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Abstract

A large body of recent work has identified transforma-
tions in the latent spaces of generative adversarial networks
(GANs) that consistently and interpretably transform gener-
ated images. But existing techniques for identifying these
transformations rely on either a fixed vocabulary of pre-
specified visual concepts, or on unsupervised disentangle-
ment techniques whose alignment with human judgments
about perceptual salience is unknown. This paper intro-
duces a new method for building open-ended vocabular-
ies of primitive visual concepts represented in a GAN’s la-
tent space. Our approach is built from three components:
(1) automatic identification of perceptually salient direc-
tions based on their layer selectivity; (2) human annota-
tion of these directions with free-form, compositional natu-
ral language descriptions; and (3) decomposition of these
annotations into a visual concept vocabulary, consisting
of distilled directions labeled with single words. Experi-
ments show that concepts learned with our approach are
reliable and composable—generalizing across classes, con-
texts, and observers, and enabling fine-grained manipula-
tion of image style and content.

1. Introduction
GANs [8] map latent vectors z to images x. Past work

has found that directions in this latent space can encode spe-
cific aspects of image semantics: StyleGAN trained on bed-
rooms, for example, contains a direction such that moving
most z in that direction causes indoor lighting to appear
in the associated image [24]. However, current methods
for identifying these directions are ad hoc, capturing only
a limited set of human-salient dimensions of variation. In
this paper, we describe how to construct more expressive
and diverse sets of meaningful image transformations—a
visual concept vocabulary—by decomposing freeform lan-
guage descriptions of GAN transformations.

Consider trying to find a direction that makes an outdoor
market more festive (Figure 1). The GAN latent space is
too large to make random search feasible, while supervised

Figure 1: Building a visual concept vocabulary. First, we gener-
ate directions that preserve most of the structure and content in
the image. Then we use human annotations to decompose them
into directions that correspond to a single salient concept. Finally,
we show the decomposed directions generalize across starting rep-
resentations and input classes, and can be composed to construct
compound directions.

approaches cannot verify if the desired direction is present
[11, 7, 24, 19]. Unsupservised approaches [10, 15, 20, 21]
may not discover a festive direction, since the model’s prin-
cipal components do not necessarily capture changes that
are most visually salient to humans.

To improve our understanding of the kinds of inter-
pretable semantic transformations encoded in GAN latent
space, we propose a new approach for building an open-
ended glossary of primitive, perceptually salient directions
from the bottom up. Our approach is built from three com-
ponents:

1. A new procedure for generating perceptually salient
directions based on layer selectivity. The resulting di-
rections make meaningful local changes to a scene but
are still non-atomic.

2. A data collection paradigm in which human annotators
directly label directions with their semantics, which
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are complex and compose multiple concepts to de-
scribe visual transformations.

3. A new bag-of-directions model which automati-
cally decomposes these annotations into a glossary of
“primitive” visual transformations associated with sin-
gle words.

Because our method covers the breadth of the GAN la-
tent space, it enables reliable image editing with a relatively
open-ended vocabulary. We also show how our vocabulary
supports generalization to novel compositions and transfer
across classes. Code, data, and additional information are
available at visualvocab.csail.mit.edu.

2. Related work

Our approach is inspired by recent success in discover-
ing latent vectors that capture individual dimensions of se-
mantic variation in images [11, 10, 7, 24]. To the best of
our knowledge, ours is the first attempt to systematically
catalog the set of human-interpretable concepts represented
inside a generator’s latent space.

