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Abstract

Active visual exploration aims to assist an agent with a
limited field of view to understand its environment based
on partial observations made by choosing the best viewing
directions in the scene. Recent methods have tried to ad-
dress this problem either by using reinforcement learning,
which is difficult to train, or by uncertainty maps, which are
task-specific and can only be implemented for dense predic-
tion tasks. In this paper, we propose the Glimpse-Attend-
and-Explore model which: (a) employs self-attention to
guide the visual exploration instead of task-specific uncer-
tainty maps; (b) can be used for both dense and sparse
prediction tasks; and (c) uses a contrastive stream to fur-
ther improve the representations learned. Unlike previous
works, we show the application of our model on multi-
ple tasks like reconstruction, segmentation and classifica-
tion. Our model provides encouraging results while be-
ing less dependent on dataset bias in driving the explo-
ration. We further perform an ablation study to investi-
gate the features and attention learned by our model. Fi-
nally, we show that our self-attention module learns to at-
tend different regions of the scene by minimizing the loss on
the downstream task. Code: https://github.com/
soroushseifi/glimpse-attend-explore.

1. Introduction
Most computer vision methods rely on datasets captured

by human photographers [27, 34]. Such data is biased to-
wards the salient information showing up in predictable ar-
eas of the image (e.g. image center). Besides, most com-
puter vision methods assume full observability of the input
image [26, 18]. However, in a dynamic environment, an
agent with a limited field of view/resource cannot fully ob-
serve its immediate 360°scene. This might cause the agent’s
camera to capture parts of the environment that are diver-
gent to those seen in standard computer vision dataset, thus
degrading agent’s performance on different tasks.

In this paper, we propose an active vision [1] method to

*Equal contribution.

autonomously explore and reason about a scene by sequen-
tially gathering partial observations from it. Our method
can be deployed in scenarios where an agent cannot view
and process the whole scene due to limitations such as the
agent’s small field of view or limited transfer bandwidth
between the camera and the processing unit. We simulate
this by restricting our method to see small crops (called
glimpses) from the images in common computer vision
datasets. Besides, we restrict the total number of glimpses
the agent can see from a single image. At each time step,
the agent has the freedom to change its viewing direction
and take a new glimpse of the scene. Therefore, it is im-
portant that the agent selects the areas of the environment
with the highest information gain for a given task. Given a
set of training examples and an initial random glimpse for
each example, our model learns a policy to select the next
glimpses, hallucinates the unseen areas, and solves a task
given the structural cues coming from the visited areas.

While previous methods rely on reinforcement learning
[32, 25], reconstruction loss [35] and uncertainty measures
[36], we employ the heatmaps generated by self-attention
layers to guide the exploration. Contrary to previous works,
we propose a unified two-stream architecture for different
tasks such as image reconstruction, classification, and se-
mantic segmentation and evaluate our method using several
baselines. In addition, we show that the agent can build
a richer representation of the environment by using con-
trastive learning. In this case, only during training, we use
a pretrained encoder to produce the features for the full en-
vironment. Next, taking inspiration from [12], we train one
of our network’s streams to predict the full environment’s
features given only the visited glimpses. Finally, we per-
form an ablation study on the number of glimpses and our
network architecture. Our contributions are as follows:

• We introduce a new self-supervised attention mecha-
nism for active visual exploration.

• We propose a unified architecture for both sparse and
dense prediction tasks.

• We show that our proposed attention mechanism
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Figure 1. Results generate by Glimpse Attend and Explore: (Left) shows the scene reconstruction results on SUN360 dataset [38].
(Right) shows the semantic segmentation results on ADE20k [43]. Results are computed after taking 8 retina-like glimpses (bottom-row)
containing 18% of the pixels in the image.
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Figure 2. Architecture Overview.

disentangles location prediction from the auxiliary
dense prediction task used in previous work [36].
Consequently, a downstream task such as classifica-
tion/regression may directly lead the attention mecha-
nism. This makes the architecture two times faster and
uses less than a tenth of the gpu memory compared to
previous work.

