This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

BuildingNet: Learning to Label 3D Buildings

Mohamed Nabail®
Andreas Andreou?

Pratheba Selvaraju’
Melinos Averkiou?
'UMass Ambherst

M oof Mchimney ~ Mlgarage Mwall M tamp

human annotations

Siddhartha Chaudhuri?
2University of Cyprus / CYENS CoE Cyprus

Maria Maslioukova?
Evangelos Kalogerakis®
3 Adobe Research / IIT Bombay

Marios Loizou?

[| dome tower | unlabeled

predictions

M path [| wiildow

[| éeiling
Figure 1: We introduce a dataset of 3D building meshes with annotated exteriors (top). We also present a graph neural net-
work that processes building meshes and labels them by encoding structural and spatial relations between mesh components
(bottom). Our dataset also includes a point cloud track (blue box). Examples of erroneous network outputs are in red text.

[| coluiﬂn

Abstract

We introduce BuildingNet: (a) a large-scale dataset of
3D building models whose exteriors are consistently la-
beled, and (b) a graph neural network that labels build-
ing meshes by analyzing spatial and structural relations of
their geometric primitives. To create our dataset, we used
crowdsourcing combined with expert guidance, resulting in
513K annotated mesh primitives, grouped into 292K se-
mantic part components across 2K building models. The
dataset covers several building categories, such as houses,
churches, skyscrapers, town halls, libraries, and castles. We
include a benchmark for evaluating mesh and point cloud
labeling. Buildings have more challenging structural com-
plexity compared to objects in existing benchmarks (e.g.,
ShapeNet, PartNet), thus, we hope that our dataset can nur-
ture the development of algorithms that are able to cope
with such large-scale geometric data for both vision and
graphics tasks e.g., 3D semantic segmentation, part-based
generative models, correspondences, texturing, and anal-
ysis of point cloud data acquired from real-world build-
ings. Finally, we show that our mesh-based graph neu-
ral network significantly improves performance over sev-
eral baselines for labeling 3D meshes. Our project page
www.buildingnet.orqg includes our dataset and code.

plaht/tree M ground

M stairs

M feince .d(;or

1. Introduction

Architecture is a significant application area of 3D vi-
sion. There is a rich body of research on autonomous per-
ception of buildings, led in large part by digital map devel-
opers seeking rich annotations and 3D viewing capabilities
for building exteriors [14], as well as roboticists who design
robots to operate in building interiors (e.g. [45]). Recent
advances in AR/VR also rely on computer-aided building
analysis [6]. Early work on digital techniques for architec-
tural design, including freeform design explorations as well
as full-fledged constructions [1 5], led to the current ubiquity
of computational design tools in architectural studios. In ad-
dition, computers can automate the processing of architec-
tural data such as photographs, satellite images and building
plans, for archival and analytical purposes (e.g. [62, 32]).

Thus, there is significant incentive to apply modern data-
driven geometry processing to the analysis of buildings.
However, while buildings are bona fide geometric object-
s with well-established design principles and clear ontolo-
gies, their structural and stylistic complexity is typically
greater than, or at least markedly different from, those of
shapes in common 3D datasets like ShapeNet [5] and S-

10397

canNet [10]. This makes them challenging for standard
shape analysis pipelines, both for discriminative tasks such
as classification, segmentation and point correspondences,
as well as for generative tasks like synthesis and style trans-
fer. Further, data-driven methods demand data, and to the
best of our knowledge there are no large-scale, consistently-
annotated, public datasets of 3D building models.

In this paper, we present BuildingNet, the first publicly
available large-scale dataset of annotated 3D building mod-
els whose exteriors and surroundings are consistently la-
beled. The dataset provides 513K annotated mesh prim-
itives across 2K building models. We include a bench-
mark for mesh and point cloud labeling, and evaluate sever-
al mesh and point cloud labeling networks. These methods
were developed primarily for smaller single objects or inte-
rior scenes and are less successful on architectural data.

In addition, we introduce a graph neural network (GNN)
that labels building meshes by analyzing spatial and struc-
tural relations of their geometric primitives. Our GNN treat-
s each subgroup as a node, and takes advantage of relations,
such as adjacency and containment, between pairs of nodes.
Neural message passing in the graph yields the final mesh
labeling. Our experiments show that this approach yields
significantly better results for 3D building data than prior
methods. To summarize, our contributions are:

e The first large-scale, publicly available 3D building
dataset with annotated parts covering several common
categories, in addition to a benchmark.

e A graph neural network that leverages pre-existing
noisy subgroups in mesh files to achieve state-of-the-
art results in labeling building meshes.

e An annotation interface and crowdsourcing pipeline
for collecting labeled parts of 3D meshes, which could
also extend to other categories of 3D data.

2. Related Work

3D shape semantic segmentation datasets. Existing
datasets and benchmarks for 3D shape semantic segmen-
tation are limited to objects with relatively simple structure
and small number of parts [7, 21, 18, 58, 36, 61]. The earli-
est such benchmark [7, 2 1] had 380 objects with few labeled
parts per shape. More recently, Uy et al. [52] released a
benchmark with 15K scanned objects but focuses on object
classification, with part-level segmentations provided only
for chairs. The most recent and largest semantic shape seg-
mentation benchmark of PartNet [01] contains 27K object-
s in 24 categories, such as furniture, tools, and household
items. However, even with PartNet’s fine-grained segmen-
tation, its categories still have a few tens of labeled part-
s on average. Our paper introduces a dataset for part la-
beling of 3D buildings, pushing semantic segmentation to
much larger-scale objects with more challenging structure
and several tens to hundreds of parts per shape.

3D indoor scene datasets. Another related line of work
has introduced datasets with object-level annotations in
real-world or synthetic 3D indoor environments [19, 1, 39,
, 4, 10, 28, 63, 13]. In contrast, our dataset focuses on
building exteriors, a rather under-investigated domain with
its own challenges. While an indoor scene is made of ob-
jects, which are often well-separated or have little contact
with each other (excluding floors/walls), a building exte-
rior is more like a coherent assembly of parts (windows,
doors, roofs) i.e., a single large shape with multiple connect-
ed parts, including surroundings (e.g., landscape). Build-
ing exteriors share challenges of single-shape segmentation
(i.e., segment parts with clean boundaries along contact ar-
eas) as well as scene segmentation (i.e., deal with the large-
scale nature of 3D data). Buildings also come in a variety
of sizes, part geometry and style [31], making this domain
challenging for both shape analysis and synthesis.

