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Abstract

We present Hierarchical Memory Matching Network
(HMMN) for semi-supervised video object segmentation.
Based on a recent memory-based method [33], we pro-
pose two advanced memory read modules that enable us
to perform memory reading in multiple scales while ex-
ploiting temporal smoothness. We first propose a kernel
guided memory matching module that replaces the non-
local dense memory read, commonly adopted in previous
memory-based methods. The module imposes the tempo-
ral smoothness constraint in the memory read, leading to
accurate memory retrieval. More importantly, we intro-
duce a hierarchical memory matching scheme and propose
a top-k guided memory matching module in which mem-
ory read on a fine-scale is guided by that on a coarse-
scale. With the module, we perform memory read in mul-
tiple scales efficiently and leverage both high-level seman-
tic and low-level fine-grained memory features to predict
detailed object masks. Our network achieves state-of-the-
art performance on the validation sets of DAVIS 2016/2017
(90.8% and 84.7%) and YouTube-VOS 2018/2019 (82.6%
and 82.5%), and test-dev set of DAVIS 2017 (78.6%). The
source code and model are available online: https:
//github.com/Hongje/HMMN .

1. Introduction
Semi-supervised video object segmentation (VOS) aims

to predict the foreground object mask in every frame of a
video given an object mask at the first frame. Recently,
memory-based VOS methods [33, 39, 27, 21, 22, 23] have
achieved great success. A key idea of the memory-based
methods is matching densely between query (i.e., current
frame) and memory (i.e., past frames with given or pre-
dicted masks) to retrieve the memory at a pixel-level. Since
the camera’s field of view or objects in a video may move,
spatio-temporal non-local and dense matching was per-
formed to compute similarity for all matching possibilities.

There are two limitations of the existing memory-based

*Corresponding author.

Memory Query

dense matching

res3

res2

conv1

res4

res3

res2

conv1

res4

Memory

dense matching

res3

res2

conv1

res4

dense matching

dense matching

Query

res3

res2

conv1

res4

(a) (b)

(c)

1/2

1/4

1/8

1/16

1/2

1/4

1/8

1/16

top-𝑘𝑘 guided sparse matching

top-𝑘𝑘 guided sparse matching

kernel guided dense matching

Query

res3

res2

conv1

res4

Memory

res3

res2

conv1

res4

1/2

1/4

1/8

1/16

Figure 1. Previous memory-based methods densely match image
features only at a coarse resolution, as shown in (a). To conduct the
memory reading at multiple scales, one can naively apply dense
matching at each scale (b), but it needs prohibitive computational
cost and is not robust due to noisy low-level features. In our hi-
erarchical memory matching architecture, shown in (c), fine-scale
matching is guided by coarse-scale matching, resulting in efficient
and robust memory matching in multiple scales.

methods: temporal smoothness and fine-grained memory
information. Temporal smoothness is one of the strong con-
straints that we can assume for the VOS task. Previous
VOS methods without memory often applied a local match-
ing [43, 50] or local refinement [34, 16, 32, 49, 13, 53]
between two adjacent frames for temporal smoothness.
However, in the memory-based method [33], the non-local
matching completely ignores the constraint and it raises the
risk of false matches (e.g., when multiple similar instances
exist, see Fig. 3). Another weakness is the lack of fine-
grained memory information. In the memory-based meth-
ods, a query encoder only takes the current frame without
any target information. Thus the memory matching is the
only source to get information of the target object mask.
The previous memory-based methods conduct the memory
matching only at the coarsest resolution, (e.g., 1/16 of the
input resolution [33]), as shown in Fig. 1 (a). At the low res-
olution, while accurate matching is possible with high-level

12889



semantic features, we cannot expect fine-grained informa-
tion that is also important to predict fine-detailed masks.