Interpreting GANs. GANs excel at capturing the rich vi-
sual structure of images—raising the question of what in-
ternal representations they leverage to do so, and the ex-
tent to which these representations overlap with dimensions
of variation that humans recognize and find meaningful in
visual scenes. Early work [17] on GANs discovered la-
tent vectors that encode semantically meaningful represen-
tations at different levels of abstraction. A subsequent ap-
proach [2] to the interpretation problem focused on indivi-
ual units, and used a pretrained segmentation network [23]
to identify sets of units in intermediate layers whose feature
maps closely match the semantic segmentation of a par-
ticular object class. Related work identified concepts not
learned by GANs [3] by comparing the distribution of seg-
mented objects in generated images with the target distribu-
tion in the training set. These approaches are constrained
in the sets of concepts they could possibly identify, which
are limited to the object classes represented inside the seg-
mentation model. In addition to objects, GANs have also
been shown to contain internal representations that deter-
mine spatial layout [14, 27, 1], and other higher-order scene
attributes, inlcuding memorability and emotional valence
[7]. While these approaches have made it possible to con-
trol specific aspects of image output, looking for a predeter-
mined set of concepts limits what can be learned about what
a GAN is able to represent. Our approach to interpretation
aims to be more data-driven: by building shared vocabular-
ies, represented by GANs and salient to humans, from the
ground up.

Supervised direction search. If concepts to search for
are known, and attribute annotations are available, vector
directions in latent space can be discovered using super-
vised classifiers [12, 19]. When attribute annotations are
not available, image classifiers can be used [24], or a sepa-
rate model can be trained [11, 16, 6]. However the former is
limited to concepts captured by the classifier, and the latter
is limited to simple predetermined visual concepts, such as
camera angle. Our method does not assume the concepts to
search for are known ahead of time.

Unsupervised direction search. Other recent approaches
use unsupervised methods for discovering interpretable di-
mensions in GAN latent space and feature space [10, 21,
15, 22]. These methods make use of the known disen-
tanglement of many GAN representations [2]. One such
method—GANSpace—discovers latent directions for im-
age manipulation by identifying principal components of
feature tensors on the early layers of GANs, and transferring
the basis to latent space by linear regression [10]. However,
the visual content of most of these transformations is un-
known, as only a handful of examples have been labeled
by the authors after the fact. Furthermore, this direction-
generation procedure is limited to finding disentangled prin-
cipal components of the model’s representation, while many
other directions salient to humans may lie outside this set.

Where related work applies ad-hoc labels to directions
discovered with such unsupervised methods, we introduce
a bottom-up method for discovering directions associated
with concepts, in the case when the set of concepts to search
for is not known a priori. A primary contribution of our
method is that it does not require visual concepts to be per-
fectly disentangled before labeling.

3. Projecting visual concepts into latent space
Our goal is to distill dimensions of variation in GAN la-

tent space Z that capture primitive visual transformations
in image space. We begin by generating a set of test di-
rections in multiple image classes, where transformation
along those directions is constrained to be minimal in a sub-
set of the layers’ feature representations, but potentially se-
mantically complex (Section 3.1). Next, we synthesize se-
quences of images transformed along each test direction in
Z latent space, and ask human annotators to describe the
corresponding visual changes (Section 3.2). Because these
directions are generated without preselecting for particular
concepts, they act as a screen upon which viewers project
the gradients of perceptual change they find most salient.
We use the prevalence of repeated terms and their associ-
ation with different transformations to infer a set of visual
concepts represented in the latent space, and associated di-
rections that change the perceived presence of each concept
(Section 3.3).
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Figure 2: Examples of layer-selective directions. Directions are generated by minimizing the change in a layer with respect to the direction,
subject to a norm constraint. Our procedure selects a set of n LSDs for each layer, one layer at a time, orthogonal to those already selected.

Experiments in the remainder of this paper use the Big-
GAN architecture [4], a class-conditional model pretrained
on the Places dataset [26], which includes visual scenes
from 365 unique classes. However, our approach is rela-
tively model-agnostic. We show generalization to BigGAN
trained on the ImageNet dataset [5] in the supplement.

3.1. Selecting directions for annotation

A generatorGmaps latent code z and class vector y into
image space, synthesizing x = G(z;y). The image x can
be manipulated along a visual dimension by transforming
the vector z along the corresponding direction d in the la-
tent space: x∗ = G(z + d;y). This correspondence be-
tween directions in visual and latent space lies at the heart
of the problem we wish to solve. For a given model, we
want to learn embeddings in the latent space Z of transfor-
mations that are salient to human observers in visual space.
However, we cannot begin by defining an objective where
d is optimized to produce a discriminable transformation
in x, such as in [11, 7, 18, 24], because we wish to avoid
pre-committing to a fixed vocabulary of visual concepts.