3D urban datasets. With the explosion of autonomous
driving applications, large-scale 3D point cloud datasets
capturing urban environments have appeared [38, 16, 43,

, 48]. These datasets include labels such as roads, vehi-
cles, and sidewalks. Buildings are labeled as a single, whole
object. Our dataset contains annotations of building parts,
which has its own challenges, as discussed above. The Rue-
Monge14 dataset contains 3D building frontal facades cap-
tured from a street in Paris with 8 labels related to buildings
[42]. Our buildings are instead complete 3D models with
significantly more challenging diversity in geometry, style,
function, and with more fine-grained part labels.

Deep nets for 3D mesh understanding. A few recen-
t neural architectures have been proposed for processing
meshes. Some network directly operate on the mesh ge-
ometric or topological features [33, 17, 26, 44], spectral
domain [3, 37, 60, 41], while others transfer representations
learned by other networks operating, e.g., on mesh views or
voxels [20, 55, 25]. Our method is complementary to these
approaches. It is specifically designed to process mesh-
es with pre-existing structure in the form of mesh compo-
nents (groups of triangles), which are particularly common
in 3D building models. CRFs and various grouping strate-
gies with heuristic criteria have been proposed to aggregate
such components into labeled parts [55]. Our method in-
stead uses a GNN to label components by encoding spa-
tial and structural relations between them in an end-to-end
manner. From this aspect, our method is also related to ap-
proaches that place objects in indoor scenes using GNN's
operating on bounding box object representations with sim-
ple spatial relations, [64, 53], and GNN approaches for in-
door scene parsing based on graphs defined over point clus-
ters [27]. Our GNN instead aims to label mesh components
represented by rich geometric features, and captures spatial
and structural relations specific to building exteriors.

10398

= Rotate building: Leftclick & Crag = No more parts with this label: Next-> button

= Pan:Altkey : Leftclick & Drag = Goto previous labels: <<Previous buttan

= Zoom:'s key+ Left click & Drag # Mouse wheel / Finger swipe = View all labels:View all Labels button

= Assign Label:Right click part * enter key = Select/Unselect multiple parts: ctrl * right click
= Delete Label: Rightclick part * delete key

Select all CORMER compenents, then press enter

If you do not know what a dormer is. click here for help
«Previous | Next»

balcony
ceiling
chimney

column

Help! see tutorial video and instructions

door
dormer
floor

garage
ground/grass

parapet
plant/tree
roof
wall

window

Figure 2: Our interface for labeling 3D building models. The colors of annotated components follow the legend in the middle
(we show here a subset of labels - the UI contained 16 more labels in a more extended layout). Any components that have not
been labeled so far are shown in shades of light yellow/green (e.g., balcony components). The UI displays instructions on top
and offers functionality to facilitate labeling, such as automatic detection of repeated components (“find similar”), automatic
grouping/un-grouping of components (“expand”/“shrink™), and auto-focusing on unlabeled ones (“find unlabeled parts”).

3D Building Mesh Segmentation and Labeling. There
has been relatively little work in this area. Early approach-
es for semantic segmentation of buildings relied on shallow
pipelines with hand-engineered point descriptors and rules
[49, 50]. A combinatorial algorithm that groups faces into
non-labeled components spanning the mesh with high rep-
etition was proposed in [11]. A user-assisted segmentation
algorithm was proposed in [12]. Symmetry has been pro-
posed as a useful cue to group architectural components
[24, 35]. Our method instead aims to label 3D building
meshes with a learning-based approach based on modern
deep backbones for extracting point descriptors. It also in-
corporates repetitions as a cue for consistent labeling, along
with several other geometric and structural cues.

3. Building Data Annotation

We first discuss the procedure we followed to annotate
3D building models. In contrast to 3D models of small and
mid-scale objects, such as tools, furniture, and vehicles en-
countered in existing 3D shape segmentation benchmark-
s, such as ShapeNet [58, 59] and PartNet [36], buildings
tend to contain much richer structure, as indicated by their
mesh metadata. For example, one common type of metadata
are groupings of polygon faces, commonly known as mesh
subgroups [36], which correspond to geometric primitives
and modeling operations used by modelers while designing
shapes. These subgroups often correspond to “pieces” of
semantic parts e.g., a window is made of subgroups repre-
senting individual horizontal and vertical frame pieces or
glass parts. The average number of mesh subgroups per ob-
ject at the last level of group hierarchy in the largest shape
segmentation benchmark (PartNet [36]) is 24.4, and the me-

dian is 11. In our dataset, the average number of mesh sub-
groups per building is 25.5x larger (623.6 subgroups), while
the median is 44x larger (497.5 subgroups). We note that
these numbers include only building exteriors i.e., without
considering building interiors (e.g, indoor furniture). Part-
Net relied on mesh subgroups for faster annotation i.e., the
annotators were manually clicking and grouping them in-
to parts. Selecting each individual mesh subgroup in our
case would be too laborious in the case of a large-scale 3D
building dataset. To this end, we developed a user interface
(UI) that followed the PartNet’s principles of well-defined
and consistent labelings, yet its primary focus was to deal
with the annotation of a massive number of mesh subgroup-
s per building. In particular, our UI offers annotators the
option of label propagation to similar subgroups based on
both geometric and mesh metadata to enable faster label-
ing. Another focus was to achieve consensus across several
trained crowdworkers annotating in parallel. To this end, we
employed a majority voting process. We focused on crowd-
sourcing annotations for common part labels encountered
in buildings. In the rest of this section, we describe our user
interface (UI) for interactive labeling of 3D buildings (Sec-
tion 3.1), and the dataset collection process (Section 3.2).

3.1. Interface for labeling

Our interface is shown in Figure 2. On the left win-
dow, we display the building with a distinct color assigned
to each mesh subgroup. When a subgroup is annotated, it
changes color from the default palette (shades of light green
and yellow) to a predetermined, different color according to
its label. On the right, we display the textured version of the
building so that crowdworkers also access color cues useful

10399

for labeling. The workers have full 3D control of viewpoint
(pan, zoom, rotate). Changes on the viewpoint are reflected
in both windows. On the top of the interface, we provide in-
structions and links with examples of parts from real-world
buildings for each label. The workers are asked to label
the mesh subgroups through a sequence of questions e.g.,
“label all walls”, then “label all windows”, and so on. Al-
ternatively, they can skip the questions, and directly select
a desired part label from the list appearing in the middle
of the UL To perform an assignment of a currently select-
ed label to a mesh subgroup, the workers simply right-click
on it and press enter. Alternatively, they can select multi-
ple subgroups and annotate them altogether. All adjacent
subgroups with the same label are automatically merged in-
to a single labeled component to decrease the workload of
manual merging. We note that we considered the possibility
of incorporating mesh cutting tools to split large subgroup-
s into smaller ones for assigning different labels, as done
in PartNet [36]. However, such tools require reconstruc-
tion into watertight meshes, which could not be achieved
for most building subgroups due to their non-manifold ge-
ometry, disconnected or overlapping faces, and open mesh
boundaries. For the majority of buildings in our dataset, we
observed that each subgroup can be assigned with a single
part label without requiring further splits. Annotators were
also instructed not to label any (rare) subgroups that con-
tained parts with different labels.

