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Figure 1. The paper introduces an extreme Structure from Motion problem for indoor panoramas that have little to no visual overlaps. Our
approach learns to evaluate the realism of room/door/window arrangements in the top-down semantic space and solve for the camera poses.

Abstract

This paper proposes an extreme Structure from Motion
(SfM) algorithm for residential indoor panoramas that have
little to no visual overlaps. Only a single panorama is
present in a room for many cases, making the task infeasible
for existing SfM algorithms. Our idea is to learn to evaluate
the realism of room/door/window arrangements in the top-
down semantic space. After using heuristics to enumerate
possible arrangements based on door detections, we eval-
uate their realism scores, pick the most realistic arrange-
ment, and return the corresponding camera poses. We eval-
uate the proposed approach on a dataset of 1029 panorama
images with 286 houses. Our qualitative and quantita-
tive evaluations show that an existing SfM approach com-
pletely fails for most of the houses. The proposed approach
achieves the mean positional error of less than 1.0 meter
for 47% of the houses and even 78% when considering the
top five reconstructions. We will share the code and data in
https://github.com/aminshabani/extreme-indoor-sfm.

1. Introduction

The emergence of consumer-grade panorama cameras is
making a revolution in the real-estate industry. With only a

few hundred dollars per unit, increasingly more number of
real-estate agents and home owners utilize the cameras to
snap panoramas, enabling house renters or buyers to browse
through full-360 interior views with the flick of a finger. In
particular, the THETA series from RICOH is collecting 100
million panoramas for real-estate applications.

This incredible market growth comes from mass-
consumer crowd sourcing, whereas the operation must be
simple. Given lengthy instructions on how to 1) use a cam-
era, 2) set up a mono/tri-pod, and 3) use a smartphone app
to verify shootings, create annotations, and moderate con-
tents, users are simply asked to take a picture in the mid-
dle of each room. Therefore, panorama images have little
to no visual overlaps, making the pose estimation infeasi-
ble for existing techniques. A robust panorama alignment
algorithm will enable a plethora of applications such as au-
tomated floorplan generation, accurate price prediction, and
verification of building-codes.

This paper proposes an extreme Structure from Motion
(SfM) problem for indoor panoramas with little to no visual
overlaps and provides a novel compelling solution to the
problem. Our key idea is to learn the arrangement of rooms,
doors, and windows, and solve for camera parameters that
maximize the realism of their arrangement. For example, a
rest-room and a shower-room are often adjacent and nearby
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the entrance. Bedrooms are connected to a living room, and
a balcony is typically on the opposite side from an entrance.

Concretely, given a set of panoramas, we use standard
techniques to apply Manhattan-rectification, infer a room
layout, detect doors/windows with their types, and classify
a room type for each panorama. Inferred semantic infor-
mation is re-projected into a Nadir (i.e., top-down) view as
a semantic image. We generate arrangement candidates by
aligning Nadir semantic images based on the door detec-
tions. Finally, a convolutional message passing neural net-
work learns to score the generated arrangements, where we
output the one with the highest score as the reconstruction.

We use 1029 panoramas for 286 houses from a produc-
tion pipeline. A standard SfM approach fails to align even
two panoramas for most of the houses [12]. The proposed
system reconstructs compelling arrangements, concretely
the mean positional error being less than 1.0 meter in the
top five reconstructions for 78% of the test houses.

The contribution of the paper is three fold: 1) A new
extreme indoor SfM problem with the new dataset for the
exploding market; 2) One-of-a-kind SfM algorithm which
learns to evaluate the arrangement of semantic information;
and 3) State-of-the-art performance where existing tech-
niques fail. We will share the code, models, and data.

2. Related Work
The paper tackles a pose estimation problem from indoor

photographs. We study related works in Structure from Mo-
tion (SfM), extreme pose estimation with minimal visual
overlaps, and indoor digital scanning.

Structure from Motion: Feature matching, geometric veri-
fication, and reconstruction has been the golden standard for
camera pose estimation, known as the SfM pipeline [14].
Successful SfM system has been presented even for Inter-
net photo collections in a massive scale [15, 1]. SfM also
has been used for floorplan reconstruction [3] or recon-
structing a single 3d model of a building [5]. Deep neu-
ral networks further robustify the feature matching process
for wide-baseline scenarios [20]. Nonetheless, these tech-
niques require ample visual overlaps with well textured sur-
faces among input images, incapable of handling our prob-
lem where images have little to no visual overlaps.