Layer-selective directions (LSDs). To generate direc-
tions for annotation, we sample the space of salient percep-
tual transformations for different z. Our goal is to collect
a direction annotation dataset that is both diverse and spe-
cific—capturing a broad set of concepts, where the same
concept is reliably associated with a particular direction
across images and observers. Thus for a given z, we seek di-
rections that make minimal, meaningful perceptual changes
at different levels of abstraction.

Randomly sampled directions tend to alter many visual
features, at many levels of resolution, all at once. To con-

strain a direction d (of fixed magnitude) to make a smaller
number of specific, recognizable changes in the image out-
put G(z + d;y), we can search for a d that minimizes
change in the feature representation of an intermediate layer
of G. Denote by G` the first ` layers of G. Then the feature
map for that layer is a computed as follows:

g` = G`(z,y) (1)

Let g∗` be the output of layer ` when we add d to z:

g∗` = G`(z+ d,y) (2)

We constrain change in a layer’s representation by defin-
ing a layer regularizer that minimizes ‖g∗` − g`‖

2 for some
layer `. To generate a diverse set of directions dj,` that meet
this objective for layer `, we sample random vectors d and
then apply gradient descent to each sample to optimize the
latent direction dj,` to minimize change in g∗` , where dj,`

is constrained to have unit norm. We call a direction opti-
mized in this way a layer-selective direction.

Different layers ofG control features in the image output
at different levels of resolution, with later layers controlling
more fine-grained features [2, 24]. Therefore, to construct
a set of LSDs that encompasses diverse image transforma-
tions, when sampling vectors dj,` at layer ` we add the fur-
ther constraint that the samples be orthogonal to LSDs for
other layers. Formally, our objective becomes:

dj,` =argmin
d∈U`

‖g∗` − g`‖
2 (3)

where U` ={d such that ||d|| = 1 and
d ⊥ dj′,`′ for all j′ and `′ > `} (4)

We begin by sampling n LSDs at the last layer ` and then
proceed to find orthogonal directions selective for earlier
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layers. This procedure is analogous to Gram-Schmidt or-
thogonalization and picks directions that lie along mutually
orthogonal subspaces of Z , with transformations in each
subspace corresponding to image changes at different lev-
els of abstraction. Finally, we generate a set of n additional
directions that are orthogonal to all LSDs, to capture types
of image transformation that were excluded by the layer-
selective process. Examples of directions generated using
this method are visualized in Figure 2.

3.2. Collecting direction annotations

We apply the method described in Section 3.1 to 64
randomly selected z to generate 20 layer-selective direc-
tions dj per z, for a total of 1280 directions. For each
zi, the image G(zi) is transformed along each direction
j by passing a modified zi through the generator: G(z +
αdi,j). The transformation is visualized in an image pair:
[G(zi), G(zi + αdi,j)], where d has unit norm. To create
images for annotation, we set the scaling term α = 6.

For each direction, we synthesize images in four classes
within BigGAN-Places: cottage, kitchen, lake, and
medina (outdoor marketplace). These represent familiar
visual scenes that balance indoor and outdoor, natural and
built environments. Direction annotations are collected us-
ing Amazon Mechanical Turk (AMT). Participants see a
single image pair [G(z), G(z + αdj)] and are asked to de-
scribe the main visual changes in composition and style
between the two images, for a total of 5,120 annotations.
Figure 3 shows example images sequences and annotations.
We provide further details on the AMT setup in Section S.1.

Figure 3: Sample transformations and AMT annotations from all
four image classes: (a) cottage, (b) medina, (c) kitchen, (d) lake.

