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Figure 1: SPICE (Self-supervised Person Image CrEation) generates an image of a person in a novel pose given a source
image and a target pose. Each triplet in the figure consists of the source image (left), a reference image in target pose (middle)
and the generated image in the target pose (right); input and reference images are from the DeepFashion test set [22].

Abstract

Synthesizing images of a person in novel poses from a
single image is a highly ambiguous task. Most existing ap-
proaches require paired training images; i.e. images of the
same person with the same clothing in different poses. How-
ever, obtaining sufficiently large datasets with paired data is
challenging and costly. Previous methods that forego paired
supervision lack realism. We propose a self-supervised
framework named SPICE (Self-supervised Person Image
CrEation) that closes the image quality gap with super-
vised methods. The key insight enabling self-supervision
is to exploit 3D information about the human body in sev-
eral ways. First, the 3D body shape must remain unchanged
when reposing. Second, representing body pose in 3D en-
ables reasoning about self occlusions. Third, 3D body parts
that are visible before and after reposing, should have simi-
lar appearance features. Once trained, SPICE takes an im-
age of a person and generates a new image of that person

*This work was done during an internship at Amazon.

in a new target pose. SPICE achieves state-of-the-art per-
formance on the DeepFashion dataset, improving the FID
score from 29.9 to 7.8 compared with previous unsupervised
methods, and with performance similar to the state-of-the-
art supervised method (6.4). SPICE also generates tempo-
rally coherent videos given an input image and a sequence
of poses, despite being trained on static images only.

1. Introduction

Given a single source image of a person, can we gener-
ate a realistic image of what they would look like from a
different viewpoint, in a different pose? While this prob-
lem is inherently ambiguous, there is significant statistical
regularity in human pose, clothing, and appearance, that
could make this possible as illustrated in Fig. 1. A solution
to the problem would have widespread applications in on-
line fashion, gaming, personal avatar creation or animation,
and has consequently generated significant research interest
[6, 16, 31, 33, 38, 42].
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Recent work focuses on generative modeling [8, 13, 15,
49], especially using conditional image synthesis. One set
of methods uses supervised training [6, 20, 21, 32], which
requires paired training images of the same person in differ-
ent poses with the same appearance and clothing. Requir-
ing such paired data limits the potential size of the train-
ing set, which can impair robustness and generalization.
Consequently, we address this problem without any paired
data by developing a self-supervised approach. Such self-
supervised formulations have also received significant re-
cent attention [7, 26, 30, 42].

Our novel formulation builds on the idea of cycle-
consistency [49] with some important modifications. For
the forward direction of the cycle, the method takes a source
image, source pose and target pose and generates a target
image conditioned on pose and appearance. The reverse
direction takes this generated image and regenerates the
source image by switching the source and target conditions.
The goal is to minimize the difference between the original
input image and the one synthesized through the cycle. The
problem is that this approach can have a trivial solution in
which the cycle produces the identity mapping. To address
this, previous methods [30, 38] constrain the target image
generation with 2D information. Human bodies, however,
are non-rigid 3D entities and their deformations and occlu-
sions are not easily expressed in 2D. We show how leverag-
ing 3D information, automatically extracted from images,
constrains the model in multiple ways.

Specifically, our method, called SPICE (Self-supervised
Person Image CrEation), exploits the estimated 3D body
to constrain the image generation, enabling self-supervised
learning. In particular, we estimate the SMPL body model
[23] parameters corresponding to both the input and the
generated target image. Since the input and target image
only differ in terms of their pose, their body shape should
be the same. SMPL makes this easy to enforce because it
factors body shape from pose. Using this we introduce two
losses. First, we use a pose loss that encourages the body
pose in the generated image to match the target pose in 3D.
Second, we add a shape consistency loss that encourages the
person in the generated image to have the same 3D shape as
the person in the source image (Fig. 2).

These two constraints, however, are not sufficient to gen-
erate images with the correct appearance since they only
force the model to generate an image with the right shape
and pose. There is no constraint that the generated image
has the appearance of the source image (e.g. clothing, hair,
etc.). Prior work addresses this by enforcing a perceptual
loss between patches at each 2D joint [30]. This is not suf-
ficient when the body is seen with large viewpoint changes
or where a body part becomes occluded; see Fig. 3. We
solve this problem by introducing pose-dependent appear-
ance consistency on the body surface instead of at the joints.