In this paper, we propose Hierarchical Memory Match-
ing Network (HMMN) with two novel memory matching
modules. To exploit the temporal smoothness, we propose
kernel guided memory matching module. We restrict possi-
ble correspondences between two adjacent frames to a local
window and apply kernel guidance to the non-local memory
matching that imposes the temporal smoothness constraint.
For long-range matching between distant frames, we track
the most probable correspondence for each memory pixel
to a query pixel and apply relaxed kernel guidance accord-
ing to the temporal distance, resulting in a smooth tran-
sition from local to global memory matching. This mod-
ule replaces the non-local memory reading in the previous
memory-based networks.

To retrieve fine-grained memory information, we pro-
pose top-k guided memory matching module. The computa-
tional cost for the dense memory matching grows quadrati-
cally with increasing search space. Naively performing the
memory reading at fine-scales [51] (Fig. 1 (b)) requires pro-
hibitively heavy computation. Also, memory matching with
the low-level features at a fine-scale is susceptible to noisy
matches. Our top-k guided memory matching solves both
the computational cost and the matching robustness issues.
We first sample the top-k candidate memory locations for
each query pixel using the matching similarity score at the
coarse-scale. Then, we conduct fine-scale memory match-
ing between each query pixel and the corresponding can-
didate memory locations, as shown in Fig. 1 (c). The
top-k guided memory matching reduces the matching com-
plexity at high-resolution significantly from O(TH2W 2) to
O(kHW ), where T , H , and W are the time, height, and
width of the feature map, and k is a constant. The coarse-
to-fine hierarchical matching scheme makes our fine-scale
memory matching robust even with low-level features. We
note that some previous works [19, 55] also reduce memory
matching complexity by extracting k matching candidates
but they select candidates using features at the same scale.
In contrast, we selected k matching candidates from high-
level (i.e., coarse-scale) semantic features, thus semanti-
cally more accurate matching candidates would be selected.

Our contributions are summarized as follows:
• We propose kernel guided memory matching module,

imposing the temporal smoothness constraint to the
non-local matching with all memory frames.

• We propose top-k guided memory matching module,
resulting in efficient and robust fine-scale memory
matching.

• With the two novel memory matching modules,
we present Hierarchical Memory Matching Network
(HMMN) that performs coarse-to-fine hierarchical
memory matching effectively.

• Our network achieves state-of-the-art performance on
both DAVIS and YouTube-VOS benchmarks.

2. Related Work
Semi-supervised Video Object Segmentation: Semi-
supervised VOS [35, 36, 48] has been tackled in two ways:
online-learning method and offline-learning method. The
online-learning methods [5, 3, 44, 1, 28, 29, 47, 7, 30]
fine-tune networks at test time using the given ground-truth
mask at the first frame. The objective of fine-tuning is to let
networks detect target objects for each video. Therefore, the
online-learning method can expect accurate results by train-
ing a target-specific network, but they are subject to severe
disadvantages at run-time because the network needs to be
trained multiple times on the first frame during testing.

Offline-learning methods aim to train a network that
works well for any input videos without test-time train-
ing. It has usually been solved by mask propagation or
pixel-wise matching. The propagation-based methods [34,
16, 12, 20, 32, 15, 4, 54, 11] train a network to propagate
the given mask sequentially from the first frame. Since
the propagation is conducted in a short-time interval, the
methods often exploit the temporal smoothness constraint
but are not robust to occlusion. The matching-based meth-
ods [41, 13, 52, 43, 14, 50] predict a foreground mask in the
current frame based on matching with previously predicted
or given mask. Recently, STM [33] introduced a memory-
based method for offline-learning VOS and demonstrated a
significantly improved performance while achieving a fast
run-time. Our approach follows the memory-based method,
and we address the main limitations of existing methods.

