ls labels. C is
trained to classify source samples with a standard classifi-
cation loss while O is trained with hard negative classifier
sampling explained below. In the test phase, C is used to
identify the nearest known class while O is used to deter-
mine whether the sample is known or unknown.

3.1. Hard Negative Classifier Sampling (HNCS)

Our idea is to train a classifier to learn a boundary be-
tween in-liers and outliers for each class. Then, we train a
linear classifier for each class. For each classifier, the class
is trained to be positive while other classes are negative. The
key is how to pick the negative samples, i.e., we propose to
pick samples different from the class but similar to it (hard
negative class). The overview is illustrated in Fig. 3.

Our open-set classifiers consist of |Ls| sub-classifiers,
i.e., Oj , j ∈ {1, ..., |Ls|}. Each classifier is trained to dis-
tinguish if the sample is an in-lier for the corresponding
class. The sub-classifier outputs a 2-dimensional vector,
where each dimension shows the probability of a sample
being an in-lier and outlier respectively.

Padhy et al. [21] propose to train all (|Ls| − 1) nega-
tive classifiers given a training sample, but we observe that
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learned classifiers are not useful when the number of classes
is large, which is consistent with the observation of [21].
The reason is that the open-set classifiers can classify many
negatives too easily. Take an example of three classes: a cat,
a dog, and a turtle. We assume that the features of the turtle
are very different from those of the cat and the dog. To learn
an effective boundary for the cat, a model should focus on
the dog rather than the turtle since the cat should be closer to
the dog in a feature space. But, if the turtle is sampled very
frequently, the learned boundary can be in the middle of the
cat and the turtle, accepting too many unknown samples as
known. Therefore, each sub-classifier needs hard negative
samples to learn a boundary between in-liers and outliers.
Considering this insight, we propose to train two one-vs-all
classifiers given a sample: a classifier of the positive and
that of the nearest negative class (Fig. 3). By picking the
nearest negative class for each sample, we can let the cor-
responding classifier learn an effective boundary to identify
unknown instances.

We leverage a linear classifier for each sub-classifier.
The open-set classifier is employed on top of an extracted
feature, namely, zk = wkGθ(x) ∈ R2, where Gθ and wk

denote a feature extractor and a weight of an open-set clas-
sifier for class k respectively. Each dimension of zk ∈ R2

denotes the score for known and unknown respectively. Let
p(ŷk|x) denote the output probability that the instance x is
an in-lier for the class k: p(ŷk|x) = σ(zk)0, where σ de-
notes softmax activation function.

We denote Lova(x
s, ys) as the open-set classification

loss for a sample (xs, ys):

Lova(x
s, ys) = − log(p(ŷy

s

|xs))−min
j ̸=ys

log(1−p(ŷj |xs)).

(1)
This computes the loss on a positive class and the hardest
negative class, as we explain above. We call the technique
hard negative classifier sampling (HNCS). The process of
computing the loss is illustrated at the top of Fig. 4.

3.2. Open-set Entropy Minimization (OEM)

Given the open-set classifiers trained on the source do-
main, we propose to enhance the low-density separation for
the unlabeled target domain. Since the target samples have
different characteristics from the source, they can be classi-
fied incorrectly with respect to both closed-set and open-set
categorization. To handle the issue, we propose a novel en-
tropy minimization method that adapts the open-set classi-
fiers to the target domain.

Our idea is to increase the confidence in the prediction
with regard to open-set classification, i.e., known or un-
known. Specifically, we apply entropy minimization train-
ing for all open-set classifiers for each xt ∈ Dt. We com-
pute entropy of all the classifiers and take the average and
train a model to minimize the entropy, as illustrated in the

Figure 4: Overview of training and testing. O denotes one-vs-
all open-set classifiers whereas C denotes a closed-set classifier.
F is a feature extractor. Top: We propose hard-negative classi-
fier sampling to train one-vs-all classifiers using source samples
(Sec. 3.1). Middle: We apply entropy minimization with open-
set classifiers for unlabeled target samples (Sec. 3.2). Bottom:
In the test phase, a nearest known class is identified by a closed-
set classifier, and the corresponding open-set classifier’s score is
leveraged to decide known or unknown (Sec. 3.4).

middle of Fig. 4.