• We employ contrastive learning to train the network
to reason beyond seen areas and build an even richer
representation of the environment.

2. Related Work
Active Vision: An agent with active vision can con-

trol its viewpoint to make a series of observations to sub-
sequently improve its internal representation of the envi-
ronment. Some of the earliest work [1] provides a general
framework for this problem in low resource vision systems
and camera control [5]. Recent work in this domain aims
at learning view selection strategies to solve diverse tasks
including object recognition [29, 2], segmentation [8, 28],
visual navigation [39, 10, 44], and pose estimation [16, 37].
Similar work to ours falls in the domain of active image un-
derstanding, in the subsequent subsection we provide a brief
literature survey of the constituent modules of our model.

Image Reconstruction: Conditional image reconstruc-

tion based on partially observed image can be done either
as an inpainting [31, 42] or outpainting task [24, 32, 35].
While the amount of context available for inpainting is usu-
ally high, outpainting receives a partial view of the image
as context. Jayaraman et al. [24] propose a view grid re-
construction as a pretext task to learn the 3D visual repre-
sentation of a 2D view of the object. Ramakrishnan et al.
[32] introduces an action policy learning strategy to select
a sequence of view grids to reconstruct the whole scene.
Our work is in the same line as [32], where we sequen-
tially select glimpses to reconstruct the whole scene, with
the difference in the way we learn to select views. Sim-
ilar to our work, [32] employs the full image to help the
training. However, different views of the view-grids in [32]
may have different FOV depending on their location in the
gird. In this work, we fix the size of the glimpses and con-
sequently scene coverage to always be the same. Besides,
[32] reduces the search space for the reinforcement learn-
ing training scheme by restricting the agent to always select
from the neighbouring glimpses while our agent can change
its viewing direction to anywhere in the scene. The clos-
est to our work is [35], which performs an attention-based
view selection. The attention policy proposed by [35] learns
to predict the image region with the highest reconstruction
loss and thereby requires the loss value to be trained. The
self-attention module of our proposed model uses gradients
received from the next layer to train. Therefore, each layer
of self-attention learns to attend the image regions specific
to the downstream task.

Semantic segmentation: Conventional segmentation
methods like FCN [28], U-net [33], Segnet [4] and Deeplab
[9] have been successful for segmenting natural scenes and
biomedical imaging, however, they cannot be used in en-
vironments with limited FOV where full observation of the
environment is impossible.

Recent works aim to actively sample parts of the scene
to provide segmentation masks, like [21], which iteratively
predicts an object and context boxes pairs to predict the seg-
mentation mask around the object. However, it requires the
initial location of the target object as an input. Chai et al.
[8] uses an attention mechanism to guide the view selection

16138



256 Channels 16 Channels

Inpaint Features(Fully Connected)
Raw Features

Bottleneck
Attention HeatmapSelf-A

ttention

(Fully Connected)

Multiply Bottleneck Weighted
Features

Take the highest
For Next Loc

U
psam

ple

Concatenate and Merge
(Conv) Inpaint Features(Conv) Raw Features

Level 3 
Attention Heatmap 

Self-A
ttention

(Conv) Multiply
Level 3 Weighted

FeaturesLevel 3 Memory

Extraction
Module

Reduce Channels
(Conv)

Glimpse

Memory Module

Bottleneck Memory Compressed Memory

Self-Attention Layer

Self-Attention Layer

Figure 3. First two levels of the self-attention stream’s decoder.

policy to segment an object in the video stream. While we
also use attention to guide the glimpse selection, we show
the segmentation of multiple objects in the scene. We also
evaluated our model on a more diverse set of datasets than
these two previous works.