Memory-based Video Object Segmentation: Memory
networks [42, 31, 18] memorize external information as key
and value, then the value is retrieved by query via non-local
matching with the key. It was first proposed for natural lan-
guage processing, and STM [33] repurposed the memory
networks to memory-based VOS. STM retrieves memory
using non-local and dense memory matching and finds the
target object in the query using the retrieved memory. Ex-
tended from STM, EGMN [27] proposed the graph mem-
ory networks to update memory using query. GC [21] in-
troduced a new global matching method for fast memory
matching. Liang et al. [23] proposed an adaptive memory
update scheme to reduce redundant computation at mem-
ory matching. Li et al. [22] explored a cyclic mecha-
nism for both training and inference to boost performance.
KMN [39] additionally conducted memory-to-query match-
ing then applied 2D Gaussian kernels on the query for ro-
bust matching. The previous memory-based methods over-
look the temporal smoothness, one of the most important
cues for VOS, as they performed memory matching in a
non-local manner. In addition, the previous works conduct
memory matching only at the coarsest resolution, which
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Figure 2. An overview of HMMN. Our network consists of two ResNet-based encoders for the query and the memory frames that extract
multi-scale features, kernel guided memory matching block that operates on the coarsest scale, top-k guided memory matching blocks that
operate on the finer scales, and a decoder that takes the memory reading results and produces the final mask prediction.

hard to expect to take fine mask information. We address
the problems by introducing two matching modules, ker-
nel guided memory matching and top-k memory matching.
Note that our kernel guided memory matching is completely
different from kernelization used in KMN [39], which gen-
erates kernel based on non-local matching thus does not ex-
ploit temporal smoothness.

3. Method

Our method, Hierarchical Memory Matching Network
(HMMN), is based on STM [33]. Given a ground-truth
object mask at the first frame, we sequentially predict the
target object mask from the second frame to the last frame.
The past frames concatenated with predicted or given masks
are set to memory, and the current frame is used as a query.

The main distinction comes from the construction and
the use of hierarchical memory. The objective of the hierar-
chical memory is to leverage memories in multiple scales,
from low-resolution semantic features to high-resolution
detailed features, on the memory-based VOS architectures.
To efficiently read the information from the hierarchical
memory, we design two types of memory matching modules
based on the feature map’s scale: kernel guided dense mem-
ory matching at the coarsest scale, and top-k guided sparse
memory matching at fine scales. At the coarsest scale, we
perform dense and non-local query-memory matching sim-
ilar to STM [33] and other variants. But, we improve the ro-
bustness of the global matching through the kernel guidance
that exploits temporal smoothness as an additional cue. At

the finer scales followed by the coarsest level, we perform a
sparse query-memory matching making use of the match-
ing results from the coarsest level as guidance. Specifi-
cally, we take the top-k memory matching for each query
point at the coarsest scale and use them to guide the sparse
matching at the finer scales. In this way, we can retrieve
fine-detailed memory information while taking a fractional
computational cost compared to dense memory matching.

The overview of our network is shown in Fig. 2. In our
network, memory and query frames are first fed into two
independent ResNet50 [10]-based encoders. Both encoders
extract multi-scale features – QS for the query frame and
MS for the memory frames – from ResNet50’s S-th res
block. We use three scales where S ∈ {2, 3, 4} with the
output scale of {1/4, 1/8, 1/16} with respect to the input im-
age. At each scale, in the order of coarse-to-fine scales, we
perform a memory read by matching the query and memory
features, and then the outputs further go through the decoder
to predict an object mask.

For the memory matching in the coarsest scale, the em-
bedded query and memory {Q4, M4} are fed into kernel
guided memory matching module, and it outputs the up-
dated feature (Z4) and a guidance (g4) which is the similar-
ity matrix used for memory retrieval. For the finer scales (S
is 2 or 3), top-k guided memory matching module is used in-
stead. It takes a pair of embedded query and memory {QS ,
MS} along with the guidance (g4), and outputs the updated
feature ZS . Finally, the decoder takes all the output fea-
tures ZS (either as the input or through a skip-connection),
and makes a mask prediction. Note that, except for the new
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Figure 3. The effect of our kernel guided matching module. (a)
STM does not make use of bi-directional memory-to-query match-
ing. (b) KMN performs a memory-to-query matching in a non-
local manner, thus it cannot make use of temporal smoothness
prior. (c) Our memory-to-query matching is achieved by connect-
ing local tracking, thus it can impose temporal smoothness on the
query-to-memory matching results.

memory matching modules, we keep the rest of the network
structure (e.g., encoder and decoder design) as the same as
STM [33].