Lent(x
t) = −

∑|Ls|
j=1 p(ŷj |xt) log(p(ŷj |xt))

+ (1− p(ŷj |xt)) log(1− p(ŷj |xt))

By this entropy minimization, known target samples will
be aligned to source samples whereas unknown ones can be
kept as unknown. One clear difference from the existing en-
tropy minimization [11] is that we are able to keep unknown
instances as unknown since the entropy minimization is per-
formed by open-set classifiers, not by a closed-set classifier.
Entropy minimization by a closed-set classifier necessarily
aligns the unlabeled samples to known classes because there
is no concept of an unknown class. Since our open-set clas-
sifiers have the concept of unknown, the model can increase
the confidence of it.

3.3. Learning

We combine the open-set classifier and closed-set clas-
sifier to learn both open-set and closed-set categorization.
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(a) Amazon to DSLR (b) Webcam to Amazon (c) DSLR to Webcam

Figure 5: H-score and accuracy in open-set domain adaptation. Blue: OVANet (Ours). We vary the number of unknown classes using
Office (|Ls∩Lt| = 10, |Ls−Lt| = 0). The left and right side show H-score and accuracy respectively. OVANet shows stable performance
across different openness while baselines can much degrade performance in some settings.

For the closed-set classifier, we simply train a linear classi-
fier on top of the feature extractor using cross-entropy loss,
which we denote Lcls(x, y). Then, the overall training loss
can be computed as follows:

Lall = E
(xs

i ,yi
s)∼Ds

Lsrc(x
s
i , yi

s) + λ E
xt
i∼Dt

Lent(x
t
i), (2)

Lsrc(x
s
i , yi

s) = Lcls(x
s
i , yi

s) + Lova(x
s
i , yi

s). (3)

The parameters of F , O, and C are optimized to minimize
the loss. Note that OVANet has only one hyper-parameter,
λ. This method is much simpler than existing ODA and
UNDA methods [28, 7, 3] all of which require setting the
threshold manually and/or multiple training phases.

3.4. Inference

In the test phase, we utilize both the trained closed-set
and open-set classifier. We first get the closest known class
by using the closed-set classifier and take the corresponding
score of the open-set classifier. The process is illustrated at
the bottom of Fig. 4.

4. Experiments
We evaluate our method in UNDA settings along with

ablation studies. To evaluate the robustness to the change of
the number of unknown target samples, we vary the number
and compare it with other baselines.

4.1. Setup

Datasets. We utilize popular datasets in DA: Of-
fice [27], OfficeHome [34], VisDA [24], and Domain-
Net [23]. Unless otherwise noted, we follow existing pro-
tocols [7, 37, 29] to split the datasets into source-private
(|Ls−Lt|), target-private (|Lt−Ls|) and shared categories
(|Ls∩Lt|). For fairness, Saito et al. [28] propose to evaluate
universal DA methods on the various number of unknown
and known classes, which can reveal methods tailored for a
specific setting. We follow their policy and provide exper-
imental results varying the number of unknown and known
classes. Since many existing methods are optimized to han-
dle a specific benchmark, we aim to fairly evaluate methods
with respect to the sensitivity to diverse settings. To briefly

Method Office (10 / 10 / 11) AvgA2D A2W D2A D2W W2D W2A
UAN [37] 59.7 58.6 60.1 70.6 71.4 60.3 63.5
CMU [7] 68.1 67.3 71.4 79.3 80.4 72.2 73.1
DANCE [28] 78.6 71.5 79.9 91.4 87.9 72.2 80.3
DCC [16] 88.5 78.5 70.2 79.3 88.6 75.9 80.2
ROS [3] 71.4 71.3 81.0 94.6 95.3 79.2 82.1
USFDA [15] 85.5 79.8 83.2 90.6 88.7 81.2 84.8
OVANet w/o OEM 69.6 63.1 79.9 85.9 88.7 80.6 77.9
OVANet 85.8 79.4 80.1 95.4 94.3 84.0 86.5

Table 2: Open-partial domain adaptation using Office (H-
score).

describe the method for splitting categories in each experi-
ment, each table shows |Ls ∩Lt|/|Ls −Lt|/|Lt −Ls|, i.e.,
(shared, source private, and target private classes). See our
supplementary material for more details.

Evaluation Metric. Considering the trade-off between
the accuracy of known and unknown classes is important
in evaluating universal or open-set DA methods. To this
end, we evaluate methods using H-score [3]. H-score is the
harmonic mean of the accuracy on common classes (accc)
and accuracy on the “unknown” classes acct as:

Hscore =
2accc · acct
accc + acct.