The most similar work to ours is [36] which trains an at-
tention mechanism by weighting the segmentation loss with
an uncertainty map derived from the internal state of the
network. Our method takes inspiration of using uncertainty
maps, however, our attention mechanism is trained implic-
itly and does not directly rely on predicting the task-specific
loss. The weights of this attention module are rather trained
by the gradients coming from the successive layers. This
allows the self-attention module to learn a different policy
for each specific downstream task, without requiring an ar-
chitectural change in the module itself, thereby making the
module task-agnostic.

Image classification: Pioneering work in classification
using active vision recurrent attention model (RAM) [29]
shows classification on cluttered MNIST dataset by learn-
ing a view selection policy. DRAM [2] learns a deep RAM
to show detection and classification of multi-digit MNIST
dataset. Unlike these methods, we show classification on
a challenging natural scene dataset. Our model also uses a
spatial memory bank similar to [35, 8] to maintain a more
expressive representation of the scene than the latent rep-
resentation of a recurrent neural network [29, 2], yet being
more memory intensive.

Attention mechanism: Learning attention and saliency
by optimization for specific tasks has shown significant im-
provements for both vision [41, 15] and language tasks
[40, 14] over the non-attention counterparts. Our proposed
self-attention module resembles the multiplicative attention
proposed in Transformer model [40] and ViT [15]. How-
ever, for each layer, our self-attention module does not rely
on an explicit query, but rather the attention is directly com-
puted by processing the input features to that layer.

Contrastive learning: Hadsell et al. [20] learns a repre-
sentation by minimizing the distance between the positive
pairs and maximizing it between negative pairs. Recently,
a whole domain of self-supervised representation learning
[3, 22, 11, 19, 12] has adapted this contrastive learning for-
mulation, by considering each instance as a separate class,

to learn image features in the absence of ground truth labels.
In this paper, we use a similar loss formulation as [19, 12],
to minimize the distance between positive pairs in the rep-
resentation space. As we will see in the experiment section,
this specifically improves reconstruction quality.

3. Method
Our architecture consists of four main components. The

‘Extraction Module’ encodes the features for each attended
glimpse and the full image. The ‘Memory Module’ gathers
the features for all visited glimpses in spatial memory maps.
The ‘Self-Attention Stream’ employs self-attention layers
to guide the exploration and to reason about the scene. The
‘Contrastive Stream’ predicts the features for the full im-
age given the partial observations. The task at hand (image
reconstruction, semantic segmentation etc) is solved based
on the outputs of the self-attention and contrastive streams.
Finally, the locations to attend at each step is determined
by the inner state of the self-attention module in that step.
Figure 2 provides an overview of our method.

3.1. Extraction Module
Following the architecture proposed in [36] the ex-

traction module receives a “Retina-like glimpse”. Such
glimpses help saving the pixel-budget and processing power
by scaling down on the areas that are located further from
their center.

We use the first four layers of a (pretrained) Resnet-18
[23] network to encode each retina-glimpse. Besides, only
during training time, we use the same encoder to extract the
full image features FI (with I denoting the input image).
Note that the network’s weights are frozen when extracting
features for the full image (Figure 2) and the gradients flow
through this module only with glimpses.

3.2. Memory Module
Inspired by [36] we employ spatial memory maps to

keep the extracted features for the glimpses visited up to the
current time step. In particular, our memory module main-
tains 4 different matrices, one for each encoder level in the
extraction module. We denote these matrices as ‘Level 1’,
‘Level 2’, ‘Level 3’ (intermediate memories) and ‘Bottle-
neck’ memory. Assuming that the full scene is an image
of size N × M × 3, Level 1 memory would be a matrix
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of size N
2 ×

M
2 × 64 and Bottleneck memory would have

the size N
16 ×

M
16 × 256. (Level 2: N

4 ×
M
4 × 64, Level 3:

N
8 ×

M
8 × 128).

After visiting a glimpse in the scene, the extracted fea-
tures are stored in the corresponding location in these matri-
ces. In case of overlap between two glimpses, these memo-
ries are updated with the features of the newest glimpse in
the overlapping area. Note that if the agent visits all possi-
ble non-overlapping glimpses in the image, these matrices
would contain the extracted features for the whole scene.
However, since the number of glimpses is limited, these ma-
trices in practice remain partially empty.