Clicking individual
mesh subgroups for as-
signing part labels can be
still cumbersome, since
buildings have hundreds
or thousands of them.
Our Ul takes advantage [DEN\ S B
of the fact that buildings :
often have repeated mesh
subgroups e.g., the same
window mesh is re-used
multiple times in a facade

during. 3D modelipg. Figure 3: Label propagation
Thus, in a Pre-processing - o repeated subgroups (fop) or
step, we found all dupli- their parents (bottom). Initially

cate mesh subgroups by gelected subgroup is in white.
checking if they have the

same mesh connectivity (mesh graph) and vertex locations
match after factoring out rigid transformations. Details
about duplicate detection are provided in the supplementary
material. Workers are then given the option to select all
subgroup duplicates and propagate the same label to all
of them at once, as shown in Figure 3(top). Another UI
feature was to allow users to “expand” a mesh subgroup
selection by taking advantage of any hierarchical grouping
metadata. This expansion was performed by iteratively

== / hierarchy-
based
~__| propagation

Table 1: Statistics per building category. From left to
right: building category, total number of models, av-
erage/median/minimum/maximum number of mesh sub-
groups per model, average number of unique subgroups.

num# | avg# | med# | min# | max# |avg# un.

Category || - dels subgrps|subgrps |subgrps|subgrps| subgrps

Residential || 1,424 | 678.7 | 547 83 1989 | 167.1
Commercial|| 153 | 7234 | 606 90 1981 | 159.8
Religious 540 | 487.0 | 348 93 1981 | 139.9
Civic 67 | 628.8 | 480 118 1822 | 1444
Castles 85 | 609.8 | 485 125 1786 | 193.0

Whole Set || 2,000 | 623.6 | 497.5 83 1989 | 160.5

moving one level up in the mesh group hierarchy and
finding all subgroups sharing the same parent with the
initially selected subgroup, as shown in Figure 3(bottom).
We refer readers to our supplementary video showing a
tutorial with details of our UI operations.

3.2. Dataset and Benchmark

To create our dataset, we mined building models from
the 3D Warehouse repository [51]. Mining was driven by
various quality checks e.g., excluding low-poly, incomplete,
untextured meshes, and meshes with no or too few sub-
groups. We also categorized them into basic classes fol-
lowing the Wikipedia’s article on “list of building type-
s” [57] and an Amazon MTurk questionnaire. Since we
aimed to gather annotations of building exteriors, during
a pre-processing step we removed interior structure from
each building. This was done by performing exhaustive
ray casting originating from mesh faces of each subgroup
and checking if the rays were blocked. We also used ray
casting to orient faces such that their normals are pointing
outwards [47]. Details about mining, classifying, and pre-
processing of the 3D models are given in our supplement.

Part labels. To determine a set of common labels required
in our Ul to annotate building exteriors, we launched an
initial user study involving a small subset of 100 buildings
across all classes and 10 participants with domain expertise
(graduate students in civil engineering and architecture).
For this study, we created a variant of our UI asking users
to explicitly type tags for mesh subgroups. We selected a
list of 31 frequently entered tags to define our label set (see
Table 2 and Appendix B of our supplement for details).

Annotation procedure. One possibility to annotate build-
ing parts would be to hire “professionals” (e.g., architect-
s). Finding tens or hundreds of such professionals would
be extremely challenging and costly in terms of time and
resources. In an early attempt to do so, we found that con-
sistency was still hard to achieve without additional verifi-
cation steps and majority voting. On the other hand, hiring
non-skilled, non-trained crowdworkers would have the dis-
advantage of gathering erroneous annotations. We instead
proceeded with a more selective approach, where we iden-

10400

tified crowdworkers after verifying their ability to conduct
the annotation task reliably based on our provided tutorial
and instructions. During our worker qualification stage, we
released our UI on MTurk accessible to any worker interest-
ed in performing the task. After a video tutorial, including
a web page presenting real-world examples of parts per la-
bel, the workers were asked to label a building randomly s-
elected from a predetermined pool of buildings with diverse
structure and part labels. We then checked their labelings,
and qualified those workers whose labeling was consistent
with our instructions. We manually verified the quality of
their annotations. Out of 2,520 participants, 342 workers
qualified. After this stage, we released our dataset only to
qualified MTurkers. We asked them to label as many parts
as they can with a tiered compensation to encourage more
labeled area (ranging from $0.5 for labeling minimum 70%
of the building area to $1.0 for labeling > 90%). Out of
the 342 qualified MTurkers, 168 accepted to perform the
task in this phase. Each qualified MTurker annotated ~60
buildings and each annotation took ~19.5min on average.

Dataset. We gathered an-
notations for 2K buildings.
Each building was annotated
by 5 different, qualified M- £
Turkers (10K annotations in
total). We accepted a label
for each subgroup if a ma-
jority of at least 3 MTurkers
out of 5 agreed on it. The
inlet figure shows a histogram displaying the distribution
of buildings (vertical axis) for different bins of percentage
of surface area labeled with achieved majority (horizontal
axis). All buildings in our dataset have labeled area more
than 50%, and most have > 80% area labeled. In terms of
annotator consistency, i.e., the percentage of times that the
subgroup label selected by a qualified MTurker agreed with
the majority, we found that it is 92.0%, indicating that the
workers were highly consistent. Our resulting 2K dataset
has 513, 087 annotated mesh subgroups, and 291, 998 an-
notated components (after merging adjacent subgroups with
the same label). The number of unique annotated subgroups
and components are 111,832 and 86, 492 respectively. Ta-
ble 1 presents subgroup statistics for each basic building
category. Table 2 shows labeled component statistics per
part label. We include more statistics in the supplement.