Data normalization and post-processing. To clean and
normalize the direction annotations produced in Sec-
tion 3.2, we first preprocess and lemmatize the labels us-
ing methods described in the supplement. Next, we post-

Distinct Repeated Unique to
Image class concepts n>1 times one class

Cottage 1166 508 147
Kitchen 1045 445 167
Lake 1167 479 153
Medina 1087 460 142
All four 2800 1372 609

Table 1: Distinct terms for concepts used in cleaned annotations,
by class. We focus on those repeated in multiple labels, of which
just under half (44%) appear in only one class.

process the labels by detecting phrases capturing decrease
in a concept (e.g. less green, or window is removed), and as-
sign them to individual negative directions. The result is a
compact set of terms for human visual concepts describing
each direction, which we refer to as cleaned annotations.
For example, the cleaned annotation for the direction shown
in Figure 3a would read “snow, sky, electric, blue, eerie,
dark, cloud, cold.” Across all classes, 2800 unique concepts
appeared, 1372 repeated at least once. 122 appeared in all
four classes. The number of distinct concepts used in each
class independently is shown in Table 1. Of concepts that
appeared more than 20 times in the entire dataset (across
all 4 classes), 32% are objects (e.g. cabinet, tree), 48% are
attributes (e.g. warmer, brighter), and 20% describe scene-
and object-level geometry (e.g. background, angle). We
provide a more detailed description of these categories and
a breakdown of concepts by image class in Section S.2.

The cleaned annotations indicate visual concepts that de-
scribe each of the LSDs. However, they do not isolate
dimensions of variation that correspond to individual con-
cepts; one direction may be described by multiple terms. To
understand which visually salient terms can be mapped onto
individual dimensions in the GAN’s representation, in Sec-
tion 3.3 we disentangle the annotated directions into a set of
principal perceptual components in the Z latent space.

Evaluating direction quality. While our main contribu-
tion is a procedure (Section 3.3) for extracting a set of dis-
entangled, human-recognizable concepts from any corpus
of direction annotations, the method we describe for obtain-
ing an initial set of directions also has advantages over re-
lated methods. To validate our decision to use the LSDs for
annotation, we directly compared the annotations of LSDs
in our dataset to two baselines: directions generated using
the GANSpace method [10], and randomly generated direc-
tions. For a subset of 600 LSDs (150 in each of four image
classes), we collected 10 annotations per direction using the
AMT protocol described in Section 3.2. Additionally, we
followed [10] and identified the same number of latent di-
rections corresponding to principal components of feature
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tensors on the first three layers of G. Finally, we sampled
600 random directions of fixed magnitude. All directions
were normalized and added to the same set of z with α = 6.

Table 2 shows the results of our comparison. We find that
LSDs elicit a more diverse vocabulary of both single-word
concepts and their compositions. Additionally we measure
inter-annotator BLEU [13] and inter-annotator BERTScore,
where the latter leverages a large pretrained language model
to measure semantic similarity between annotations [25].
While our LSDs obtain lower inter-annotator BLEU scores
than the baselines, they obtain a larger BERTScore, sug-
gesting there is less lexical overlap but greater semantic
overlap in how annotators describe LSDs compared to the
baselines. This hypothesis is further substantiated by the
greater diversity of n-grams in LSD annotations.

Directions 1-grams 2-grams 3-grams BLEU BERTScore-R

Random 2,316 14,913 22,938 8.86 0.375
GANSpace 2,975 18,622 26,466 8.24 0.343
LSD (Ours) 3,156 20,986 31,307 7.17 0.393

Table 2: Comparison of diversity and reliability measures for 6000
annotations of directions added to the same set of z. For the LSDs,
observers recognize the most semantically similar changes per di-
rection, and overall produce a larger number of both single-word
concepts and their compositions.