(4)

The evaluation metric is high only when both the accc and
acct are high. So, H-score can measure both accuracies of
UNDA methods well. Unless otherwise noted, we show
H-score in tables and graphs. The drawback of this metric
is that the importance of recognizing known and unknown
classes is always equal. If the number of unknown instances
is small, the metric puts too much weight on the unknown
class. Thus, when the number is small, we also report the
instance-wise accuracy over all samples.

Implementation. Following previous works [28, 37],
we employ ResNet50 [13] pre-trained on ImageNet [6] as
our backbone network. Evaluation using VGGNet [30] is
also performed in analysis. We replace the last linear clas-
sification layer with a new linear layer. We follow [28] and
train our models with inverse learning rate decay schedul-
ing. Note that we set λ = 0.1 across all settings. The

9004



(a) Real to Art (b) Real to Clipart (c) Clipart to Art (d) Art to Product (e) Product to Real

Figure 6: H-score of open-partial domain adaptation. Blue: OVANet (Ours). We vary the number of unknown classes in OfficeHome
(|Ls ∩ Lt| = 10, |Ls − Lt| = 5). OVANet shows stable performance across different openness while baselines can much degrade
performance in some settings.

Method DomainNet (150 / 50 / 145) VisDA OfficeHome
P2R R2P P2S S2P R2S S2R Avg (6 / 3 / 3) (15 / 5 / 50)

DANCE [28] 21.0 47.3 37.0 27.7 46.7 21.0 33.5 4.4 49.2
UAN [37] 41.9 43.6 39.1 38.9 38.7 43.7 41.0 30.5 56.6
CMU [7] 50.8 52.2 45.1 44.8 45.6 51.0 48.3 34.6 61.6
DCC [16] 56.9 50.3 43.7 44.9 43.3 56.2 49.2 43.0 70.2
OVANet 56.0 51.7 47.1 47.4 44.9 57.2 50.7 53.1 71.8

Table 3: H-score of open-partial DA using DomainNet, VisDA and OfficeHome. Note that CMU [7] and DCC [16] use different
hyper-parameters for different datasets while OVANet uses the same hyper-parameter throughout all settings.

value is determined by the result of open-set DA using Of-
fice (Amazon to DSLR) following DANCE [28].

Baselines. We aim to compare methods of univer-
sal domain adaptation, which are able to reject unknown
samples, such as DANCE [28], UAN [37], ROS [3] and
CMU [7]. To see the difference from using closed-set clas-
sifier’s entropy as a threshold, we employ Entropy Separa-
tion (Ent Sep) [28] in several experiments. Note that these
baselines are unfair in that they utilize validated thresholds
or heuristically decided thresholds. We decide not to in-
clude the results of standard domain alignment baselines
such as DANN [9], CDAN [18] since existing works have
already shown that these methods significantly worsen the
performance in rejecting unknown samples. Since CMU [7]
does not publish complete code to reproduce the results, we
rely on their reported results to compare with the method.

Overview of Results. In summary, our method is
superior or comparable to baseline methods across all di-
verse settings without optimizing the hyper-parameter for
each setting. The fact is verified by diverse settings using 4
benchmark datasets.

Office. Fig. 5 shows the results of varying the num-
ber of unknown classes in the ODA setting on Office. The
left and the right of each graph show H-score and instance-
wise accuracy respectively. The x-axis denotes the number
of unknown classes. The number varies from 2 to 20 while
that of known classes is fixed to 10. The performance of
OVANet is always better than or comparable to baselines.
Even without OEM, our proposed model consistently per-
forms well. Comparison between OVANet and OVANet
w/o OEM demonstrates the effectiveness of OEM. Since
ROS [3] sets a threshold to reject about half of the target

samples as unknown, it performs poorly when the unknown
samples are rare. DANCE [28] is also sensitive to the num-
ber of unknown classes. Table 2 shows the result of the
OPDA setting on Office, where OVANet outperforms base-
lines on average.

OfficeHome, VisDA and DomainNet. Results of
varying the openness in the OPDA on OfficeHome are de-
scribed in Fig. 6. We pick 5 adaptation scenarios to cover
various domains and vary the number of unknown classes.
The trend is similar to experiments on Office. OVANet
consistently performs better than baselines. Results of the
OPDA on OfficeHome, VisDA and DomainNet are summa-
rized in Table 3, where we follow CMU [7] to split the cate-
gories. For OfficeHome, the mean of 12 adaptation scenar-
ios is presented. In VisDA and DomainNet, the number of
samples and/or that of classes are very different from those
of Office and OfficeHome. OVANet outperforms existing
methods with a large margin, more than 10 points in VisDA
and OfficeHome. Note that CMU [7] selects the optimal
threshold hyper-parameters for each dataset, while OVANet
achieves the best H-score without tuning a hyper-parameter.
From these results, we observe that OVANet works well
across diverse settings.