50-60% 60-70% 70-80% 80-90% 90-100%
% of majority-labeled area

Splits. We split our dataset into 1600 buildings for train-
ing, 200 for validation, 200 for testing (80/10/10% propor-
tion). The dataset has no duplicate buildings. We created
the splits such that (a) the distribution of building classes
and parts is similar across the splits (Table 2 and supple-
mentary) and (b) test buildings have high majority-labeled
area (> 85%) i.e., more complete labelings for evaluation.

Table 2: Number of labeled components per part label in
our dataset, along with their number and frequency in the
training split, hold-out validation, and test split.

Label # labeled # in training |# in validation #1in test
comp. split (%) split (%) split (%)
Window|140,972109,218 (47.8%)[15,740 (55.1%)16,014 (46.0%)
Plant | 26,735 | 20,974 (9.2%) | 1,870 (6.5%) | 3,891 (11.2%)
Wall | 22,814 | 18,468 (8.1%) | 2,270 (7.9%) | 2,076 (6.0%)
Roof | 12,881 | 10,342 (4.5%) | 1,396 (4.9%) | 1,143 (3.3%)
Banister| 13,954 | 9,678 (4.2%) | 1,467 (5.1%) | 2,809 (8.1%)
Vehicle | 8,491 | 7,421 3.2%) | 716 (2.5%) | 354 (1.0%)
Door | 9,417 | 7,363 (3.2%) | 785 (2.7%) | 1,269 (3.6%)
Fence | 5,932 | 5,637 (2.5%) 88 (0.3%) 207 (0.6%)
Furniture 6,282 | 5,000 (2.2%) | 575(2.0%) | 707 (2.0%)
Column| 6,394 | 4,870 (2.1%) | 623 (2.2%) | 901 (2.6%)
Beam | 6,391 | 4,814 (2.1%) | 437 (1.5%) | 1,140 (3.3%)
Tower | 4,478 | 3,873 (1.7%) | 286 (1.0%) | 319 (0.9%)
Stairs | 4,193 | 2,960 (1.3%) | 472 (1.7%) | 761 (2.2%)
Shutters| 2,275 | 1,908 (0.8%) 77 (0.3%) 290 (0.8%)
Ground | 2,057 | 1,572 (0.7%) | 229 (0.8%) | 256 (0.7%)
Garage | 1,984 | 1,552 (0.7%) | 182 (0.6%) | 250 (0.7%)
Parapet | 1,986 | 1,457 (0.6%) | 153 (0.5%) | 376 (1.1%)
Balcony| 1,847 | 1,442 (0.6%) | 199 (0.7%) | 206 (0.6%)
Floor | 1,670 | 1,257 (0.5%) | 205 (0.7%) | 208 (0.6%)
Buttress| 1,590 | 1,230 (0.5%) 53 (0.2%) 307 (0.9%)
Dome | 1,327 | 1,098 (0.5%) | 114 (0.4%) 115 (0.3%)
Path | 1,257 | 1,008 (0.4%) | 113 (0.4%) 136 (0.4%)
Ceiling | 1,193 903 (0.4%) 111 (0.4%) 179 (0.5%)
Chimney| 1,090 | 800 (0.4%) 103 (0.4%) 187 (0.5%)
Gate 827 737 (0.3%) 65 (0.2%) 25 (0.1%)
Lighting| 921 702 (0.3%) 51 (0.2%) 168 (0.5%)
Dormer| 798 601 (0.3%) 48 (0.2%) 149 (0.4%)
Pool 742 544 (0.2%) 78 (0.3%) 120 (0.3%)
Road 590 444 (0.2%) 55 (0.2%) 91 (0.3%)
Arch 524 393 (0.2%) 11 (0.03%) 120 (0.3%)
Awning| 386 295 (0.1%) 19 (0.1%) 72 (0.2%)
Total 291,998 228,561 28,591 34,846

Tracks. We provide two tracks in our benchmark. In the
first track, called “BuildingNet-Mesh”, algorithms can ac-
cess the mesh data, including subgroups. In this aspect,
they can take advantage of any pre-existing mesh structure
common in 3D building models. The algorithms are eval-
uated in two conditions: when the RGB texture is avail-
able, and when it is not. In the second condition, algorithms
must label the building using only geometric information.
The second track, called “BuildingNet-Points”, is designed
for large-scale point-based processing algorithms that must
deal with unstructured point cloud data without access to
mesh structure or subgroups, which is still challenging even
in the noiseless setting. To this end, for each mesh, we sam-
ple 100K points with Poisson disc sampling, to achieve a
near-uniform sampling similarly to PartNet [36]. The point
normals originate from triangles. There are also two evalu-
ation conditions: with and without RGB color for points.

4. Building GNN

We now describe a graph neural network for labeling 3D
meshes by taking advantage of pre-existing mesh structure
in the form of subgroups. The main idea of the network is

10401

to take into account spatial and structural relations between
subgroups to promote more coherent mesh labeling. The
input to our network is a 3D building mesh with subgroups
C = {¢;}}¥.,, where N is the number of subgroups, and the
output is a label per subgroup. In the next section, we de-
scribe how the graph representing a building is created, then
we discuss our GNN architecture operating on this graph.

Graph Nodes. For each 3D building model, we create a
node for each mesh subgroup. Nodes carry an initial raw
representation of the subgroup. Specifically, we first sam-
ple the mesh with 100K points (same point set used in the
“BuildingNet-Points” track), then process them through the
3D sparse convolutional architecture of Minkowski network
(MinkowskiUNet34 variant [8]). We also experimented us-
ing PointNet++ [40]. We extract per-point features from
the last layer of these nets, then perform average pooling
over the points originating from the faces of the subgroup to
extract an initial node representation. We concatenate this
representation with the 3D barycenter position of the sub-
group, its mesh surface area, and the coordinates of the op-
posite corners of its Oriented Bounding Box (OBB) so that
we capture its spatial dimensions explicitly. The combina-
tion of the above features in the resulting 41D node repre-
sentation n; yielded better performance in our experiments.