3.3. Distilling directions for visual concepts

Our goal is to identify a vocabulary of primitive visual
concepts, but as shown in Figure 3, the LSD annotations
describe complex, compositional image changes, even after
restricting annotation to layer-selective directions. We hy-
pothesize that each annotated direction can be reconstructed
from a set of distilled directions associated with individual
concepts in the annotation. In other words,

d(tall red building) ≈ d(tall) + d(red) + d(building) (5)

This is a simplifying assumption (red suggests a different
color in in red hair vs red brick) [9]. However, it provides a
convenient (and empirically effective) mathematical frame-
work for distilling directions for primitive concepts from
compositional annotations. In particular, we can formulate
learning of the visual concept vocabulary as a regularized
linear regression of the form:

argmin
E

‖WE−D‖2F + λ ‖E‖2F (6)

where rows i of word matrix W correspond to annotations,
and columns j of W to individual words. Wi,j = 1 if word
i appears in cleaned annotation j. WE is thus a matrix of
annotation embeddings that we can compare to D, where
rows di are the annotated directions in Z latent space.

We may then solve analytically for E:

E = (W>W + λI)−1W>D (7)

where I is the identity matrix with the same size as W>W.
The hyper-parameter λ determines the balance between the
L2 loss and the regularization of E. We set λ to 100 in our
experiments.

The individual word embeddings ej in the latent space of
G lie along the rows of E. As in Section 3.1, transforming
an imageG(z) along the distilled direction corresponding to
concept j is equivalent to moving in the direction ej inZ la-
tent space and passing the transformed z vector through the
generator: G(z+αej). The scaling parameter α determines
the degree and type of transformation: a larger α introduces
more of concept j to G(z), and in many cases, −α removes
the visual concept from the scene. We note that the latent
space is not perceptually uniform: steps of the same magni-
tude along different directions do not necessarily reflect the
same amount of perceptual change. Continued work might
map how this perceptual sensitivity to movement in each
direction varies across the latent space.

Figures 1 and 4 illustrate the efficacy of applying our
method to BigGAN-Places to disentangle directions corre-
sponding to individual concepts, where each concept is as-
sociated with multiple annotated directions. We also tested
the generalization of this approach to BigGAN-Imagenet,
and show results in the supplement. Interestingly, lake is
the only image class shared by both ImageNet and Places.
For the same number of annotated directions (1280), the
number of distinct concepts in the lake class for BigGAN-
ImageNet is < 75% of the number of distinct concepts in
the BigGAN-Places lake class. This could reflect less scene
diversity in comparable ImageNet classes due to less train-
ing data. Given that our method is generalizable and fairly
model-agnostic, we suggest that it could be used in such a
manner to characterize a given generator by the projection
of concepts salient to humans into the set of concepts the
model has learned.

4. Evaluating distilled visual concepts
We have now distilled our LSDs into a vocabulary of

primitive visual concepts, each consisting of a short lan-
gauge description, e.g. snow or festive, and an associated
latent direction. Our next step is to evaluate how well the
directions produce transformations in generated images that
are faithful to their description. In other words, how often
does adding the trees direction to a starting representation
clearly add trees to the image?

We study this empirically by conducting a series of hu-
man experiments in which crowdworkers are asked to dis-
criminate which among several image transformations cor-
responds to a specific visual concept. One of the trans-
formed images is constructed by adding the corresponding
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Figure 4: Example visual concepts across four classes of visual scenes, each applied to two z. This sample represents only 13 of 1372
unique concepts discovered in BigGAN-Places. Some concepts (such as blue) occur in all scene classes. Others are characteristic of
one or two (such as making a lake foggier or a kitchen modern). Bottom: in some cases, subtracting concepts can produce opposite
transformations. For example, the subtraction of blue is the complementary orange, and the subtraction of winter is a spring scene.
Additional examples with varying α are shown in the supplement.

direction d to the starting z, while the others are constructed
by adding different directions from the vocabulary. If hu-
mans reliably can discriminate which transformed image
corresponds to the visual concept, that would suggest that
the direction is faithful. The following three experiments
adopt this structure and vary how the vocabulary is con-
structed in order to study different properties of the distilled

directions. The first two experiments focus on whether the
directions generalize across starting representations (Sec-
tion 4.1) and image classes (Section 4.2). The final experi-
ment explores whether they reliably compose with one an-
other, supporting combinatorial extensions to the vocabu-
lary (Section 4.3).
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4.1. Do concepts generalize across Z?