Figure 2: Shape consistency: The first column shows two
images of the same person in two different poses and views.
The second column shows the 3D bodies predicted by our
3D regressor and posed in a T-pose. The estimated 3D body
shape is similar for the same subject across poses and views.
The third column shows the per-vertex difference of both
meshes, color coded from blue (0 mm) to red (20 mm).

The idea is that the projected surface of the 3D body in
two different poses must have similar appearance features
for matching parts of the body and this similarity should
be weighted proportional to the relative global orientation
difference between the 3D bodies.

In summary, we improve the realism of self-supervised
human reposing by exploiting 3D body information in three
novel ways: using a 3D pose loss, body shape consistency,
and occlusion-aware appearance feature consistency. We
train SPICE with our new constraints on unpaired data. Ex-
tensive experiments on the DeepFashion [22] and Fashion
Video datasets [44] show the effectiveness of our model
qualitatively and quantitatively. SPICE significantly outper-
forms the prior state-of-the-art (SOTA) un/self-supervised
methods and is nearly as accurate as the best supervised
methods.

2. Related Work
Methods for reposing images of humans can be broadly

divided into two categories: supervised or unsupervised.
While both approaches rely on generative modeling [8, 13,
15, 49], the supervised methods require paired ground truth:
source and target training images of the person in differ-
ent poses. Our approach falls into the unsupervised or self-
supervised category, in which we do not use paired training
data. We address each class of methods below.
Supervised methods: Supervised approaches learn to
transform a source image given a source pose and a tar-
get pose [2, 5, 6, 9, 16, 19–21, 24, 25, 27, 28, 31, 32, 34–
36, 39–41, 43, 45, 50]. Supervision is provided by the target
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Figure 3: Problem: patch loss based on 2D keypoints. A
person is seen in three different poses with the same cloth-
ing. A patch (white rectangle) is extracted at her left hip
keypoint. Assuming that the appearance of the patch is the
same across viewpoints is incorrect. Instead, SPICE uses
the 3D body surface to reason about the regions of the body
that are visible in multiple views. Keypoints are predicted
by OpenPose [4] for this figure.

image during training and usually adversarial and percep-
tual losses are used to train the model [33]. The differences
between methods usually lie in network inputs and their ar-
chitectures. Dong et al. [5] synthesize the target image in
two stages. First they generate a target pose segmentation
from the source pose and use it in their soft-gated warping
block architecture to render the person in the target pose.
Knoche et al. [16] learn an implicit volumetric representa-
tion of the person to warp the source pose into the target
pose. The volumetric representation is implicitly learned
using an encoder decoder architecture. Li et al. [20] utilize
a learned flow field to warp a person in a source pose to the
target pose. The flow field is learned from 3D bodies and
is used for warping at the feature level and pixel level in
a deep architecture. Ma et al. [24] first generate a coarse
image of the global structure of a human in the target pose
from the source pose in a two stage network. This is then
refined in an adversarial way in the second stage to get finer
details. Sarkar et al. [32] compute a partial UV texture map
using DensePose [10] from the source image. They use this
as input to their network, which learns to complete the UV
texture map and render it in a target pose using neural ren-
dering. Siarohin et al. [35] propose a network architecture
using deformable skip connections to tackle the problem.
Tang et al. [39] propose a co-attention fusion model that
fuses appearance and shape features from images, which
they disentangle inside their architecture. They use two dif-
ferent discriminators for appearance and shape to jointly
judge the generation. Zhu et al. [50] propose a progres-
sive generator using a sequence of attention transfer blocks.
Each of these blocks transfers certain regions it attends to
and generates the image of the person progressively. Ren et
al. [31] propose a new deep architecture where they com-
bine flow-based operations with an attention mechanism.