3.1. Kernel Guided Memory Matching

With the embedded memory and query (M4,Q4), ex-
tracted from each encoder at res4 stage, we first encode
keys (kM4, kQ4) and values (vM4, vQ4) via four indepen-
dent 3×3 convolutional layers. Then, a non-local matching
between memory and query is performed using keys as fol-
lows:

M4 = kM4k
⊤
Q4, (1)

where ⊤ indicates a matrix transpose. Based on the non-
local matching (M4), we compute the attention map (g4)
by

g4 = L1 (K(M4)⊙ softmax(M4)) , (2)

where ⊙ indicates an element-wise multiplication, L1(·) is
L1 normalization which normalizes along the memory di-
mension, and K(·) is 2D Gaussian kernel. Then, the mem-
ory value is retrieved using the attention map (g4) as fol-
lows:

v′
M4 = v⊤

M4g4. (3)

Finally, the query value (vQ4) is concatenated with the re-
trieved value (v′

M4) along the feature dimension to be the
output.

Here, we impose the temporal smoothness, that is the
common and strong constraint for videos, on the memory
matching through the kernel prior (K). If K(·) = 1, the out-
put (Z4) will be the same as the output from vanilla mem-
ory read block used in STM [33]. In other words, STM
[33] retrieves memory solely based on non-local query-
to-memory matching (i.e., softmax(M4)), as illustrated in
Fig. 3 (a). Thus, the fact that objects are likely to appear in
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Figure 4. A detailed implementation of kernel guided memory
matching module. We use blue and red to indicate memory and
query dimensions, respectively. Note that we can access the track-
ing history (1:T-1)→(T) that is saved beforehand, thus only the
tracking between the previous frame and the current frame (T)→
(T+1) is needed to be newly computed.

similar local positions between adjacent frames (i.e., tem-
poral smoothness) is completely ignored. To harness this
behavior, we additionally generate a kernel guidance (K(·))
based on spatio-temporal local matching. As illustrated
in Fig. 3 (c), we conduct memory-to-query matching be-
tween two adjacent frames for every memory pixel. Here,
we constrained the matching to perform only within a lo-
cal region with a window size of s. Between every two
adjacent frames, we track every pixel by selecting a single
pixel within a local window that has the highest similar-
ity score. This way, every memory pixel can reach to the
best-matching query pixel by connecting local pixel-level
tracking frame-by-frame. Based on the resulting memory-
to-query matching, we generate 2D Gaussian kernels for ev-
ery memory pixel with the standard deviation of σt. As the
temporal distance of memory-to-query increases, the track-
ing error can be accumulated and the temporal smoothness
constraint weakens. Thus, we relaxed the kernel guidance
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by controlling the standard deviation according to the tem-
poral distance by σt = σinit + (T − t)σfactor. This re-
sults in a smooth transition from local to global memory
matching according to the temporal distance between query
and memory features. A detailed implementation of kernel
guided memory matching module is shown in Fig. 4.

Note that our kernel guidance is inspired by KMN [39],
but the objective is completely different. KMN [39] used
kernel only for robust matching from bi-directional atten-
tion, thus the kernels were generated based on non-local
matching, as illustrated in Fig. 3 (b). Our kernel guidance,
however, is based on fully local matching, and it effectively
exploits the temporal smoothness as shown in Fig. 3 (c).

3.2. Top-k Guided Memory Matching

The main objective of computing a dense spatio-
temporal attention map in memory matching module is to
find when-and-where each query pixel attends to memory
pixel. However, computing the dense attention map in high
resolution requires prohibitively large computing resources
as its computational complexity grows quadratically with
regard to the feature map size. Thus, computing dense at-
tention maps for finer levels of the feature hierarchy (res3
and res2) is computationally too expensive. We address
this issue by reducing the number of matching candidates
in memory using top-k guidance.

Here, we assume that the matching result at high-
resolution should be similar to that at low-resolution. By
this assumption, we reuse the dense matching result at low-
resolution as guidance for matching in higher resolution.
An illustration of selecting k pixels and guiding to high-
resolution for each query pixel is depicted in Fig. 5. Based
on the low-resolution attention map (g4), which comes from
res4 stage, we select k best matching memory pixels for
each query pixel via top-k operation. Then, only a sparse
matching to selected pixels from the memory is performed.