Proximity edges. Driven by the observation that nearby
subgroups tend to have the same label (e.g., adjacent pieces
of glass or frame are labeled as “window”), or related labels
(e.g., windows are often adjacent to walls), we create edges
for pairs of subgroups that capture their degree of proxim-
ity. To avoid creating an overly dense graph, which would
pose excessive memory overheads for the GNN, we creat-
ed edges for pairs of subgroups whose distance was up to
10% of the average of their OBB diagonals. Relaxing this
bound did not improve results. To avoid a hard dependency
on a single threshold, and to capture the degree of subgroup
proximity at multiple scales, we computed the percentage of
point samples of each subgroup whose distance to the other
subgroup is less than 1%, 2.5%, 5%, and 10% of the average
of their OBB diagonals. Given a pair of subgroups (¢;, ¢;),

this results in a 4D edge raw representation e(p @) , where
each entry approximates the surface area percentage of ¢;

proximal to ¢; at a different scale. Similarly, we compute a

(p)

4D representation e; for the opposite edge direction.

Support edges. Certam arrangements of labels are often
expected along the upright axis of the building e.g., the
roof is on top of walls. We create a “supporting” edge
for each subgroup found to support another subgroup, and
“supported-by” edges of opposite direction for each sub-
group found to be supported by another subgroup. The
edges are created by examining OBB spatial relations.

Specifically, as in the case of proximity edges, we compute

(ontop)

a multi-scale 4D edge raw representation e; ; measur-

L)
h.D

@),
ik

Figure 4: Architecture of the message passing layer. The
door representation (blue node) is updated from a

to a roof component (red node) and a
proximity edge (orange edge) to a window (purple node).

ing the area percentage of ¢;’s bottom OBB face lying above
the ¢;’s top OBB face for different distances 1%, 2.5%, 5%,
10% of the average of the two OBB’s heights. We also com-

pute a 4D edge raw representation e(b clow) corresponding to
the the surface area percentage of c] ’s top OBB face lying
beneath the ¢;’s bottom OBB face.
Similarity edges. Subgroups placed under a symmetric ar-
rangement often share the same label (e.g., repeated win-
dows along a facade). We create an edge per pair of sub-
groups capturing repetition. For each pair of subgroups, we
compute the bidirectional Chamfer distance between their
sample points after rigid alignment. To promote robustness
to any minor misalignment, or small geometric differences
between subgroups, we create similarity edges if the Cham-
fer distance d; ; is less than 10% of the average of their OB-
B diagonals. Increasing this bound did not improve results.
We normalize it within [0, 1], where 1.0 corresponds to the
above upper bound, and use e(sjymm) 1 —d;; as raw
similarity edge representation. We also use the same repre-
sentation for this opposite direction: eg > mm) (;y mm),
Containment edges. Driven by the observation that part-
s, such as doors or windows, are enclosed by, or contained
within other larger parts, such as walls, we create edges for
pairs of subgroups capturing their degree of containment.
For each pair of subgroups, we measure the amount of ¢;’s
volume contained within the ¢;’s OBB and also their vol-
ume Intersection over Union as a 2D edge representation

E?nmm) (and similarly for the opposite edge direction).
Network architecture. The network updates node and
edge representations at each layer inspired by neural mes-
sage passing [23]. Figure 4 shows one such layer of mes-
sage passing. Below we explain our architecture at test time.
Initialization. Given a pair of subgroups c¢; and c;, we first
concatenate their edge representations across all types:

e = {e(;m“ox) e(?]ntop) (f)]elow) eg,cjonta'm) (ezm)}

We note that some of the edge types might not be present be-
tween two subgroups based on our graph construction. The

10402

entries of our edge representations indicate degree of prox-
imity, support, containment, or similarity, and are normal-
ized between [0, 1] by definition. Zero values for an edge
representation of a particular type indicate non-existence
for this type. Each raw edge representation e; ; is initial-
ly processed by a MLP to output a learned representation
hg? = MLP(e;;w®), where w(®) are learned MLP
parameters. The initial node representation is hgo) =n;.
Node and edge updates. Each of the following layers pro-
cess the node and edge representations of the previous layer
through MLPs and mean aggregation respectively:
(+1) _ O HO KO,
h; " = MLP(h;” b}’ hi);w®)
1 1+1)
WY = —— 3 't
7 N(i 1,9
NGO 4

where w(¥) are learned MLP parameters. We use 3 layers
of node/edge updates. Finally, the last GNN layer process-
es the node representations of the third layer, and decodes
them to a probability per label using a MLP and softmax.
Details about the architecture are in the supplement.

Training loss. Since some parts are more rare than others,
as shown in Table 2, we use a weighted softmax loss to train
our network, where weights are higher for rarer parts to pro-
mote correct labeling for them (i.e., higher mean Part IoU).
For each building, the loss is L = — Zcieﬁ w; - q; log q;,
where L is the set of all annotated subgroups in the building,
q; is the ground-truth one-hot label vector for subgroup c;,
q; is its predicted label probabilities, and wy; is the weight
for the label empirically set to be the log of inverse label
frequency (i.e., a smoothed version of inverse frequency
weights similarly to [34]). We use the same loss to train
the MinkowskiNet used in our node representation: the loss
is simply applied to points instead of subgroups. We exper-
imented with other losses, such as the focal loss [29] and
the class-balanced loss [9], but we did not find significant
improvements in our dataset (see supplementary material).

Implementation details. Training of the BuildingGNN is
done through the Adam optimizer [22] with learning rate
0.0001, beta coefficients are (0.9,0.999) and weight decay
is set to 10~°. We pick the best model and hyper-parameters
based on the performance in the holdout validation split.

5. Results

We now discuss our evaluation protocol, then show qual-
itative and quantitative results for our benchmark tracks.

Evaluation protocol. Since most part classes are com-
monly encountered across different building categories
(e.g., walls, doors, windows), all evaluated methods are
trained across all five building categories (i.e., no category-
specific training). Methods must also deal with the part

class imbalance of our dataset. For evaluation in the point
cloud track (“BuildingNet-Points™), we use the metrics of
mean shape IoU and part IoU, as in PartNet [36]. We al-
so report the per-point classification accuracy. For the mesh
track (“BuildingNet-Mesh”), the same measures are applied
on triangles. However, since triangles may differ in area,
we propose the following IoU variations, where the contri-
bution of each triangle is weighted by its face area. Given
all the annotated triangles across all buildings of the test
dataset T'p, the part IoU for a label [is measured as:

_ 2erp @ (e ==UA[G ==1])
Y overy - ([ye == 1V [== 1])

where ¢, is the majority-annotated (ground-truth) label for
a triangle t € Ty, y; is the predicted label for it, and [] e-
valuates the above binary expressions. The shape IoU for a
shape s with a set of annotated triangles 7 is measured as:
1 dover, @t ([ye == NG ==1])

1oV = 10T 2 S ar (e == 0V e == 1)