The contrastive and self-attention streams work on top
of these partially filled matrices to fill-in the unvisited areas
and build a representation for the whole scene.

3.3. Contrastive Stream
The purpose for this module is to predict full image fea-

tures FI given only partial observations of the image I .
Note that FI consists of 4 feature matrices corresponding
to 4 encoder levels. We define a decoder symmetrical to
the extraction module to create a U-net shaped architecture
for the contrastive stream. While the extraction module en-
codes the features for each glimpse separately from the oth-
ers, the contrastive stream operates on top of the ‘bottleneck
memory’ which contain the features for all glimpses visited
until the current timestep. The features in the ‘intermediate’
memories are used as skip connections to ease the gradient
flow of the encoder/decoder architecture (See supplemen-
tary material for the detailed architecture).

We denote the predicted features after visiting all
glimpses as FC and its corresponding loss by LFc . LFc is
calculated as the negative cosine distance between FI and
FC , equation 1. Note that LFc

summarises four loss terms
for each encoder/decoder level. Minimizing this loss would
train the network to assign similar representation to scenes
with similar structure.

Besides, we denote the output of this module at each step
as OC(t) and its corresponding loss as LC(t). Depending on
the task at hand LC(t) could be a L2 loss for reconstruction
or cross-entropy loss for segmentation task.

LFc
= − FC

‖FC‖
· stopgrad(FI)

‖stopgrad(FI)‖
(1)

Note that our method is different from the contrastive
learning framework introduced in [11] as we do not provide
negative examples for the contrastive stream. We follow the
method in [12] where stopping the gradient on target im-
age’s features (FI ) eliminates the need for large batches and
negative examples. As we will see in the experiments part,
particularly in our settings where the goal is to hallucinate
the unseen parts of the scene, it is better not to provide neg-
ative examples for the contrastive stream. This is due to the

fact that two semantically different scenes might share fea-
tures for large parts of their environment such as sky/walls
for indoor/outdoor scenes. Therefore, pulling the features
away for those scenes may not be suitable for learning the
representations for a task such as reconstruction.

Figure 4. Self-attention module: Using an additional filter in the
convolution layer, we predict an extra channel (attention map)
along with the feature map (raw features). We apply ReLU ac-
tivation [30] on this attention map to make it non-negative. This
attention map is then used as weight and multiplied to the raw fea-
ture maps to get attended feature maps. These attended feature
maps are then passed to the next layer as input.

3.4. Self-Attention Stream
The self-attention stream, figure 3, has a similar archi-

tecture to the contrastive stream. However, at each de-
coder level it predicts an extra uncertainty channel (atten-
tion heatmap). This heatmap is then multiplied by the pre-
dicted features of that decoder level (figure 4). This way,
while decoding, specific locations of the scene get a higher
weight and thus a higher importance for solving the fi-
nal task. Therefore, the heatmaps generated by the self-
attention module are good indications of which regions are
the most important ones to attend.

In our experiments, we use the bottleneck attention
heatmap (figure 3) to select the location for the next
glimpse. This heatmap is generated using a fully-connected
layer which takes into account all the activations in the bot-
tleneck feature memory encoding the highest abstraction of
the input scene. Besides, each pixel in this heatmap repre-
sents the importance of a 16× 16 area in the scene. Conse-
quently, we take the next glimpse from a previously unvis-
ited area which has the highest activation in this attention
map.

Figure 3 illustrates the first two levels of the self-
attention stream’s decoder. Upsampling to the higher levels
is done in a similar way as depicted for these two levels. As
mentioned earlier, the contrastive stream follows a similar
architecture but without the attention heatmaps. We denote
the output of this module as OS(t) and its loss by LS(t).