Note that the selected k pixels in res4 correspond to 4k
and 16k pixels at res3 and res2 stages, respectively, thus
we take k and k/4 for guiding each at res3 and res2
stage in order to have a similar computational overhead.
This memory read module based on sparse matching can
be efficiently implemented with a combination of common
tensor operations. A detailed implementation of the top-k
guided memory matching module is shown in Fig. 6. The
outputs of top-k guided memory matching modules (Z3,
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Figure 6. A detailed implementation of the top-k guided memory
matching module at the res3 stage. Memory and query dimen-
sions are indicated using blue and red. The detailed implementa-
tion at the res2 stage is provided in the supplementary material.

Z2) are fed into the decoder through shortcut connections
at the corresponding scale.

Note that, in the module, rather than directly using the
retrieved values as the output, we place one convolutional
layer followed by Dropout layer before added to the query
value as residual. This design choice is due to the fol-
lowing observation. Without dropout, the model tends to
converge to a sub-optimal state that does not make use of
the matching results at the coarsest scale (i.e., memory at
res4). This sub-optimal model appears to take a shortcut
for easier solutions, simply relying on low-level mask in-
formation (i.e., memory at res2 and res3) ignoring the
high-level semantic matching. We were able to prevent this
behavior by delivering the information in a restrictive way
through a residual connection after a dropout layer that ran-
domly drops the whole input feature during training. In this
way, the network has to consider the output of top-k guided
memory matching module as supplementary information to
refine the memory matching at the coarsest resolution.

4. Experiments

4.1. Implementation Details

Training. For a fair comparison with STM [33], we fol-
low the same training strategies. We initialize the encoders
with ImageNet [38] pre-trained weights and randomly ini-
tialize the other layers. Then, we take the images with ob-
ject masks in [8, 25, 9, 40, 6, 45] and pretrain HMMN on the
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Method OL J&F J F Time

e-OSVOS [30] ✓ 86.8 86.6 87.0 3.4s
DyeNet [20] ✓ - 86.2 - 2.32s
RaNet [46] ✓ 87.1 86.6 87.6 4s
STM (+YV) [33] 89.3 88.7 89.9 0.16s
CFBI (+YV) [50] 89.4 88.3 90.5 0.18s
KMN (+YV) [39] 90.5 89.5 91.5 0.12s

HMMN 89.4 88.2 90.6 0.10s
HMMN (+YV) 90.8 89.6 92.0 0.10s

Table 1. Comparison on DAVIS 2016 validation set. (+YV) indi-
cates YouTube-VOS is additionally used for training, and OL de-
notes the use of online-learning strategies during test-time. Time
measurements reported in this table are directly from the corre-
sponding papers.

image datasets. Specifically, we generate three frames by
augmenting each image via random affine transforms. The
random affine transforms include rotation, shearing, zoom-
ing, translation, and cropping. During the pre-training,
the dropout rate in top-k guided memory matching module
(§3.2) is gradually decreased from 1 to 0.5.

After the pre-training on image datasets, the main train-
ing is done using either DAVIS 2017 [36] or YouTube-VOS
2019 [48] training set depending on the target benchmark.
During main training, three frames are randomly sampled
from a video with the gradually increasing maximum inter-
val (from 0 to 25). The dropout rate in top-k guided memory
matching module is gradually decreased from 0.5 to 0.

During both pre-training and main training, we minimize
pixel-wise cross-entropy loss with Adam optimizer [17],
and the learning rate is set to 1e-5. We use an input size of
384×384 and a mini-batch size of 4. According to [33], we
employ the soft aggregation operation when multiple target
objects exist in a video.