IoU(1)

where L is the set of all labels present in the annotations
or predictions for that shape. We also report the per-triangle
classification accuracy weighted by face area [21].
“BuildingNet-Points” track. As an initial seed for the
leaderboard of this track, we evaluated three popular nets
able to handle our 100K point sets: PointNet++ [40], MID-
FC [54], and MinkowskiUNet34 [8]. We also tried other
point-based networks e.g., DGCNN [56], but were unable to
handle large point clouds due to excessive memory require-
ments (see our supplementary material for more discus-
sion). All networks were trained under the same augmen-
tation scheme (12 global rotations per building and smal-
I random translations). For all networks, we experiment-
ed with SGD, Adam [22], with and without warm restarts
[30], and selected the best scheduler and hyperparameters
for each of them based on the validation split. We did not
use any form of pre-training. Table 3 reports the results.
We observe that the MinkowskiNet offers the best perfor-
mance. We also observe that the inclusion of color tends to
improve performance e.g., we observe a 3% increase in Part
IoU for MinkowskiNet. Another observation is that com-
pared to PartNet classes, where the Part IoU ranges between
~30 — 70% for PointNet++, the performance in our dataset
is much lower: PointNet++ has 14.1% Part IoU. Even for
the best performing method (MinkowskiNet), the part IoU
is still relatively low (29.9%), indicating that our building
dataset is substantially more challenging.
“BuildingNet-Mesh” track. For our mesh track, we first
include a number of baselines which rely on networks
trained on the point cloud track, then transferring their re-
sults to meshes. One strategy for this transfer is to build
correspondences between mesh faces and nearest points.

10403

M window [wall M floor

M garage M path
MinkNet-GC

M column
MinkNet2Sub

M plant/tree
PointNet++2Sub

M chimney M path Ml door

| ground
BuildingGNN-PointNet++ BuildingGNN-MinkNet

M shutters

M garage M road
g

I unlabeled M dormer
Human annotation

M vehicle M gate M fence

Figure 5: Comparisons with other methods. Despite a few errors (red text), the BuildingGNN is closer to human annotations.

Table 3: “BuildingNet-Point” track results. The column
‘n?” means whether networks use point normals, and the
column ‘c?” means whether they use RGB color as input.

Table 4: “BuildingNet-Mesh” results. PointNet++2Triangle
means triangle-pooling with PointNet++ (similarly for oth-
ers). PointNet2Sub means subgroup-pooling. MinkNet-GC

\ Method [n?[c?] PartIoU [Shape IoU | Class acc. | means graph cuts with MinkowskiUNet34 unary terms.
PointNet++ vV Ix| 88% 12.2% 52.7% Method [n?[c?[Part IoU[Shape IoU(Class acc|

MID-FC(nopre) | v | x| 20.9% 19.0% 59.4% PointNet++2Triangle | v | x| 8.8% | 13.1% | 54.1%
MinkNet v x| 269% 22.2% 62.2% MidFC2Triangle | v |x| 23.1% | 22.1% | 42.9%
PointNet++ VIV] 141% 16.7% 59.5% MinkNet2Triangle Vx| 288% | 26.7% | 64.8%
MID-FC(nopre) | v |v'| 25.0% 22.3% 63.2% PointNet++2Sub Vx| 9.5% 16.0% | 57.9%
MinkNet VIV] 299% 24.3% 65.5% MidFC2Sub VIx| 264% | 284% | 46.2%
MinkNet2Sub Vx| 331% | 36.0% | 69.9%
. . . . MinkNet-GC Vi|x|299% | 283% | 66.0%
Specifically, for each point we find its nearest triangle. S- BuildingGNN-PointNet++ v | x | 29.0% | 33.5% | 67.9%
ince some triangles might not be associated with any points, BuildingGNN-MinkNet | v | x| 40.0% | 44.0% | 74.5%
we also build the reverse mapping: for each triangle, we PointNet2Triangle VIV 140% | 18.0% | 60.7%
find its closest point. In this manner, every triangle ¢ has a MidFC2Triangle V| 213% | 262% | 45.6%
. . . S . MinkNet2Triangle VIV 328% | 292% | 68.1%
set of points P, assigned to it with the above bi-directional PointNet2Sub Vvl 161% | 235% | 64.8%
mapping. Then we perform average pooling of the point MidFC2Sub Vv |303% | 331% | 48.6%
robabilities per triangle: = P;| where MinkNet2Sub V|IV|37.0% | 39.1% | 73.2%
gnd q; are pori)nt and tfiang?et probzai)?leigiagfe{s'péltively \%’Z MinkNet-GC v|v|338% | 311% | 68.9%
t . . ’ BuildingGNN-PointNet++ v' | v'| 31.5% | 359% | 73.9%
report results of these baselines in Table 4. We note that BuildingGNN-MinkNet | v | v | 42.6% | 46.8% | 77.8%

we tried max pooling, yet average pooling had better per-
formance (see supplement). Another strategy is to aggre-
gate predictions based on mesh subgroups instead of trian-
gles i.e., average probabilities of points belonging to each
subgroup. This strategy takes advantage of mesh structure
and improves results. Another baseline is Graph Cuts (GC)
on the mesh, which has been used in mesh segmentation
[21] (see supplement for the GC energy). Finally, we re-
port results from our GNN (“BuildingGNN™), using Point-
Net++ or MinkowskiNet node features. The BuildingGN-
N significantly improves the respective baselines e.g., with
color as input, BuildingGNN with PointNet++ features im-
proves Part IoU by 15.4% over the best PointNet++ vari-
ant, while BuildingGNN with MinkowskiNet features im-
proves Part IoU by 5.6% over the best MinkowskiNet vari-
ant. The BuildingGNN with MinkowskiNet features per-
forms the best with or without color. Our supplement in-
cludes an ablation study showing that each edge type in the
BuildingGNN improves performance over using node fea-
tures alone, while the best model is the one with all edges.

Qualitative results. Figure 5 shows comparisons of
BuildingGNN with other methods. We observe that its pre-

dictions are closer to human annotations compared to oth-
ers. Figure | presents more results from BuildingGNN.

6. Discussion

We presented the first large-scale dataset for labeling 3D
buildings and a GNN that takes advantage of mesh struc-
ture to improve labeling. A future avenue of research is to
automatically discover segments in point clouds and embed
them into a GNN like ours. Currently, edges are extracted
heuristically. Learning edges and features in an end-to-end
manner may improve results. Finally, mesh cutting and hi-
erarchical labeling can lead to richer future dataset versions.