3.5. Final task and the Network’s Architecture
Depending on the nature of the final task at hand the de-

coder part of the network can be designed differently to
work more efficiently. For a dense prediction tasks such
as image reconstruction and semantic segmentation, we
use the full decoder described for the contrastive and self-
attention streams.
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Method/Dataset Self-
attention

Contrast SUN360 [38]
(RMSE) ↓

MS-COCO
[27] (RMSE)
↓

ADE20k [43]
(mPA %) ↑

COCO-Stuff
[7] (mPA %)
↑

Ours X X 33.8 40.3 52.4 47.8
No Contrast X x 34.2 43.7 52.3 47.5
Random glimpse (SA) X X 39.4 47.8 51.5 46.0
Random glimpse (No SA) x X 38.6 48.5 52.4 47.7
Random glimpse (No SAC) x x 39.2 48.4 51.7 46.4

Table 1. Evaluation of modules: Performance comparison of different variants of our model by ablating individual modules, where SA is
Self-Attention stream, and SAC: Self-Attention stream + Contrast stream)

However, for a classification/regression task, unlike pre-
vious methods [35, 36], training of the attention mechanism
is not dependant on a dense prediction task’s loss and relies
only on the bottleneck attention heatmap (figure 3).

In this case, the self-attention and contrastive streams are
only employed at the level of bottleneck features and the
rest of the decoder for both modules as well as all the in-
termediate memories are removed from the pipeline. As we
will see in the experiments section, this makes the network
to work faster and use less GPU memory.

We denote the final output of the network at each step as
Ot and its corresponding loss as LOt

. Depending on the na-
ture of the task, LOt

can be calculated as a reconstruction,
segmentation or classification loss. Therefore, the resulting
overall loss Loverall is sum of contrastive loss, self-attention
and contrastive predictions’ losses at each step and down-
stream task loss, equation 2

Loverall = LFc
+ LC(t) + LS(t) + LO(t) (2)

4. Experiments
4.1. Dense Prediction

In this section, we compare our method against sev-
eral baselines for reconstruction and segmentation. We
evaluated our method on SUN360 [38] and MS-COCO
[27] datasets for reconstruction and ADE20k [43] and
COCO-Stuff [7] for the segmentation task. We use Root-
Mean-Squared-Error (RMSE) and mean pixelwise accuracy
(mPA) to measure reconstruction and segmentation accu-
racy respectively and report the lowest RMSE and highest
mPA for each experiment.

Table 1 summarises our results on baselines that are
trained using a variation of our method. These baselines
help evaluation of each one of the modules in our network
architecture independently. For all experiments in this table,
we used 8 retina-like glimpses.

With No Contrast architecture, where we drop the con-
trastive loss, we observe a decrease in performance for re-
construction with a minimal decrement in performance on
the segmentation task. This difference can be explained by
how the contrastive loss is formulated in our architecture.

For both reconstruction and segmentation tasks, the dis-
tance between the decoded representation from the layers in
the contrastive stream and encoded representation from the
corresponding layers in the ground truth stream in the U-Net
architecture is minimized. This pushes the network to learn
low-level features, which facilitates the reconstruction task.
Whereas segmentation requires learning high-level features,
to predict the class labels. Hence there is a minimal contri-
bution of contrastive loss.

Using an additional full image segmentation decoder in
the ground truth stream and minimizing the distance be-
tween its representation and that of corresponding layers in
the contrastive stream may improve the performance. Al-
though, this will make the ground truth stream twice as big.
Hence to maintain the architectural consistency we keep this
out of the scope of this work.