Extremal pose estimation: Priors on standard room shapes
have been exploited for the alignment of perspective im-
ages [19] or partial SLAM reconstructions with minimal
data overlaps in a single room [8]. In contrast, this paper
seeks to align images from different rooms by exploiting the
regularities of room arrangement at a house-scale. A site-
map was utilized for the registration of SfM reconstructions
without any data overlap [11] via heuristics. Our problem
does not have a map (i.e., floorplan).

Indoor digital scanning: Image-based indoor 3D recon-

struction made great progress nearly a decade ago [6],
but was not robust enough for production. The advent of
consumer-grade depth sensors made a breakthrough in the
indoor 3D scanning via RGBD videos [13, 10]. However,
the operation was too complicated for non-experts to use as
a production system. Panorama RGBD cameras have been
successful in industry for 3D indoor scanning, where Mat-
terport is a good example [2]. Their operations are much
simpler than those of RGBD videos. However, the system
is still cumbersome for mass consumers and has suffered
from slow adoption in the real-estate business. This pa-
per proposes a novel SfM algorithm, namely a sparse set
of panoramas with little to no visual overlaps, which has
been exploding in the past five years.

3. Dataset and Problem Definition
A dataset contains 1029 panoramas and 286 apart-

ments/houses from a production pipeline. RICOH THETA
camera series are used for the data acquisition. The number
of panoramas per house ranges from 2 to 7, in particular,
44/91/91/58/2 houses contain 2/3/4/5/7 panoramas, re-
spectively. Panorama images are rescaled to 1024× 512.

Annotations: Each panorama is associated with the follow-
ing set of information/annotations (See Fig. 2).

• A floorplan image of the apartment/house.
• Manhattan rectification parameters estimated by the offi-
cial HorizonNet [16] code package.
• A Manhattan room layout. We seek to identify the extent
of a current room instead of estimating the entire visible
floor region through doorways. As seen in Fig. 4, our layout
annotations do not include spaces behind doors.
• A camera pose (a 2D position and a heading) with respect
to the floorplan. The positions are calculated in the unit of
meters by assuming that the room height is 3.2 meters. 1

• Window and door instance segmentation. Each instance
is associated with a window/door type label. 2

• A room type label where a panorama is taken.
• A set of room-to-room connections via doors.

Problem definition: The input is a set of panoramas from
a single house/apartment. The output is 2D relative cam-
era poses, that is, a 2D position and a heading angle per
panorama. We assume that cameras are placed at a con-
stant height from a flat floor and the gravity rectification is
successful 3. An SfM reconstruction is defined up to a sim-

1Assuming a fixed camera height, we convert a room layout into a 2D
segmentation mask in a top-down view and manually place it in the floor-
plan while adjusting the overall scale of the masks. See the supplementary
document for the details of our annotation system.

2Window-door types are Door/Glass-door/Frame/Window/Kitchen-
counter/Closet. Room types are Balcony/Closet/Western-style/Japanese-
style/Dining-room/Kitchen/Corridor/Washroom/Bathroom/Toilet.

3Production data acquisition usually requires a monopod or a tripod to
avoid hand-shakes, making the camera height roughly constant. Together
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Figure 2. Extreme indoor panorama dataset consisting of 1029
panoramas and 286 apartments/houses. Our annotations include
a floorplan image, a Manhattan room layout, door/window detec-
tions with types, room-type classifications, room-to-room connec-
tions, and camera poses with respect to the floorplan image.

ilarity transformation, and the reconstructed camera centers
are registered to the ground truth by minimizing the sum of
squared distances (i.e., aligning the center of mass and us-
ing SVD to solve for a scaled rotation). Our reconstruction
is metric, which we align by a rigid transformation.
Metric: The performance is evaluated by the rate of suc-
cess, where a method is defined to be a success if top-K
reconstructions contain a solution, whose mean positional
error is below δ meters. We vary K from 1 to 10. The
threshold δ is set to 0.2, 0.6, or 1.0 meter.

4. Extreme Indoor Structure from Motion
Extreme Indoor SfM is challenging even for trained hu-

man annotators, where large-scale data/annotation collec-
tion is not easy. We extract the architectural semantic in-

with the accelerometer in an IMU yielding the gravity, it suffices to esti-
mate only the horizontal position and heading angle.

formation from each panorama and re-project into a “Nadir
semantic representation”, which cuts the flow of raw pixel
information and avoids network over-fitting. After generat-
ing arrangement candidates by aligning doors in the seman-
tic images, a convolutional message passing neural network
learns to evaluate the realism of the arrangements. The sec-
tion explains the Nadir semantic image representation, the
semantic image construction, the arrangement generation,
and the arrangement evaluation (See Fig. 3).