Acknowledgements. We thank Rajendra Adiga, George
Artopoulos, Anastasia Mattheou, Demetris Nicolaou for
their help. Our work was funded by Adobe, NSF (CHS-
1617333), the ERDF and the Republic of Cyprus through
the RIF (Project EXCELLENCE/1216/0352), and the EU
H2020 Research and Innovation Programme and the Re-
public of Cyprus through the Deputy Ministry of Research,
Innovation and Digital Policy (Grant Agreement 739578).

10404

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]
[15]

[16]

I. Armeni, O. Sener, A. R. Zamir, H. Jiang, 1. Brilakis, M.
Fischer, and S. Savarese. 3D Semantic Parsing of Large-
Scale Indoor Spaces. In Proc. CVPR, 2016. 2

J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,
C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for Se-
mantic Scene Understanding of LiDAR Sequences. In Proc.
ICCV, 2019. 2

Davide Boscaini, Jonathan Masci, Emanuele Rodola, and
Michael Bronstein. Learning shape correspondence with
anisotropic convolutional neural networks. In Proc. NIPS,
2016. 2

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-
D Data in Indoor Environments. In Proc. 3DV, 2017. 2
Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Mod-
el Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 1

L. Chen, W. Tang, N. W. John, T. R. Wan, and J. J. Zhang.
Context-aware mixed reality: A learning-based framework
for semantic-level interaction. Computer Graphics Forum,
39(1), 2020. 1

Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhous-
er. A Benchmark for 3D Mesh Segmentation. ACM Trans.
on Graphics, 28(3), 2009. 2

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
Spatio-Temporal ConvNets: Minkowski Convolutional Neu-
ral Networks. In Proc. CVPR, 2019. 6,7

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-Balanced Loss Based on Effective Number
of Samples. In Proc. CVPR, 2019. 7

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niefner. ScanNet:
Richly-annotated 3D Reconstructions of Indoor Scenes. In
Proc. CVPR, 2017. 2

Ilke Demir, Daniel G. Aliaga, and Bedrich Benes. Cou-
pled Segmentation and Similarity Detection for Architectural
Models. ACM Trans. on Graphics, 34(4), 2015. 3

L. Demir, D. G. Aliaga, and B. Benes. Procedural Editing of
3D Building Point Clouds. In Proc. ICCV, 2015. 3

Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Bingiang
Zhao, Steve Maybank, and Dacheng Tao. 3D-FUTURE:
3D Furniture shape with TextURE. arXiv preprint arX-
iv:2009.09633, 2020. 2

Google Maps. https://maps.google.com,2017. 1
Jon Arteta Grisalena. The Paradigm of Complexity in Ar-
chitectural and Urban Design (PhD Thesis). University of
Alcala, 2017. 1

Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K.
Schindler, and M. Pollefeys. SEMANTIC3D.NET: A new
large-scale point cloud classification benchmark. In Proc.
ISPRS, 2017. 2

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

10405

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. MeshCNN: A Network
with an Edge. ACM Trans. on Graphics, 38(4), 2019. 2
Ruizhen Hu, Lubin Fan, and Ligang Liu. Co-Segmentation
of 3D Shapes via Subspace Clustering. Computer Graphics
Forum, 31(5), 2012. 2

Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen,
Minh-Khoi Tran, Lap-Fai Yu, and Sai-Kit Yeung. SceneNN:
A Scene Meshes Dataset with aNNotations. In Proc. 3DV,
2016. 2

Evangelos Kalogerakis, Melinos Averkiou, Subhransu Ma-
ji, and Siddhartha Chaudhuri. 3D Shape Segmentation with
Projective Convolutional Networks. In Proc. CVPR,2017. 2
Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh.
Learning 3D Mesh Segmentation and Labeling. ACM Trans.
on Graphics, 29(3), 2010. 2,7, 8

Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In Proc. ICLR, 2015. 7

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max
Welling, and Richard Zemel. Neural Relational Inference
for Interacting Systems. In Proc. ICML, 2018. 6

N. Kobyshev, H. Riemenschneider, A. Bodis-Szomoru, and
L. Van Gool. Architectural decomposition for 3D landmark
building understanding. In Proc. WACV, 2016. 3

Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian
Brewington, Thomas Funkhouser, and Caroline Pantofaru.
Virtual Multi-view Fusion for 3D Semantic Segmentation.
In Proc. ECCV, 2020. 2

Alon Lahav and Ayellet Tal. MeshWalker: Deep Mesh Un-
derstanding by Random Walks. ACM Trans. on Graphics
(Proc. SIGGRAPH Asia), 39(6), 2020. 2

L. Landrieu and M. Simonovsky. Large-Scale Point Cloud
Semantic Segmentation with Superpoint Graphs. In Proc.
CVPR, 2018. 2

Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark,
Dimos Tzoumanikas, Qing Ye, Yuzhong Huang, Rui Tang,
and Stefan Leutenegger. InteriorNet: Mega-scale Multi-
sensor Photo-realistic Indoor Scenes Dataset. In Proc. B-
MVC, 2018. 2

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
and Piotr Dolldr. Focal Loss for Dense Object Detection. In
Proc. ICCV,2017. 7

I. Loshchilov and F. Hutter. SGDR: Stochastic Gradient De-
scent with Warm Restarts. In Proc. ICLR, 2017. 7
Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. El-
ements of Style: Learning Perceptual Shape Style Similarity.
ACM Trans. on Graphics, 34(4), 2015. 2

Jisan Mahmud, True Price, Akash Bapat, and Jan-Michael
Frahm. Boundary-aware 3D building reconstruction from a
single overhead image. In Proc. CVPR, 2020. 1

Jonathan Masci, Davide Boscaini, Michael Bronstein, and
Pierre Vandergheynst. Geodesic convolutional neural net-
works on Riemannian manifolds. In Proc. ICCV Workshops,
2015. 2

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. Distributed Representations of Words and
Phrases and Their Compositionality. In Proc. NIPS, 2013. 7

(35]

[36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. Par-
tial and Approximate Symmetry Detection for 3D Geometry.
ACM Trans. on Graphics, 25(3), 2006. 3

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subar-
na Tripathi, Leonidas J. Guibas, and Hao Su. PartNet: A
Large-Scale Benchmark for Fine-Grained and Hierarchical
Part-Level 3D Object Understanding. In Proc. CVPR, 2019.
2,3,4,5,7

Federico Monti, Davide Boscaini, Jonathan Masci, E-
manuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using mix-
ture model cnns. In Proc. CVPR, 2017. 2