4.2. Analysis in Domain Adaptation

How effective are OEM and HNCS? Table 4 shows
ablation study in ODA on Office (Webcam to Amazon),
ODA on OfficeHome (Real to Art), and OPDA on Domain-
Net (Real to Painting). Acc close measures accuracy at rec-
ognizing known samples without rejection, i.e, this metric
evaluates the ability of closed-set recognition. UNK is the
accuracy of rejecting unknown samples. AUROC measures
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Ablation Office (W2A) (10 / 0 / 11) OfficeHome (R2A) (20 / 0 / 45) DomainNet (R2P) (150 / 50 / 145)
HNCS OEM H-score Acc close UNK AUROC H-score Acc close UNK AUROC H-score Acc close UNK AUROC

✓ 84.7 94.4 82.7 92.4 63.5 80.7 58.0 76.3 18.4 52.2 11.3 66.1
✓ 79.1 93.3 83.1 89.4 64.9 79.9 62.5 75.6 49.7 50.7 57.8 67.2
✓ ✓ 87.4 94.7 90.3 94.7 67.5 81.3 68.4 77.6 51.9 53.5 74.4 67.6

Table 4: Ablation study. We ablate open-set entropy minimization (OEM) and/or hard negative classifier sampling (HNCS). Note that
both techniques are necessary to achieve good performance (FULL vs each ablation).

(a) OVANet (b) OVANet w/o OEM (c) DANCE

Figure 7: Histogram of anomaly score in open-set DA (Webcam to Amazon, |Ls ∩ Lt| = 10, |Ls − Lt| = 0, |Lt − Ls| = 11). Red:
Known samples. Blue: Unknown samples. The output of open-set classifiers is used as anomaly score in OVANet, and the entropy of a
closed classifier is used for DANCE. Note that the threshold between known and unknown is a blue dotted line in each graph. OVANet
separates known and unknown samples well whereas DANCE fails.

how well known and unknown samples are separated given
the open-set classifier’s output. We have two observations:
applying open-set entropy minimization (OEM) is effective
to improve both closed-set accuracy and rejecting unknown
examples (w/o OEM vs FULL), and hard-negative classi-
fier selection is an appropriate way of training the classifier
(w/o HNCS vs FULL). The effectiveness of hard-negative
sampling is more evident in DomainNet because the dataset
has much more known classes. When the number of known
classes is large, there are many useless negative classes to
train our open-set classifier. Then, without the sampling, the
model cannot learn an effective decision boundary between
known and unknown, resulting in a significant degradation
in the unknown sample recognition.

Unknown and known samples are well separated by
OVA classifiers. Fig. 7 shows histograms of anomaly score,
where the x-axis is the anomaly score, and the y-axis shows
the frequency of the corresponding range of anomaly score.
The blue dotted line denotes the threshold between known
and unknown. (b) indicates that the learned threshold works
well to separate known and unknown samples. Apply-
ing OEM further enhances the separation ((a) vs (b)). (c)
DANCE utilizes a manually set threshold and fails in re-
jecting many unknown samples.

Feature Visualization. Fig. 8 visualizes learned features
with corresponding ground-truth labels (a) and predicted la-
bels (b). Although not all unknown samples are clearly sep-
arated from known ones, most are correctly classified.

OEM is not sensitive to a hyper-parameter. Fig. 9a
shows the sensitivity to the hyper-parameter λ in ODA on

(a) Ground truth labels (b) Predictions by OVANet
Figure 8: Feature visualization with t-SNE [19]. Comparison
between (a) true labels and (b) decision by OVANet (ODA, Ama-
zon to DSLR). Different colors indicate different classes. Plots
with pink are unknown samples, others are known samples.

(a) Sensitivity to λ (b) Sensitivity to |Ls|
Figure 9: (a) Sensitivity to a hyper-parameter λ in Eq. 3. Dotted
lines are results w/o OEM. (b) Sensitivity to the number of source
classes, where |Ls ∩ Lt| = 30, |Lt − Ls| = 45 in DomainNet.