Random glimpse (SA) baseline keeps the network ar-
chitecture intact while the selection of glimpses is made
randomly instead of choosing the maximal value in the
attention heatmap. This results in significant decrements
in both reconstruction and segmentation performance com-
pared to our model, proving the significance of attention-
based glimpse selection. In the Random glimpse (No SA),
the glimpse is selected randomly, and the self-attention
module is replaced by a convolutional layer with an extra
channel to maintain the total number of parameters in that
layer. We observe that adding an extra-feature channel re-
sults in performance close to Random glimpse (SA) with
a minor decrement in RMSE value on SUN360 and mi-
nor increment in that of MS-COCO. We also observe that
segmentation performance improves for both datasets com-
pared to Random glimpse (SA) close to that of our (full)
model. The reason being more number of parameters in the
next layer as a consequence of more number of input chan-
nels to that layer. Finally, we evaluate Random glimpse
(No SAC), where we randomly select glimpses, use extra
channel instead of attention maps, and drop the contrastive
stream. We observe a decrease in performance compared
to Random glimpse (No SA), with a minimal decrement
in RMSE value for the MS-COCO dataset. Overall, we
can conclude that the attention-based glimpse selection per-
forms better than random glimpse selection, and contrastive
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stream results in better reconstruction performance.

Dataset/Method Ours Attend and Segment
[36]

Sun360 [38] (RMSE) 33.8 37.6
MS-COCO [27] (RMSE) 40.3 41.8
ADE20k [43] (mPA) 0.524 0.479
COCO-Stuff [7] (mPA) 0.478 0.456
KITTI [17] (mPA) 0.806 0.805
Cityscapes [13] (mPA) 0.748 0.762
CamVid [6] (mPA) 0.823 0.832

Table 2. Active visual dense prediction: Comparison of our
model against Attend and Segment model [36] on reconstruction
and segmentation tasks, using root mean square error (RMSE) and
mean pixel accuracy (mPA) evaluation metrics respectively.

4.2. Comparison with Baseline
Here we compare our model against the closest related

work, the Attend and Segment model [36], for both recon-
struction and segmentation tasks. It should be noted that
the proposed model in [36] is only evaluated for semantic
segmentation, however for a wider evaluation, we train it
on reconstruction task as well. Attend-and-Segment out-
performs the previous reconstruction models (37.6 vs 39.0
[32] and 38.8 [25] RMSE) thus being the most competitive
baseline to our work. For a fair comparison, we keep the
number of parameters for both our model and Attend and
Segment the same. From table 2, it can be observed that
our model achieves lower RMSE values than [36] on both
SUN360 and MS-COCO dataset.

For the segmentation task our model achieves a better
mPA on ADE20k and COCO-Stuff while having similar
performance on KITTI [17], Cityscapes [13] and CamVid
[6] datasets.

To analyze this further, we computed the mean and mode
of the ground truth labels of the samples from these four
datasets (figure 5). We found that KITTI, Citiscapes, and
CamVid show high homogeneity of the samples, with most
of the images having a similar spatial arrangement of ob-
jects across the dataset. As shown by mode images in the
figure 5, most frequent labels are close to the mean of the
images which implies less diversity between the samples
(i.e high dataset bias). On the other hand, we find that the
mode image of ADE20k is the least similar to its mean im-
age, as ADE20k is a more diverse dataset consisting of both
indoor and outdoor scenes. We also compute the attention
map of both methods on randomly selected images from
Cityscapes. Figure 6 depicts that [36] attention is largely
concentrated around one region, while our self-attention
module attends to a larger region in the image. Therefore,
while our attention mechanism captures the bias in datasets
with less diversity (darker areas in the figure) it performs

Figure 5. Dataset bias: (Left) represents the mode i.e. the most
frequent labels and (right) represents the mean value of the ground
truth labels. Mean and mode are computed for all the samples in
the training set, except on Cityscapes dataset [13], where a ran-
dom set of 100 training samples are chosen. A mean image closer
to mode represents homogeneity in the dataset, i.e., spatial bias
in labels. ADE20k consisting of both indoor and outdoor scenes
shows the least dataset bias. (More results on dataset bias can be
found in supplementary).

Input Attend and Segment's
Heatmap

Our method's 
Heatmap

Figure 6. Comparison of the heatmaps generated by Attend and
Segment and our method on Cityscapes dataset. Most images on
this dataset consist of scenes with a road in front. Consequently,
those areas are assigned less importance in the attention maps for
both methods (i.e capturing dataset bias). Note that Attend and
Segment’s attention map looks smoother since it is generated in a
higher resolution.

better than [36] on datasets like ADE20k which consists of
various scenes and less dataset bias.