4.1. Nadir semantic image

A nadir semantic image is a 16-channel image in
the nadir (i.e., top-down) view, representing the room
shape, the room type, the door/window locations, and the
door/window types. The image is of resolution 256× 256
(1 pixel = 4 cm). The panorama center is at the center of
the image and the left border of the (Manhattan-rectified)
panorama maps to the image x-axis.

The first 10 channels are segmentation masks for the 10
room types. Suppose a room type is “Kitchen” which cor-
responds to the first channel, the room shape is given as a
segmentation mask in the first channel. The remaining 9
channels become 0. There are 6 door/window types, and
the remaining six channels are their segmentation masks.

4.2. Semantic image construction

A room layout can be reprojected to the Nadir image
as a polygonal shape, where the scale comes from the as-
sumption that the room height is 3.2 meters as in the dataset
preparation. Bounding boxes of the doors and windows are
assumed to be on the room walls, and reprojected to the
Nadir image. At times, a bounding box overlaps with two
edges of a room polygon, in which case we clip the bound-
ing box at the corner and keeps the longer side. PIL Image
library [4] is used to draw an image, where doors/windows
are drawn with a thickness of 3 pixels.

During training, we use the ground truth to generate a se-
mantic nadir image for each panorama. During testing, we
apply standard techniques for Manhattan-rectification [16],
room layout estimation [16], door/window detection and
type classification [18], and room type classification [17].
The room and door/window types are probabilistic in this
case, where the room and door/window segmentation masks
store the probability scores instead of being binary. See
Sect. 5.1 for the architecture details and Fig. 5 for the sam-
ples of estimated nadir semantic images.

4.3. Arrangement generation

We use door detections to align panoramas and create ar-
rangement candidates. 4 Given two doors from two panora-

4Door/window type classification is not reliable and we treat all the
door/window detections (except for “Window”) as the same doors. The full
door/window types are utilized by baseline methods in the experiments.
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Figure 3. Overview of our system. For each panorama, we estimate a room layout and detect doors/windows by standard CNNs. After
re-projecting the information into a nadir (i.e., top-down) view, we generate arrangement candidates based on the door connections. Finally,
a convolutional message passing network is used to evaluate the realism of each arrangement.

Figure 4. (Top) Our room layout annotations capture only the ex-
tent of the current room. (Bottom) A state-of-the-art layout esti-
mation algorithm HorizonNet [16] seeks to cover the entire visible
floor region through doorways and open-spaces instead.

mas, we register their nadir semantic images by making the
doors parallel and aligning their centers, while keeping the
rooms on the opposite side. Candidate generation is ex-
haustive, using DFS to enumerate all possible arrangements
while enforcing that each door is used at most once.

4.4. Arrangement evaluation

Given an arrangement of Nadir semantic images, a
convolutional message passing network (ConvMPN) [21]
learns to evaluate its realism score. ConvMPN is a variant
of a graph neural network, whose input is a graph of nadir
semantic images, which are fully connected in the relational
graph. We could use the room-to-room connections to de-
fine a different relational graph, but this made no difference
in the experiments. Starting from a resolution of 256×256,
we iterate convolutional message passing and max-pooling
to shrink the feature resolutions, pool features from all the
nodes, and use a FC layer to predict the realism score. See

Figure 5. Left: Panoramas with the inferred room type, the room
layout, and the detected doors/windows (plus type and segmenta-
tion). Right: Constructed nadir semantic images.

the supplementary document for the architecture details.

Training data generation: We use the ground-truth to gen-
erate positive samples instead of directly using the GT ar-
rangements, in which door masks are not exactly aligned
and the network might cheat in distinguishing positive sam-
ples. Concretely, given the GT room-to-room connec-
tions via doors, we exhaustively enumerate all the possi-
ble panorama connections with a tree topology (i.e., mini-
mal required connections) and use the same algorithm as in
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Sect. 4.3 to produce positive arrangement samples.
Negative samples are the arrangements made by the ar-

rangement generation process in Sect. 4.3, excluding the
positive ones. The challenge is the data imbalance, where
negative samples (1,968,679) are a lot more than the posi-
tive ones (353). Similar in spirit to hard negative mining, we
found that the following two heuristic filters are effective in
subsampling easy negatives and focusing on hard samples.
• Overlap filter removes arrangements where rooms have
significant overlaps. We define the “overlap-ratio” of a
panorama to be the ratio of pixels in its room mask that over-
lap with another panorama. For example, if a mask is com-
pletely enclosed by another, the overlap-ratio becomes 1.0.
The filter rejects an arrangement if the average overlap-ratio
is above 0.1, while ignoring “Dining-room” and “Kitchen”,
which tend to overlap with each other. At test time, a room
type is set to the one with the highest probability, and the
same goes for the door/window types next.
• Door-type filter removes arrangements where doors of
different types are matched even at a single connection.