Inference. As in [33, 39], we take the first frame, the pre-
vious frame, and the intermediate frames sampled at every
5 frames for the memory in the coarsest scale (M4). For
the fine-scale memories (M3,M2), we do not use the in-
termediate frames to avoid GPU memory overflow unless
mentioned otherwise. We use the same number of k for
top-k guided memory matching during training and infer-
ence, which is set to 32. The kernel guidance in §3.1 is
used only during inference, as in KMN [39]. We have tried
to use the kernel guidance during training, but there was no
noticeable improvement. We set the standard deviation of
σinit and σfactor into 3 and 0.5, respectively, and we used
window size s of 7. We measure our run-time using a single
NVIDIA GeForce 1080 Ti GPU.

4.2. Comparisons

We compare our HMMN against state-of-the-art meth-
ods on DAVIS [35, 36] and YouTube-VOS [48] bench-
marks. For DAVIS benchmarks, 60 videos from DAVIS
2017 training set are used during main training following

Method OL J&F J F

FRTM (+YV) [37] ✓ 76.7 - -
e-OSVOS [30] ✓ 77.2 74.4 80.0
PReMVOS [28] ✓ 77.8 73.9 81.7
LWL (+YV) [2] 81.6 79.1 84.1
STM (+YV) [33] 81.8 79.2 84.3
CFBI (+YV) [50] 81.9 79.1 84.6
EGMN (+YV) [27] 82.8 80.2 85.2
KMN (+YV) [39] 82.8 80.0 85.6

HMMN 80.4 77.7 83.1
HMMN (+YV) 84.7 81.9 87.5

Table 2. Comparison on DAVIS 2017 validation set.

Method OL J&F J F

CINN [1] ✓ 67.5 64.5 70.5
DyeNet [20] ✓ 68.2 65.8 70.5
PReMVOS [28] ✓ 71.6 67.5 75.7
STM (+YV) [33] 72.2 69.3 75.2
CFBI (+YV) [50] 74.8 71.1 78.5
KMN (+YV) [39] 77.2 74.1 80.3

HMMN (+YV) 78.6 74.7 82.5

Table 3. Comparison on DAVIS 2017 test-dev set.

the common evaluation protocol [32, 49, 33, 39]. In addi-
tion, we report our results on DAVIS benchmarks using ad-
ditional training videos from Youtube-VOS for a fair com-
parison with some recent methods [33, 39, 2, 50, 27, 37].
For Youtube-VOS benchmarks, the training set of 3471
videos are used. For all experiments, we either use the offi-
cial evaluation code or upload our results to the evaluation
server.

DAVIS [35, 36] is a densely annotated VOS dataset and
mostly adopted benchmark to evaluate VOS models. To
evaluate HMMN on DAVIS benchmarks, we use an in-
put size of 480p resolution for all experiments. DAVIS
dataset is divided into two sets: (1) DAVIS 2016, which
is an object-level annotated dataset (single object); and (2)
DAVIS 2017, which is an instance-level annotated dataset
(multiple objects). The official metrics, region similarity J
and contour accuracy F , are measured for comparison. As
shown in Table 1, our HMMN achieves state-of-the-art per-
formance while taking a fast run-time on DAVIS 2016 val-
idation set. Further, even without an additional YouTube-
VOS dataset to train HMMN, we surpass most state-of-the-
art methods.

We also conduct comparisons on DAVIS 2017 validation
and test-dev sets, and the results are given in Table 2 and
Table 3. As shown in the Tables, our HMMN significantly
outperforms the current best results by 1.9% and 1.4% of
J&F scores on DAVIS 2017 validation and test-dev sets,
respectively. We omitted some comparable works in the ta-
bles. The full comparison tables are available in the supple-
mentary material.

YouTube-VOS [48] is a large-scale benchmark for VOS.
To evaluate our HMMN on YouTube-VOS benchmarks, we
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Method OL G JS JU FS FU

YouTube-VOS 2018 validation set

AGSS-VOS [24] 71.3 71.3 65.5 75.2 73.1
e-OSVOS [30] ✓ 71.4 71.7 74.3 66.0 73.8
FRTM [37] ✓ 72.1 72.3 65.9 76.2 74.1
STG-Net [26] 73.0 72.7 69.1 75.2 74.9
STM [33] 79.4 79.7 72.8 84.2 80.9
AFB+URR [23] 79.6 78.8 74.1 83.1 82.6
EGMN [27] 80.2 80.7 74.0 85.1 80.9
CFBI [50] 81.4 81.1 75.3 85.8 83.4
KMN [39] 81.4 81.4 75.3 85.6 83.3
LWL [2] 81.5 80.4 76.4 84.9 84.4