Method Classification Accuracy
(%)

Ours (Full) 56.4
Ours (Full+Random) 49.6
Ours (No Decoder) 67.2
Ours (No Decoder+Random) 62.6
Attend and Segment [36] 52.6

Table 3. Active visual classification: Comparison of classification
performance on SUN360 dataset.

4.3. Classification
To show the task adaptability, we evaluate our model on a

26-category classification task on SUN360 dataset, table 3.
We compare our full model with Attend and Segment. To be
consistent with the latter model, we set reconstruction as the
auxiliary task, keep all the losses and add a separate clas-
sification head on the bottleneck features for both models.
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Method Train(s) Test(s) GPU(GB)
Attend and Segment 474 45 5.5
Ours (No Decoder) 213 20 0.4

Table 4. Comparison of Training/Test time and GPU memory us-
age (batch size: 6) for the classification task with Attend and Seg-
ment and our model without a decoder. Note that memory us-
age values are obtained with torch.cuda.max memory allocated()
function.

Figure 7. Number of Glimpse vs performance: (Left) shows
RMSE values (y-axis) for the model trained and evaluated with
different number of glimpse (x-axis) on SUN360 dataset, (right)
shows the similar trend for mPA (y-axis) with different number
glimpse (x-axis) on ADE20k dataset.
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Figure 8. Average glimpse image: Average of the final glimpse-
maps consisting of 8 glimpses over all the images of the SUN360
test set.

Under this framework, we observe an improvement of 3.8%
accuracy over Attend and Segment. In our (Full+Random)
model, we use random glimpse selection instead of rely-
ing on the self-attention module. The accuracy decreases
by 5.8%, proving that the self-attention module learns to
attend regions important for better classification.

Unlike Attend and Segment, our model does not rely on
segmentation auxiliary task for glimpse selection. Hence
we remove the reconstruction/segmentation decoder and
only train the classifier, called the No Decoder model. This
results in a major improvement in accuracy of 10.8% and
14.6% over our (full) model and Attend and segment re-
spectively. We repeat this experiment with random selec-
tion of glimpse. We observe a decrease in performance of
4.6% over the No Decoder model, reconfirming the efficacy
of our attention-based glimpse selection heuristic.

In particular our model without a decoder runs two times
faster and uses a tenth of gpu memory compared to Attend
and Segment (table 4).

4.4. Glimpse Analysis
From the previous sections, we observe that our

attention-based glimpse selection results in an overall im-

provement on both dense prediction and classification tasks.
Hence, in this section, we provide a detailed analysis of the
different properties of the glimpse.

Number of glimpses: It is a important hyperparame-
ter, decided primarily by the environment’s difficulty and
the agent’s sensory capabilities inside the environment.
Hence, studying the effect of the number of glimpses on the
model’s performance is important. While a large number
of glimpses can observe a larger region of the environment,
making the partial observability obsolete, too few glimpses
do not provide enough information to reason about the envi-
ronment. Figure 7 compares three models, our model with
attention-based glimpse selection, our model with random
glimpse, and Attend and Segment model. For the recon-
struction task on SUN360 dataset, our model’s RMSE val-
ues are consistently lower when compared against the other
two baselines. Poorest performance per number of glimpses
is observed for random glimpse selection, suggesting that
the self-attention module learns to look at uncertain regions
in the image, and glimpse selection based on this plays a
critical role in improving the performance.

For the segmentation task on ADE20k, the mPA is con-
sistently higher with four or more glimpses for our model,
representing a better segmentation performance against the
baselines. For number of glimpses less than four, we
find the performance of both attention-based and random
glimpse selection to be better than Attend and Segment
baseline.