Note that the above methods are all supervised and cannot
be directly used in the self-supervised scenario. In contrast,
our work is focused on unpaired data and we build on the
Ren et al. [31] architecture to enable this. Thus our contri-
bution does not lie with network architecture but, rather, in
introducing novel constraints that make it possible to solve
the problem without paired data.
Unsupervised or self-supervised settings: There is an
increasing interest in solving the problem in an unsuper-
vised/unpaired manner. Such approaches can work when
paired data is not available or can increase robustness and
generalization by combining paired and unpaired data. An
early approach [26] divides the process in two stages. The
first stage uses an auto-encoder-based architecture to learn
the corresponding embedding space for pose, foreground
and background from source images. The second stage
maps Gaussian noise to the embedding space of pose, fore-
ground and background and uses the pretrained decoder
from the first stage to generate a person’s image in a new
pose. Yang et al. [42] train an appearance encoder from
the source image to learn the appearance representation or
embedding. They fuse the appearance embedding with the
pose embedding coming from an image of a different per-
son in different pose. In this way they generate the person’s
image in the new pose. Esser et al. [7] use a U-Net architec-
ture conditioned on the output of a variational auto-encoder
for appearance. They also try to disentangle pose and ap-
pearance of a person from the source images.

In general, the mentioned approaches attempt to disen-
tangle shape, pose and appearance in the latent space from
a 2D image, which is a hard problem. This results in a rel-
atively poor image generation quality. Instead of learning
this disentanglement from images we approach the problem
differently. We extract the person’s pose and shape infor-
mation in a parametric decoupled 3D body representation,
SMPL [23], and constrain our self-supervised generation.
Furthermore, we also constrain appearance generation by
leveraging the surface and projection of the 3D body.

Similar to our cyclic formulation, Pumarola et al. [30]
and Song et al. [38] train their networks in a self-supervised
CycleGAN [49] fashion. Additionally, [38] use semantic
parsing maps as input to the network. They constrain their
self-supervised generation with 2D information. We differ
from these methods by constraining the self-supervised ap-
proach with 3D body information.

3. Method
SPICE requires a training dataset of tuples (I, P,R),

each containing an image I of a person, their pose P as 2D
keypoints, and a 2D rendering R. To generate R we fit the
SMPL 3D mesh [23] to P using SMPLify [3], and render
the mesh using a color wheel texture in UV space.

We treat all the samples in the dataset as independent;
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Figure 4: Overview of SPICE: Given a source image of a person Is, source pose Ps, target pose Pt and 3D mesh rendering
of the source pose Rs, the generator G generates a target image with the person in the target pose. Then the source and
target pose are swapped and passed through G but with the generated target image as the source. This should re-generate
the source image enabling the use of a cyclic self-supervision loss, Lcycle, during training. To prevent trivial solutions, the
cycle is constrained by losses on 3D pose Lθ, shape Lβ and appearance Lapp, which are the main contributions of SPICE
(Section 3), and an adversarial loss Ladv . Note that the Ps and Pt are provided as input heat-maps to G.

that is, our method does not require images of the same per-
son wearing the same clothing in different poses (i.e. with-
out direct supervision through paired data). During training,
the source image Is, source pose Ps, source rendering Rs,
target pose Pt and target rendering Rt are given. SPICE
then synthesizes the image Ît, which is the reposed source
image Is, using a generator network G (Section 3.1):

Ît = G(Is, Ps, Rs, Pt). (1)

During training, we exploit cycle-consistency (Section 3.2).
Specifically, we generate a synthetic version of the source
image from Ît by reusing G; i.e. Îs = G(Ît, Pt, Rt, Ps).
This enables us to directly apply perceptual and pixel-wise
losses between Is and Îs to train G. To prevent trivial
solutions, we add 3D guidance (Section 3.3) and appear-
ance constraints (Section 3.4) for Ît. See Figure 4 for an
overview of the SPICE training pipeline.

3.1. Generator architecture

Our generator G has two modules: a global flow field
estimator and a local neural rendering module. The flow
estimator module takes Rs, Ps, Pt as input and generates
2D warping fields at the feature level between the source
and the target pose. The neural rendering module takes Is
and Pt as inputs and uses the generated warping fields at the
feature level of its local attention blocks to generate Ît. The
loss for the flow estimator module can be written as,

Lflow = LRs→Rt

flow + LRt→Rs

flow , (2)

where Lx→yflow is the weighted addition of the sampling cor-
rectness loss and regularization loss for the generated flow
fields, as proposed by Ren et al. [31]. Here, LRs→Rt

flow is ap-
plied while synthesizing Ît, and LRs→Rt

flow is applied when
regenerating Îs at the end of the cycle. The sampling cor-
rectness loss is the computed cosine similarity distance be-
tween the warped source features and target features. The
source and target features come from a specific layer of a
pre-trained VGG network [37] given the source and target
renderings as input, respectively. The regularisation loss
provides regularisation to the generated warping fields.