HMMN 82.6 82.1 76.8 87.0 84.6
YouTube-VOS 2019 validation set

STM* [33] 79.3 79.8 73.0 83.8 80.5
KMN* [39] 80.0 80.4 73.8 84.5 81.4
CFBI [50] 81.0 80.6 75.2 85.1 83.0

HMMN 82.5 81.7 77.3 86.1 85.0

Table 4. Comparison on YouTube-VOS validation sets. G is an
average of JS , JU , FS , and FU . * denotes our reproduced result
using our training setup.

reduce the input image to 480p resolution. We measured
region similarity (JS ,JU ) and contour accuracy (FU ,FU )
for 65 of seen and 26 of unseen object categories separately.
In Table 4, we compare HMMN with state-of-the-art meth-
ods on YouTube-VOS 2018 and 2019 validation sets. Note
that only CFBI [50] officially reported for comparison on
YouTube-VOS 2019 validation set, so we additionally re-
port our reproduced results of STM [33] and KMN [39] us-
ing our training setup. As shown in Table 4, our HMMN
surpasses the state-of-the-art methods in all official metrics
on both YouTube-VOS 2018 and 2019.

Qualitative Comparison. Fig. 7 shows qualitative compar-
ison with STM [33] and KMN [39]. In the figure, STM
[33] almost failed to predict target objects when multiple
similar objects have appeared or several occlusion occurred
(DAVIS example). KMN [39] failed to predict a very small
object (YouTube-VOS example). On the other hand, our
HMMN predicted the target objects accurately in the chal-
lenging cases. More qualitative results are provided in the
supplementary material.

4.3. Ablation Experiments

Module ablation. We conduct an ablation study on our
two proposed memory matching modules to demonstrate
the efficacy of those. We also compare our kernel guided
memory matching with the kernelization method proposed
in KMN [39]. As shown in Table 5, our kernel guid-
ance is more effective than one from KMN, and the use of
fine-scale memories through top-k guided memory module
greatly boosts the performance to the state-of-the-art.

Temporal stability (T ). To validate the effectiveness of our
HMMN on temporal smoothness quantitatively, we evaluate

DAVIS YouTube-VOS
K* [39] K T Time 2016 2017 2018 2019

0.07s 89.2 82.2 79.2 79.3
✓ 0.07s 89.5 83.3 79.8 80.0

✓ 0.07s 90.0 83.1 80.7 80.9
✓ 0.10s 90.8 83.6 81.1 81.2

✓ ✓ 0.10s 90.8 84.1 81.7 81.8
✓ ✓ 0.10s 90.8 84.7 82.6 82.5

Table 5. Module ablation study. We report J&F and G scores
for DAVIS and Youtube-VOS, respectively. The run-time is mea-
sured on DAVIS 2016 validation set. The baseline model is STM
[33]. K* [39] denotes the kernelization proposed in [39], and
K and T indicate our kernel guided memory matching and top-k
guided memory matching modules, respectively.

temporal stability (T ) [35] on DAVIS 2016 validation set.
STM [33], KMN [39], and our HMMN achieved T scores
(lower is better) of 17.2%, 15.2%, and 13.0%, respectively.
This implies that our method significantly improves tempo-
ral stability over STM and KMN.

k-pixel selection strategies. To validate the effectiveness
of our top-k guidance (§3.2), we study various strategies
to sample k memory pixels. As can be seen in Table 6
(a), fine-scale memory with simple sampling methods (ran-
dom, stride) do not provide consistent improvement over the
baseline (k=0). However, fine-scale memory with our top-k
guidance yields significant performance improvement even
with a small number of k.