Average Glimpse Image: At each step, a glimpse is
selected as the maximally activated region in the atten-
tion map. The underlying assumption being that region
with maximum activation contributes most to the loss, and
thereby attending to it decreases the loss and ambiguity
in the reconstructed image. To investigate any pattern in
the glimpse selection, we compute the average of the fi-
nal glimpse-maps for all the images in the SUN360 test
set trained for the reconstruction task. We observe that
the top and bottom left corners are the most attended re-
gions, shown by the brightest regions in the figure 8. As
the SUN360 dataset consists of 360°view of either indoor
or outdoor scenes, the network learns to look at these cor-
ners to reason about the general environment being indoor
or outdoor. The model then uses the attended region to start
painting sky or ground. It can also be seen from figure 9,
from step 2 to 3, when the model attends the right corner in
step 3, the ambiguity corresponding to all the sky regions
from step 2 is cleared. Since the images are 360°views,
the model learns to reason about right corner by looking at
the left corner (more examples in supplementary material).
Rest of the regions receives attention based on the image
content shown by uniformly bright regions in the average
glimpse image.

Effect of glimpse initialization: An image consists of
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Figure 9. Active visual reconstruction: Step-by-step attended-glimpse based reconstruction of a natural scene (row 1) shows the ground
truth image, (row 2) shows the reconstructed image at each step, (row 3) shows the attention heatmap of the last layer of the self-attention
stream, (row 4) shows the input glimpse locations at each step.

specific spatial saliencies, and its reconstruction depends on
attending those salient regions which are most ambiguous
to reconstruct. Hence, a network that learns to attend for
image reconstruction should attend those same regions ir-
respective of the first glimpse initialization. To verify this,
we randomly initialize the first glimpse on images and ob-
serve the rest of the glimpses for those images. As shown
in figure 10, irrespective of the significant difference in spa-
tial placement of the first glimpse across different runs, the
final placement of glimpses shows high agreement. The
high agreement of glimpses across the runs verifies that our
model learns to attend to salient regions in the image.

Figure 10. Effect of glimpse initialization: The first row shows
the ground truth images randomly chosen from the SUN360
dataset, row 2-5 shows randomly chosen first glimpse location and
the final set of attended glimpse location for four different runs.

4.5. Recurrent Glimpse Selection
As our final results, we show the step-by-step glimpse

selection and reconstruction results of our method in figure
9. The glimpse mask added at each step in the bottom rows
denote the visited location for that step. The attention map
in the 3rd row shows that the areas corresponding to the
glimpse gets darker. These low attention values in that re-
gion are due to reduction in uncertainty after processing the
glimpse. Based on the new information from the glimpse

the decoder module improves the image reconstruction in
each step. This iterative process of glimpse selection, re-
duces the uncertainty in each step to generate the final re-
constructed image.

5. Conclusion
We proposed an attention-based active vision model that

learns to attend the salient regions in the image based on
the downstream task. By disentangling the attention policy
from the loss formulation and replacing it with our proposed
self-attention module, we show that our architecture can be
adapted to multiple tasks. We evaluate our model on re-
construction, segmentation, and classification on a diverse
set of datasets and show a significant improvement in per-
formance over the baseline model. Ablation study on indi-
vidual modules of our model provided us with more insight
about our performance gains. While contrastive stream re-
sulted in a significant improvement for the reconstruction
task, glimpse selection based on our self-attention mod-
ule resulted in higher performance over randomly selected
glimpses on all the tasks. The convergence of glimpse to
similar image regions for different glimpse initialization
suggests our model learns to attend to the salient regions
in the scene. Lastly, we show how attending to the selected
glimpses results in reduced uncertainty in the attention map,
resulting in refinement of the image reconstruction at each
step.

Finally, our results encourage further study on different
aspect of this model. In particular, the memory module
and the recurrent nature of the problem make it memory
intensive. Reducing the memory needs of the architecture
by means of representation learning is one future direction.
Further study on contrastive loss for segmentation task is
another interesting direction for the future research.
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