We begin by asking whether distilled directions general-
ize to produce faithful transformations when added to un-
seen z ∈ Z , keeping all other inputs the same. Here, we
fix a class y and only vary the initial representation z. This
means that when we distil the vocabulary using Equation 7,
we construct W using only annotations for which the hu-
man annotator saw images generated with the class y.

For each visual concept c∗ and its distilled direction
d∗, we sample a z ∈ Z and three distractor directions
{d1,d2,d3} from the remaining directions in the vocabu-
lary. Human participants are shown an initial imageG(z;y)
and four transformed imagesG(z+αdi;y) for i = 1, 2, 3, ∗
and are asked to discriminate which transformed image cor-
responds to c∗. If the direction d∗ successfully generalizes
to the new z, then participants should reliably choose the
image change generated by that direction.

We recruit crowdworkers from Amazon Mechanical
Turk; full details about the AMT setup and other hyperpa-
rameters can be found in the supplement. To denoise, we
generate three sets of zs and distractors per concept in the
vocabulary, and additionally show each (z, d) pair to five
distinct participants, totaling 15 AMT HITs per concept.

Distilled directions generalize to novel inputs. Table 3
shows human accuracies by image class. Participants iden-
tify the correct image transformation more than 60% of the
time, providing strong evidence that the distilled directions
generalize across the representation space. Figure 5a shows
that many concepts are recognized with higher accuracy
than reported in Table 3, and only about 6% of concepts are
recognized at the level of chance. Attributes are the most
likely category of concepts to be accurately detected (75%).
We include a further breakdown by concept in Section S.3.

Detecting concepts with an SVM. We replicated Exper-
iment 1 using a linear classifer to detect concepts added to
generated images, providing additional evidence that our
vocabulary generalizes across Z . For each of the the 20
most frequent concepts in all four classes, we trained a lin-
ear SVM to distinguish the addition of that concept to an im-
age from the addition of a randomly sampled distractor, and
tested on held out images. Mean classification accuracy was
significantly above chance in all classes (cottage: 80.2%,
kitchen: 73.4%, lake: 79%, medina: 77.3%), and like hu-
mans, accuracy was highest overall for attributes (82.8%).
We provide a per concept breakdown in the supplement.

4.2. Do concepts generalize across classes?

Visual concepts are context-sensitive. For example,
making a kitchen scene brighter might involve adding addi-
tional light fixtures, while making a cottage scene brighter

Experiment Kitchen Lake Medina Cottage Avg.

Generalize z .60 .76 .62 .64 .66
Generalize y .37 .39 .43 .37 .39
Composition .40 .44 .51 .41 .44

Table 3: Human accuracy discriminating a target concept from
three distractors, where the concept is visualized by applying its
associated direction to new z (Generalize z), new classes (Gener-
alize y), and compositions of directions (Composition).

Figure 5: (a) Histogram from Section 4.1, where accuracy refers
to the fraction of times that humans correctly recognized a spe-
cific concept. Dotted vertical line demarcates accuracy of random
guessing. For 94% of concepts, participants recognize the correct
change more often than if they guessed randomly, suggesting that
the directions generalize across z. (b) Concept accuracies from
the cross-class evaluation of Section 4.2, bucketed by whether the
concept appeared in both annotations for the training class and the
test class. Some concepts (typically objects and attributes) exhibit
strong cross-class generalization, with one being correctly recog-
nized by every observer. Other concepts fail to generalize even
when they appear in annotations for both classes, suggesting Big-
GAN has not entirely disentangled concept from class.

will likely involve intensifying the sun. Despite the differ-
ences between these image transformations, both are instan-
tiations of the visual concept brighter. At the same time,
some visual concepts might be unique to a context. The
kitchen class exclusively features concepts like cabinets and
appliances, while the lake class features snow and moun-
tains. This raises the question: if we construct a vocabulary
using annotations from one image class, do the resulting di-
rections produce faithful transformations on other classes?