Office and OPDA on DomainNet. λ is the only hyper-
parameter specific to OVANet. OVANet shows stable per-
formance across different values of λ.

Varying known classes. The performance across differ-
ent numbers of source-private classes(|Ls|) is visualized in
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(a) DomainNet (b) NAbird
Figure 10: Increasing number of known classes with OVANet
w/o OEM. Blue: Accuracy for known samples. Brown: Accuracy
for unknown samples. As a model sees a larger number of known
classes, the model rejects more unknown samples.

Fig. 9b, As there are more out-lier source classes, correctly
classifying target classes can become harder. While Entropy
Separation [28] is very sensitive to the number, OVANet
shows stable performance.

More known classes lead to a better boundary to re-
ject unknown. Fig. 10 focuses on the results of OVANet
w/o OEM in increasing the number of known classes while
fixing the number of unknown classes. See appendix for the
detail of used datasets. Although the number gets larger,
there is more probability of unknown samples being cate-
gorized into known classes. However, the accuracy at re-
jecting unknown classes improves or does not change with
the increase of the number. This indicates that the model
is more likely to correctly reject unknown samples given
more known classes. This observation is consistent with the
design of one-vs-all classifiers. It is necessary for the classi-
fiers to see hard negative samples to build a good boundary.
When more classes are available, there will be more hard
negatives.

OVANet is effective for different networks. Table 5
shows results of ODA on Office using VGGNet as a back-
bone. Note that ROS [3] changes hyper-parameters to train
their model while we do not change the hyper-parameter
of OVANet. The idea of employing one-vs-all classifiers is
effective for different networks.

OVANet needs both open-set and closed-set classi-
fiers. OVANet employs both open-set and closed-set clas-
sifiers, but an alternative way of training is to employ only
an open-set classifier. However, we see a large degrade in
performance if we do not use a closed-set classifier in train-
ing. This is because the open-set classifier is not trained
to distinguish between known classes. The training objec-
tive considers only distinguish one known class from other
classes, which is not enough to give discriminative features
to classify known samples.

4.3. Semi-supervised Learning

So far, we have assessed OVANet in the domain adap-
tation scenario. However, the importance of detecting an

Method Office (10 / 0 / 11) AvgA2D A2W D2A D2W W2D W2A
OSBP [29] 81.0 77.5 78.2 95.0 91.0 72.9 82.6
ROS [3] 79.0 81.0 78.1 94.4 99.7 74.1 84.4
OVANet 89.5 84.9 89.7 93.7 85.8 88.5 88.7

Table 5: Results of using VGGNet. Open-set DA setting is used.

Method NAbird (300 / 0 / 255)
H-score UNK Acc Acc close

Ent Sep [28] 3.8 1.9 32.2 81.9
DANCE [28] 8.8 4.6 34.0 82.1
OVANet 67.6 63.1 67.4 83.0

Table 6: Results of open-set semi-supervised learning using
NAbird [33]. Acc is the instance-wise accuracy for all samples.

unknown class is not limited to domain adaptation. When
deploying a recognition model in a real application, a model
can encounter samples from classes unseen during training.
In semi-supervised learning, a model can encounter unla-
beled unknown data during training. Models able to detect
unknown samples are desirable. In this section, we provide
the analysis of OVANet for the semi-supervised setting.

OVANet is effective in a semi-supervised setting. One
interesting application of open-set classification and semi-
supervised learning is the classification of animals. The un-
labeled images of wild animals can be collected by a mon-
itoring camera or crawling the web. Annotating the im-
ages may need expert knowledge. Therefore, the number of
annotated images can be limited, and the obtained known
label-space may not cover all categories of the dataset.
Then, we utilize NAbird [33], a large scale bird image
dataset, to evaluate our method, where 300 categories are
known and 255 are unknown. Half of the samples are la-
beled for each known class, and the rest are treated as unla-
beled data. All samples of unknown classes are used as un-
labeled data. OVANet outperforms the baselines in all met-
rics (Table 6). This result validates the benefit of OVANet
without domain-shift between labeled and unlabeled data.

5. Conclusion

In this paper, we present a new technique, OVANet,
which trains a One-vs-All classifier for each class and de-
cides known or unknown by using the output. Our pro-
posed framework is the simplest of all UNDA methods, yet
shows strong performance across diverse settings. The ex-
tensive evaluation shows OVANet’s applicability to semi-
supervised settings.
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