By using these two filters, we divide the negative ar-
rangements into mutually exclusive three groups: Hard
(passing both filters), Intermediate (passing only the overlap
filter), and Easy (the rest). From 240 training units, the pro-
cess generates 353 positive, 34035 hard-negative, 1,025,699
intermediate-negative, and 908,592 easy-negative samples.

During training, we form a batch of size 32 by randomly
sampling (4, 8, 16, and 4) samples from the four groups
(positive, hard-negative, intermediate-negative, and easy-
negative), respectively. 32 training samples do not fit in
GPU memory and we process a sample one by one, while
accumulating gradients over the 32 samples before updating
the network parameters. Lastly, we set the regression target
of the samples in these 4 groups as (1, 0, -1, -1) with a mean
squared error loss instead of the binary classifier loss.

5. Implementation details

We use a workstation with 2.20 GHz Xeon (40 CPU
cores) and dual NVIDIA GTX 1080 Ti GPUs. The training
takes roughly 11 hours for 340k iterations with a batch of
32 samples. At test time, the semantic image construction,
the arrangement generation, and the arrangement evaluation
takes less than 1 min, 3 mins, and 20 seconds for a typical
house/apartment. Test time execution slows down exponen-
tially as the number of panorama grows. Our biggest house
with 7 panoramas takes 1 hour for processing. The section
explains the semantic image construction networks and the
competing methods in our comparative evaluation.

5.1. Semantic image construction networks

We use standard CNN architectures for the implementa-
tion of panorama preprocessing networks in Sect. 4.2.

Layout estimation: We downloaded pretrained Horizon-
Net [16] which was trained on 18362 panoramas from
Structured3D dataset [22]. We fine-tune the network on our
layout annotations for 300 epochs with a batch size of 8,
which improves the 3D IoU score [16] from 74.42 to 88.12.

Door detection and type classification: We use an instance
segmentation network from Detectron2 [18], in particular,
Feature Pyramid Networks [9] with ResNet-101 [7] as the
backbone. We fine-tune the pretrained model for 250k iter-
ations with a learning rate of 0.0025 and the batch-size of 2,
which improved the average precision to 52.498 at AP50.

Room type classification: We design a CNN encoder with
8 convolutional layers of 8 channels, each followed by a
group normalization [17] of 4 groups, ReLU as an activa-
tion function, and MaxPool for downsampling. The input is
a 256×256 panorama image (rescaled to the 1:1 aspect ra-
tio). The trained network achieves 68.51% accuracy, where
most confusions occur between Dining Hall and Kitchen or
Western-Style-Room and Japense-Style-Room.

5.2. Competing methods

We compare against four competing methods. Note that
recent extreme pose estimation algorithms [19, 8] assume
that images belong to the same room and cannot be used.

• Overlap and door-type filters are heuristic arrangement
filters used for sampling training data. We build a base-
line by adding a random selection after the filters: randomly
picking an arrangement as the answer.

• Overlap filter is the same as above except that only one
filter is used before the random selection.

• Retrieval-baseline looks at the nadir semantic images of
a given panorama set, finds the most similar set from the
training data, and returns the corresponding GT arrange-
ment as the answer. Architectural design follows certain
layout principles, but this baseline is to verify that such a
simple approach fails. Concretely, considering a nadir se-
mantic image as a 16 channel image, we define the distance
of semantic images as their L1 norm, while considering
the four-fold rotational ambiguities and using the best case.
Given two sets of panoramas, we solve a bipartite matching
and uses the sum of the distances as their inverse similar-
ity, which is used to retrieve the most similar panorama set
from the training data. We ignore training samples whose
number of panoramas is less than that of the query.

• SfM is a traditional SfM pipeline designed for panorama
images from an open-source OpenMVG library [12].

6. Experimental results
We randomly split our data into 240 training and 46 test-

ing houses/apartments. 46 test houses contain 154 panora-
mas. In particular, 8/15/22/1 houses contain 2/3/4/5 panora-
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Figure 6. Quantitative evaluations. We compare against four competing methods with the “success-rate” metric in Sect. 3. For example, the
left plot shows the rate in which top-K arrangements contain a successful reconstruction (i.e., mean positional error less than 1.0 meter).