D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert. Con-
textual classification with functional Max-Margin Markov
Networks. In Proc. CVPR, 2009. 2

Duc Thanh Nguyen, Binh-Son Hua, Lap-Fai Yu, and Sai-Kit
Yeung. A robust 3D-2D interactive tool for scene segmen-
tation and annotation. IEEE Trans. Vis. & Comp. Graphics,
24(12), 2018. 2

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. In Proc. NIPS, 2017. 6,7

Yi-Ling Qiao, Lin Gao, Jie Yang, Paul L. Rosin, Yu-Kun
Lai, and Xilin Chen. Learning on 3D Meshes with Laplacian
Encoding and Pooling. IEEE Trans. Vis. & Comp. Graphics,
2020. 2

Hayko Riemenschneider, Andrds Bddis-Szomord, Julien
Weissenberg, and Luc Van Gool. Learning Where to Clas-
sify in Multi-view Semantic Segmentation. In Proc. ECCV,
2014. 2

Xavier Roynard, Jean-Emmanuel Deschaud, and Franois
Goulette. Paris-Lille-3D: A large and high-quality ground
truth urban point cloud dataset for automatic segmentation
and classification. The International Journal of Robotics Re-
search, 37(6), 2018. 2

Jonas Schult, Francis Engelmann, Theodora Kontogianni,
and Bastian Leibe. DualConvMesh-Net: Joint Geodesic and
Euclidean Convolutions on 3D Meshes. In Proc. CVPR,
2020. 2

G. Sepulveda, J. C. Niebles, and A. Soto. A Deep Learning
Based Behavioral Approach to Indoor Autonomous Naviga-
tion. In Proc. ICRA, 2018. 1

Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic Scene Com-
pletion from a Single Depth Image. In Proc. CVPR, 2017.
2

Kenshi Takayama, Alec Jacobson, Ladislav Kavan, and Ol-
ga Sorkine-Hornung. A Simple Method for Correcting
Facet Orientations in Polygon Meshes Based on Ray Cast-
ing. Journal of Computer Graphics Techniques (JCGT),
3(4),2014. 4

Weikai Tan, Nannan Qin, Lingfei Ma, Ying Li, Jing Du,
Guorong Cai, Ke Yang, and Jonathan Li. Toronto-3D: A
Large-scale Mobile LiDAR Dataset for Semantic Segmenta-
tion of Urban Roadways. In Proc. CVPR Workshops, 2020.
2

[49]

(50]

[51]

(52]

(53]

[54]

[55]

(561

[57]
(58]

(591

(60]

(61]

[62]

10406

Alexander Toshev and Ben Taskar. Detecting and parsing
architecture at city scale from range data. In Proc. CVPR,
2010. 3

Alexander Toshev and Ben Taskar. 3d all the way: Semantic
segmentation of urban scenes from start to end in 3d. In Proc.
CVPR, 2015. 3

Trimble. 3D Warehouse, 2020. 4

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Duc Thanh Nguyen, and Sai-Kit Yeung. Revisiting point
cloud classification: A new benchmark dataset and classifi-
cation model on real-world data. In Proc. ICCV, 2019. 2
Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, An-
gel X. Chang, and Daniel Ritchie. PlanIT: Planning and In-
stantiating Indoor Scenes with Relation Graph and Spatial
Prior Networks. ACM Trans. on Graphics, 38(4), 2019. 2
Peng-Shuai Wang, Yu-Qi Yang, Qian-Fang Zou, Zhirong
Wu, Yang Liu, and Xin Tong. Unsupervised 3D Learning
for Shape Analysis via Multiresolution Instance Discrimina-
tion. ACM Trans. on Graphics, 2020. 7

Xiaogang Wang, Bin Zhou, Haiyue Fang, Xiaowu Chen,
Qinping Zhao, and Kai Xu. Learning to Group and Label
Fine-Grained Shape Components. ACM Trans. on Graphics,
37(6), 2018. 2

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph CNN for learning on point clouds. ACM Trans. on
Graphics, 38(5), 2019. 7

Wikipedia. List of building types, 2018. 4

Li Yi, Vladimir G. Kim, Duygu Ceylan, [-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A Scalable Active Framework for
Region Annotation in 3D Shape Collections. ACM Trans. on
Graphics, 35(6), 2016. 2,3

Li Yi, Lin Shao, Manolis Savva, Haibin Huang, Yang Zhou,
Qirui Wang, Benjamin Graham, Martin Engelcke, Roman
Klokov, Victor S. Lempitsky, Yuan Gan, Pengyu Wang,
Kun Liu, Fenggen Yu, Panpan Shui, Bingyang Hu, Yan
Zhang, Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Min-
ki Jeong, Jaechoon Choi, Changick Kim, Angom Geetchan-
dra, Narasimha Murthy, Bhargava Ramu, Bharadwaj Manda,
M. Ramanathan, Gautam Kumar, P. Preetham, Siddharth S-
rivastava, Swati Bhugra, Brejesh Lall, Christian Héne, Shub-
ham Tulsiani, Jitendra Malik, Jared Lafer, Ramsey Jones,
Siyuan Li, Jie Lu, Shi Jin, Jingyi Yu, Qixing Huang, Evange-
los Kalogerakis, Silvio Savarese, Pat Hanrahan, Thomas A.
Funkhouser, Hao Su, and Leonidas J. Guibas. Large-Scale
3D Shape Reconstruction and Segmentation from Shapenet
Core55. CoRR, abs/1710.06104, 2017. 3

Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Sync-
SpecCNN: Synchronized spectral cnn for 3D shape segmen-
tation. In Proc. CVPR, 2017. 2

Fenggen Yu, Kun Liu, Yan Zhang, Chenyang Zhu, and Kai
Xu. PartNet: A Recursive Part Decomposition Network for
Fine-Grained and Hierarchical Shape Segmentation. In Proc.
CVPR, 2019. 2

Matthias Zeppelzauer, Miroslav Despotovic, Muntaha
Sakeena, David Koch, and Mario Déller. Automatic pre-

[63]

[64]

diction of building age from photographs. In Proc. ICMR,
2018. 1

Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,
and Zihan Zhou. Structured3D: A Large Photo-realistic
Dataset for Structured 3D Modeling. In Proc. ECCV, 2020.
2

Yang Zhou, Zachary While, and Evangelos Kalogerakis.
SceneGraphNet: Neural Message Passing for 3D Indoor
Scene Augmentation. In Proc. ICCV, 2019. 2

10407