Our generator follows the design of Ren et al. [31] with
the difference that the flow estimator is trained on source
and target renderings (i.e. Rs andRt), instead of source and
target images (i.e. Is and It), due to the unavailability of It
in our setting. We refer to Ren et al. [31] for more details
on the sampling correctness loss and the regularization loss.

3.2. Closing the cycle

Enforcing cycle consistency enables us to train SPICE
with supervised losses between the source image Is and the
regenerated source image Îs. Specifically, we minimize

Lcycle = λpercepLpercep + λstyleLstyle + λpixLpix, (3)

where the λ’s are individual loss weights, and the percep-
tual loss Lpercep, style loss Lstyle, [14], and pixel-wise loss
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Lpix are defined as

Lpercep =
∑
j

∥∥∥φj(Is)− φj(Îs)∥∥∥
1

Lstyle =
∑
j

∥∥∥G(φj(Is))−G(φj(Îs))
∥∥∥
1

Lpix =
∥∥∥Is − Îs∥∥∥

1
,

where φj is the activation map of the jth layer of a pre-
trained VGG network [37], and G is the Gram matrix built
from the activation map φj .

To generate realistic looking images, SPICE minimizes
an adversarial loss by adding a discriminator, D, that dis-
criminates between the fake images Ît and real images Is.
To provide pose information along with each image, we
condition D on the corresponding rendering (i.e. Rt for Ît,
and Rs for Is), by providing the concatenation of the two
images as discriminator input. Formally, we minimize

Ladv = E[log(1−D(Ît, Rt))] + E[logD(Is, Rs)]. (4)

3.3. Pose and shape consistency

SPICE uses the SMPL [23] 3D human body model to
enforce pose and shape consistency during training. SMPL
combines identity-dependent shape blendshapes with pose-
dependent corrective blendshapes and linear blendskinning
(LBS) for pose articulation. Importantly, this formulation
disentangles body shape form pose. Given parameters for
shape β ∈ R|β| and pose θ ∈ R3K+3, SMPL is a function,
M(β,θ) that outputs a 3D mesh with N = 6890 vertices.

To extract SMPL shape and pose parameters β and θ
from I , we use a differentiable regressor [17], denoted as

β,θ = f3D(I). (5)

Given the extracted SMPL parameters β̂t, θ̂t = f3D(Ît),
we define a loss that encourages the 3D rotation of the joints
in the synthetic image, θ̂t, to be the same as the rotation of
the joints in the target pose θt:

Lθ =
∥∥∥θt − θ̂t

∥∥∥
1
, (6)

where θt is obtained by running SMPLify [3] on Pt.
SPICE also enforces body shape consistency (Figure 2)

based on the observation that while Is and Ît differ in pose,
their body shapes βs (i.e. βs,θs = f3D(Is)) and β̂t must
be the same, enforced by

Lβ =
∥∥∥βs − β̂t

∥∥∥
1
. (7)

3.4. Appearance feature consistency

The above losses constrain pose and shape in Ît, but do
not guarantee that the appearance of Ît remains consistent

a) b) c)

Figure 5: Appearance feature consistency: a) SMPL tem-
plate with front (red) and back (blue) torso masks, b) and c)
shows images of a person in different poses (left), and cor-
responding torso masks obtained by rendering the 3D body
with the subject’s pose. The appearance consistency loss is
then applied on image segments for torso masks of the same
color weighted by the relative pelvis rotation.

with Is. Consequently, we formulate an additional con-
straint on the appearance of matching regions in Is and Ît to
be similar. Due to the unconstrained change in the pose be-
tween Is and Ît, we cannot apply the deep appearance loss
(perceptual or style loss) directly between those images.