We now repeat our evaluation from Section 4.1, but in-
stead of fixing y in the evaluation, we choose it at random
from the set of classes not used to construct E in Equa-
tion 7. Hence, when evaluating the kitchen vocabulary,
we generate images and transformations with the lake,
cottage, or medina class. We draw several conclusions.

Generalization across class is most robust when con-
cepts are shared between classes. Figure 5b shows that
participants recognize concepts most often when the con-
cept appears in the vocabulary for both classes. This agrees
with the intuition that it should be difficult to add a visual
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concept to image when that concept is foreign to the con-
text, e.g. adding appliances to a lake scene. For these trans-
formations to suceed, BigGAN would have to generate out
of distribution images.

However, distilled directions still generalize across
classes. Even though cross-class generalization is harder
than within-class generalization, humans still recognize the
target visual concept a majority of the time. This even in-
cludes some out-of-distribution generalizations like the one
shown in Figure 6, which inserts snow into a medina, de-
spite snow being unseen in medina training images.

Figure 6: Several image changes produced by decomposed direc-
tions applied to the same starting image of a medina. Directions
generalize (a) across and (b) within class. Two directions can be
composed regardless of whether the corresponding concepts (c)
did not co-occurr in the original corpus or (d) did co-occur.

4.3. Do concepts compose?

In the previous experiments, our vocabulary consisted
of primitive visual concepts such as mountain and dark.
Can we construct more complex visual concepts from these
primitive ones? One way to do this would be to compose
the primitive concepts conjunctively: given a mountain di-
rection and a dark direction, construct a mountain∧dark by
simply averaging the two directions.

Our goal in this section evaluate how often composition
of this kind succeeds. We repeat the evaluation from Sec-
tion 4.1, now constructing the vocabulary by conjunctively
composing every pair of primitive concepts from the orig-
inal vocabulary. Formally, given a primitive vocabulary V
for a fixed concept y and two directions a,b ∈ V , we de-
fine their composition a ◦ b to be (a+ b)/2 and define our
new vocabulary to be V ′ = {a ◦ b : (a,b) ∈ V 2}. In
practice, V ′ is quite large because it has quadratically many
concepts, so we select a random subset of 50 compositions.

As before, for each direction a◦b ∈ V ′, we sample a rep-
resentation z ∈ Z and three distractor directions. However,
now we choose two of the distractors to be compositions
of a and b with other primitives. Specifically, we sample

Figure 7: (a) Fraction of times humans chose each composition
in Section 4.3. a and b are target directions, while c and d are
randomly chosen distractors. Observers frequently recognize the
correct composition, but even when not, they prefer partially cor-
rect compositions, suggesting the decomposed directions compose
faithfully. (b) Fraction of times humans recognized each con-
cept composition, bucketed by whether composed concepts co-
occurred in the original corpus. Both classes of composition per-
form have comparable mean accuracies, suggesting many of the
directions in the vocabulary can be faithfully composed.

two additional directions c,d ∈ V − {a,b} and use a ◦ c,
b◦d, and c◦d as distractors. Participants then discriminate
which transformed image contains both a and b.

Distilled directions compose to produce new and rec-
ognizable concepts. Even though compositional changes
are harder to discriminate, participants still predict the cor-
rect change reliably above chance. Furthermore, Figure 7a
shows that when participants choose a distractor, they tend
to pick distractors closest to the target, i.e. a ◦ c or b ◦ d.

Composition produces faithful transformations even
when concepts did not co-occur in the training data.
Figure 7b shows that participants recognize composed con-
cepts regardless of whether the constituent concepts ever
appeared together in a single LSD description. Figure 6
shows an example, in which the purple and people concepts
(unseen together during training) can be composed to pro-
duce an image of a purple medina filled with people.

5. Conclusion
We introduce a new procedure for building open-ended

vocabularies of primitive visual concepts represented in
GANs’ latent spaces, and show that these concepts are re-
liably recognizable and freely composable. This work rep-
resents an important step toward bridging the representa-
tional gap between human perception and artificial gener-
ators. Future work could explore the use of our approach
with generators other than BigGAN, such as StyleGAN.
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