Table 1. Ablation study on the importance of the room-shape
(Rshape), the room-type (Rtype), and the door/window (DW ) in-
formation. The table shows the mean average precision over the
values of K=1∼5 at three different distance thresholds (δ). The
second row is our system, where predictions (Pred) are used for
all the information. The first row is a case where the ground-truth
(GT) information are used instead. In the last three rows, we drop
the room-type and/or door/window information (denoted as ’x’).

Rshape Rtype DW δ = 0.2 δ = 0.6 δ = 1.0
GT GT GT 50.4 64.8 70.9
Pred Pred Pred 30.0 59.6 67.8
Pred x Pred 21.3 60.0 64.3
Pred Pred x 12.6 26.5 34.7
Pred x x 4.7 14.4 24.5

Figure 7. Failure examples. Our algorithm relies strongly on pre-
processing networks and is not able to recover from mistakes by
the room layout estimation and/or door/window detections.

mas, respectively. At total, door/window detectors find 279
Doors, 70 Glass doors, 53 Frames, 69 Windows, 29 Kitchen
counters, and 59 Closets. The average number of arrange-
ments per unit is 3512. Overlap-filter reduces the number
to 1938, and Door-type filter further reduces the number to
187, which are used in our baseline methods.

Quantitative evaluations: Figure 6 is our main result,

comparing our approach against the four competing meth-
ods based on the success-rate metric (See Sect. 3). The
blue dashed line (Max Limit) shows the maximum possi-
ble success-rate by the oracle arrangement evaluator, given
the constructed semantic nadir images, which contain er-
rors. For example, Max limit is at 82.6 when δ=0.6, indi-
cating that none of the generated arrangements have a mean
positional error less than 0.6 for 17.4% of the test samples.

SfM completely fail for every single example and has 0
success-rate for every entry. It manages to align 2 panora-
mas for a few testing cases, but was never able to align all.
The heuristic filters do some reasonable jobs, in fact, much
better than Retrieval-baseline, demonstrating the challenges
of our problem. Our method outperforms all the other com-
peting methods with significant margins.

Table 1 provides an ablation study on the importance
of different information components in the nadir seman-
tic representation. The first row presents a scenario where
the semantic image construction is perfect (i.e., no errors
in the panorama pre-processing networks). In the bottom
three rows, we drop the room-type information (i.e., treat-
ing all the room types to be the same) and the door/window-
information (i.e., setting the door/window segmentation
masks to be empty). For each setup, we retrain our eval-
uators with the modified data representation. The fourth
entry shows that the door/window information is critical in
identifying the correct arrangement as expected.
Qualitative evaluations: Figure 8 provides qualitative
comparisons against the competing methods. The left col-
umn reveals the extreme nature of our problem, where there
exists little to no visual overlaps and the task appears infea-
sible even for humans. Given the difficulty, baseline results
are impressive. Retrieval baseline does not utilize the in-
ferred room shape/size information and often makes gross
errors. Our approach consistently outperforms the others.

Figure 9 shows the top 5 reconstructions by our method
for more examples. The top example has a panorama at
a balcony, which is challenging for a standard SfM system,
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Figure 8. Qualitative comparisons against the three competing methods. We show the top-2 reconstructions from each method based on
their scoring functions. Room colors indicate their types

because 1) the majority of the image sees the outdoor space;
and 2) the house interior is under-exposed due to the lim-
ited dynamic range. On the contrary. this is one of the
easiest panoramas for our system, as the room type clas-
sification is trivial and a balcony should be connected to a
bright door/window in a living room, which can be easily
detected. Our approach learns the architectural rules of lay-
outs and often finds an accurate arrangement in the top 3,
which look realistic even when they are incorrect.

Discussions and future work: This paper introduces a new
extreme SfM problem for indoor panoramas and proposes a
unique SfM algorithm, which learns to evaluate the arrange-
ment of rooms/doors/windows without solving a correspon-
dence problem. Our algorithm makes significant improve-
ments over the current state-of-the-art, which completely
fails for every single example.

Our solution is still far from perfect (See Fig. 7). First,
the running time is exponential in the number of panoramas.
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Figure 9. Qualitative evaluations. Top-5 reconstructions by our method against the ground-truth arrangement.

Second, the algorithm highly depends on the door detec-
tion, in particular, is not able to recover from missing doors.
Our future work is the development of more scalable algo-
rithm that does not require hard door/window detections.
Please refer to the supplementary for system/architecture
details, more results on panorama-preprocessing networks,

more reconstruction results, and intermediate visualization
revealing what the arrangement evaluators learned.
Acknowledgement: This research is partially supported by
NSERC Discovery Grants with Accelerator Supplements
and DND/NSERC Discovery Grant Supplement.
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