Instead, we leverage the 3D body mesh to apply an
appearance loss between corresponding image segments.
Given SMPL parameters β and θ, we render the mesh
M(β,θ) with the texture from Figure 5 a) to get the im-
age segments for the rendered front and back torso areas,
shown in Figure 5 b), and c). Let Mmask denote a bi-
nary mask, with value 1 for pixels within the front/back
torso segment and 0 elsewhere. Further, let Ppatch denote
I �Mmask, where � is the Hadamard product. Both, m
and p are cropped from Mmask and Ppatch, by the bound-
ing box of the image segment.

Given image patches ps and p̂t together with binary
masks ms and m̂t, both extracted from Is and Ît, the ap-
pearance consistency is given as lapp =:

λa1
∑
k

‖φk(ps)� ψk(ms)− φk(p̂t)� ψk(m̂t)‖1

+λa2
∑
j

∥∥∥Gφj (ps)� ψj(ms)−Gφj (p̂t)� ψj(m̂t)
∥∥∥
1

(8)

where the λ’s are weights, φk is the activation map of the

11142



kth layer of pretrained VGG network [37], Gφj is the Gram
matrix built from the corresponding activation map φ, and ψ
is the down-sampling function for the corresponding layer.

Note that the appearance loss as it is formulated requires
sufficient overlap of corresponding image features within
the mask crop. We compute the appearance loss as:

Lapp = λ(θs,θt)× lapp, (9)

where λ(θs,θt) is a weighting function that depends on the
relative pelvis rotation (i.e. rotation around the SMPL root
joint) between the source and target pose:

λ(θs,θt) =


1.0 if 0◦ ≤ |θpels − θpelt | < 20◦

0.1 if 20◦ ≤ |θpels − θpelt | < 40◦

0.01 if 40◦ ≤ |θpels − θpelt | < 60◦

0.0 otherwise.

(10)

3.5. Final loss

The total loss of the proposed approach is:

LSPICE =αcycleLcycle + αflowLflow + αadvLadv
+ αθLθ + αβLβ + αappLapp,

(11)

where αi are the corresponding loss weights. The following
section provides details on how these weights are set.

4. Experiments
Datasets: SPICE is evaluated on two publicly available
datasets, namely the DeepFashion In-shop Clothes Re-
trieval Benchmark [22] and the Fashion Video datatset [44].
The DeepFashion data are used for qualitative and quantita-
tive comparisons and Fashion Video data for motion trans-
fer examples, following Sarkar et al. [32]. The DeepFash-
ion dataset [22] consists of 52712 high-resolution model
images in fashion poses. The data are split into training
and testing sets as in previous work [31, 50]. For train-
ing, we use 25341 images from the training set, in which
body keypoints from nose to knee are at least visible. Fur-
ther, 100 randomly selected images from the training set are
held out as a validation set for model selection. The qualita-
tive and quantitative evaluations are performed on the same
8570 image pairs as used by Ren et al. [31]. The Fashion
Video dataset [44] consists of fashion pose video sequences
of women in various clothing, captured with a static video
camera. The dataset is split into 500 training and 100 test
videos as done by Sarkar et al. [32], with each video con-
taining roughly 350 frames. Please note that SPICE uses no
paired images for training.
Training details: We use residual blocks as basic build-
ing blocks for G. For more details of the architecture we
refer the reader to Ren et al. [31]. We train SPICE with
an image resolution of 256 × 256 for both datasets. We

Figure 6: Qualitative results on the Fashion Video dataset
[44]. Video frames are synthesized from the source frame
using the poses in the driving video. See Sup. Mat. for
video and more examples.

DeepFashion Unpaired FID(↓) LPIPS(↓)
Def-GAN [35] 7 18.5 0.233
Pose-Attn [50] 7 20.7 0.253
Intr-Flow [20] 7 16.3 0.213
CoCosNet* [46] 7 14.4 -
ADGAN ** [27] 7 22.7 0.183
Ren et al. ** [31] 7 6.4 0.143

VUNet ** [7] 3 34.7 0.212
DPIG ** [26] 3 48.2 0.284
PGSPT ** [38] 3 29.9 0.238
SPICE (Ours) 3 7.8 0.164

Table 1: Quantitative comparison of our method with other
state-of-the-art methods. The * denotes that the method re-
ports results for a different train/test split. The ** denotes
that the metrics were recalculated using publicly available
code and following the protocol described in Sup. Mat.;
note that recalculation of the metrics results in different
numbers from those reported in [31].