The effect of k. We further study the effect of k during both
training and inference by increasing the number of k from
32 to ∞. Here, k=∞ indicates using dense memory with-
out sampling. As shown in Table 6 (b), using a dense fine-
scale memory either in training and/or inference degrades
the overall performance compared to using top-k sampled
memory. We conjecture that, in fine-scale, the feature is
not robust enough for the global and dense matching. In
this case, top-k guidance could be beneficial to rejecting
noises by restricting the search space into few reliable op-
tions. While our default setting is to set k=32 for both train-
ing and inference, we observed that the performance could
be further improved by tuning k.

Dropout for high-resolution memory. Table 6 (c) shows
the effect of dropout in top-k guided memory module. As
we discussed in §3.2, our dropout strategy makes our net-
work learn with hierarchical memories effectively.

Fine-scale memory management. Table 6 (d) shows that
we can further boost our performance by exploiting fine-
scale memories from the intermediate frames sampled from
every 5 frames. However, this configuration requires too
much GPU memory to store memory features, while per-
formance improvement is marginal. We use the first and
previous frames for fine-scale memory by default to run
HMMN. Note that we use the intermediate frames for the
coarse-scale memory.
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and KMN [39]. We marked significant improvements from STM and KMN using red boxes.
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2·122 83.3/80.5
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k 8 82.2/81.4

16 83.2/82.0
32 84.7/82.4

(a) Comparison on various k-
pixel selection strategies.

Training
k 32 ∞

In
fe

re
nc

e 32 84.7/82.5 82.3/81.5
64 84.9/82.5 82.6/81.5

128 84.6/82.1 82.8/81.4
256 84.3/81.9 82.7/81.5
∞ 82.0/78.8 82.1/80.5

(b) Results with large number of k.

Training

w/o Dropout 81.5/80.7
w/ Dropout 84.7/82.5

(c) Experimental results with
and without dropout in top-k
memory matching module.

Fine-scale memory frames

First & Prev. 84.7/82.5
Every 5 frames 84.9/82.5

(d) Comparison of memory man-
agement strategies for top-k
memory matching module.

Fine-scale memory stages

None 83.1/80.9
res2 83.2/82.1
res3 83.2/81.6
res2 & 3 84.7/82.5

(e) Memory stages for top-k
memory matching module.

Window size (s)

3×3 84.0/82.5
5×5 84.4/82.5
7×7 84.7/82.5
9×9 84.8/82.4
11×11 84.7/82.3
∞ 84.2/81.0

(f) Window sizes in
kernel guided memory
matching module.

Standard deviation (σinit)

1 83.6/82.0
3 84.7/82.5
5 84.0/82.4
7 83.8/82.4
9 83.8/82.2
11 83.7/81.9

(g) Standard deviations of Gaus-
sian kernel in kernel guided
memory matching module.

Table 6. Ablation Study. For each setting, we report results of J&F and G scores on DAVIS 2017 and YouTube-VOS 2019 validation
sets, respectively.

Fine-scale memory stages. We ablate hierarchical mem-
ory stage-by-stage, and the results are given in Table 6
(e). As shown in the table, using memory hierarchies in
both stages shows the best performance. If the hierarchical
memory is used only in a single stage, interestingly, taking
finer-scale memory (i.e., res2 stage) achieves better per-
formance even we reduced the number of k to k/4 at res2
stage. It is thought that the finer-scale memory can provide
more complementary information to the memory from the
coarsest scale.

Window size s & standard deviation σinit. Tables 6 (f)
and 6 (g) show the parameter search experiments for guid-
ance kernel (§3.1). Choosing a too large and too small value
for s and σinit has degraded the performance. Therefore,
we select proper window size s and standard deviation of
Gaussian kernel σinit as 7×7 and 3, respectively.

5. Conclusion

We presented two advanced memory matching modules
that exploit temporal smoothness and hierarchical memory
effectively. We demonstrated the efficacy of our HMMN
through extensive experiments and achieved state-of-the-
art performance on all evaluated benchmarks while keep-
ing a fast run-time. We believe that our proposed two
memory matching modules can be further extended to other
matching-based vision applications such as video saliency
detection, video instance segmentation, and semantic corre-
spondence.
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