use spectral normalisation for both the generator and dis-
criminator. The learning rate is 8e−4 for G and 1.6e−3
for the discriminator following similar GAN training strat-
egy of Heusel et al [12]. We use 8 NVIDIA V100 GPUs
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to train SPICE, where each GPU has a batch size of
8. We set the weights for different losses as follows:
αcycle = 1.0, αflow = 1.0, αadv = 1.0, αθ = 0.01, αβ =
0.01, αapp = 1.0, λa1 = 0.01, λa2 = 10.0, λpercep =
0.5, λstyle = 500.0, λpix = 5.0. First, we train the flow-
field estimator. Differing from Ren et al. [31], we use Rs
and Rt together with keypoints due to the unavailability of
It during training. Rs and Rt are used as the replacement
for Is and It respectively in their flow estimator module. We
also finetune the 3D regressor f3D on our training splits of
the DeepFashion dataset [22] following a similar approach
of Kolotouros et al. [18]. During the finetuning of f3D, we
use a similar representation proposed by Zhou et al. [48]
for representing 3D rotations. Finally, we train the whole
SPICE model end-to-end keeping the 3D regressor weights
fixed. During a training iteration we use ROIAlign [11] to
extract the desired regions from Is and Ît. We trained our
models for 5 days (∼400 epochs). Inference for a single
image takes 74 ms using a single NVIDIA V100 GPU.
Evaluation metrics: Following Ren et al. [31], we use
Learned Perceptual Image Patch Similarity (LPIPS) [47]
and FID [12] scores to evaluate our experimental results.
LPIPS quantifies the perceptual distance between the gen-
erated image and the ground-truth image. The FID score is
defined as the Wasserstein-2 distance between the distribu-
tions of real and generated images. We utilize the LPIPS
score to evaluate the reconstruction error of SPICE, and
the FID score to quantify the realism of the generated im-
ages. Image compression (e.g. JPEG) applied on reference
or generated images significantly affects the FID scores.
See Sup. Mat. for more details or [29] for a similar anal-
ysis. We also evaluated other metrics like contextual sim-
ilarity [27] and object keypoint similarity [1] and provide
the results in Sup. Mat. Details about the protocol for com-
puting FID and LPIPS can also be found in Sup. Mat.
Quantitative evaluation: Table 1 quantitatively com-
pares our method and other state-of-the-art approaches on
the DeepFashion dataset [22]. We compare with Def-
GAN [35], Pose-Attn [50], Intr-Flow [20], CoCosNet [46],
ADGAN [27], Ren et al. [31], DPIG [26], VUNet [7] and
PGSPT [38]. Note that Def-GAN, Pose-Attn, Intr-Flow,
CoCosNet, ADGAN and Ren et al. are supervised methods,
requiring the ground-truth image of a person in the target
pose and clothing during training. In contrast, our method
is unsupervised and comparable with the bottom half of the
table (i.e. [7, 26]). We have used the publicly available
code provided by Ren et al. [31], ADGAN [27], VUNet
[7], DPIG [26] and PGSPT [38] to regenerate the images on
our test split and recompute the metrics. SPICE achieves
state-of-the-art results among unpaired methods and com-
petitive results when compared with supervised methods.
Qualitative evaluation: Figure 1 shows results on the
DeepFashion test split. SPICE does a good job of preserv-

Source Target SPICE DPIG VUNet PGSPT

Figure 7: Qualitative comparison: More results can be
found in the Sup. Mat.

ing the target appearance and pose despite the large pose
change. Figure 7 provides a qualitative comparison with
other un/self-supervised methods on the DeepFashion test
split. SPICE generates more realistic and high quality im-
ages while preserving pose and appearance compared with
DPIG [26], VUNet [7] and PGSPT [38]. See Sup. Mat.
Video for more visual results on the DeepFashion test split.
Motion transfer: If you can generate one pose, you can
generate a sequence of poses. Consequently, we show video
generation on the test split of the Fashion Video dataset in
Fig. 6. We randomly select one video from the test split to
act as a driving video that provides the target pose. We take
the first frame of the other videos from the test split as the
source image and generate the whole sequence from these.
Please note that we did not train SPICE to generate videos;
i.e. there is no video supervision or temporal consistency.
See Sup. Mat. Video for examples of generated videos.
Ablation study: Table 2 summarizes our ablation study,
which removes one loss at a time from the model. The
configuration “SPICE w unconditional D” means that we
give the generated image to the discriminator without con-
ditioning on pose by concatenating the renderings. Our full
model better preserves details, pose, and has better overall
image quality. Trained without the pose loss, the generator
has less information about the self-occlusions of the body.
Therefore it tends to generate poses that are not possible for
a real person, e.g. growing legs inside another leg, etc. If
we train SPICE excluding the shape loss, the generator has
less information about the 3D body shape of the person in
the source image, which can lead to inconsistent deforma-
tions of shape in the generated images; e.g. having bigger
hips with a very thin waist, etc. Excluding the appearance
loss during training leads to less detailed reconstructions
and an overall reduced clothing consistency. Figure 8 and
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Configuration FID(↓) LPIPS(↓)
SPICE w/o shape loss 8.7 0.166
SPICE w/o pose loss 8.4 0.165
SPICE w/o appearance loss 9.9 0.164
SPICE w unconditional D 10.0 0.167
SPICE 7.8 0.164

Table 2: Ablation study on DeepFashion test set [22].

Figure 8: Loss specific artifacts: Each row shows artifacts
when training without a specific loss. Top: without shape
loss. Middle: without pose loss. Bottom: without appear-
ance loss. From left to right: source image, reference image
in the target pose, generated without the corresponding loss,
and SPICE, respectively.

the Sup. Mat. Video illustrate such loss-specific artifacts.
Discussions and limitations: While the DeepFashion
dataset [22] provides paired data, these pairs do not al-
ways have the same outfit, as can be seen in the bottom
row of Figure 7. We manually checked 500 random sam-
pled pairs of the training data, and found that in 16% of
the pairs one of the images contains additional accessories
or new clothes. This can be a burden for fully supervised
methods. Instead, we take the extreme approach of pure
self-supervision to see how far this can be pushed. For ex-
treme pose/view changes, the solution is highly ambiguous:
there is no way to know the front of an outfit from the back
or vice versa. Although SPICE generates a plausible solu-
tion, the result might not match the real invisible details. A
practical use case would limit the range of pose variation
between source and target. SPICE requires the target im-

Figure 9: Limitations: SPICE has difficulty super-
resolving fine details when zooming, dealing with extreme
closeups, and generating humans from clothing images
without humans.

age of a person where much of the body is in view (Fig. 9).
Our model has difficulties preserving fine patterns when the
camera zooms in Fig. 9. Zoom requires super-resolution
which is a research topic in itself.

5. Conclusion

We have presented SPICE, a novel approach to repose
clothed humans from a single image. SPICE is trained in a
self-supervised fashion without paired training data by ex-
ploiting cyclic consistency. Our key insight is to use 3D
body information during training in different ways to con-
strain the image generation. First, SPICE leverages a para-
metric 3D body model and a 3D body regressor to constrain
body shape and pose. Second, SPICE uses the 3D body
mesh to coherently segment source and generated images
to enforce an occlusion-aware appearance feature consis-
tency. Third, SPICE conditions a discriminator on colored
mesh renderings to increase the quality of the generated im-
ages. Once trained, SPICE takes a single image and a tar-
get pose specified by 2D keypoints, and generates an im-
age of the same person in the target pose. SPICE generates
images that are significantly better than previous unsuper-
vised methods, and that are similar in quality to the state-of-
the-art supervised method. Additionally, SPICE can readily
generate videos, although it is not trained for this task.

Adding 3D constraints to the reposing problem enables
a number of applications that go beyond the scope of this
paper and belong to future work. Although we used our
shape and appearance losses to keep those traits constant,
they could as well be used to control the output model ap-
pearance (e.g. changing the pattern of a T-shirt) or shape
(e.g. changing the body proportions of the model).
Disclosure. While MJB is also an employee of the Max Planck In-
stitute for Intelligent Systems (MPI-IS), this work was performed
solely at Amazon where he is a part time employee. At MPI-IS he
has received research gift funds from Intel, Nvidia, Adobe, Face-
book, and Amazon. He has financial interests in Amazon, Datagen
Technologies, and Meshcapade GmbH.
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