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Abstract
Vision models notoriously flicker when applied to videos:

they correctly recognize objects in some frames, but fail on
perceptually similar, nearby frames. In this work, we system-
atically analyze the robustness of image classifiers to such
temporal perturbations in videos. To do so, we construct two
new datasets, ImageNet-Vid-Robust and YTBB-Robust,
containing a total of 57,897 images grouped into 3,139 sets
of perceptually similar images. Our datasets were derived
from ImageNet-Vid and Youtube-BB, respectively, and thor-
oughly re-annotated by human experts for image similarity.
We evaluate a diverse array of classifiers pre-trained on Im-
ageNet and show a median classification accuracy drop of
16 and 10 points, respectively, on our two datasets. Addi-
tionally, we evaluate three detection models and show that
natural perturbations induce both classification as well as lo-
calization errors, leading to a median drop in detection mAP
of 14 points. Our analysis demonstrates that perturbations
occurring naturally in videos pose a substantial and real-
istic challenge to deploying convolutional neural networks
in environments that require both reliable and low-latency
predictions.

1. Introduction
Applying state-of-the-art image recognition systems to

videos reveals a troubling phenomenon: models correctly
recognize objects in one frame, but fail to do so in the very
next frame (Figure 1). In practice, this flickering of predic-
tions is treated as an unfortunate but unavoidable property
of image-based models. This issue can be mitigated in of-
fline settings by smoothing predictions over time. However,
online smoothing isn’t nearly as effective and incurs a delay,
resulting in catastrophic mistakes in downstream applica-
tions: e.g., flickering object classifications have reportedly
led to fatal autonomous vehicle collisions [3].

At its root, prediction flicker is a manifestation of a
broader issue: current models lack robustness to small input
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Figure 1: Examples of natural perturbations from nearby
video frames and resulting classifier predictions from a
ResNet-152 model fine-tuned on ImageNet-Vid. While the
images appear almost identical to the human eye, the classi-
fier confidence changes substantially.

perturbations. In the machine learning community, model ro-
bustness has typically been analyzed on images perturbed by
an adversary [11, 2], or by hand-designed strategies, such as
rotations or blurs [7, 6, 14, 13]. However, these benchmarks
rely on synthetically modifying the input image, serving at
best as proxies for evaluating robustness to natural perturba-
tions, which are common in videos.

In this work, we systematically analyze the prevalence
of flicker across vision models. Taking inspiration from the
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robustness literature, we evaluate models on perceptually
similar images, which we sample from nearby video frames.
However, nearby frames can still exhibit drastic changes
(e.g., significant occlusions), which may cause even robust
models to fail. We discard such frame pairs by employing
human expert labelers to evaluate model robustness only on
perceptually similar images, unlike prior work [12]. As a
cornerstone of our investigation, we introduce two test sets
for evaluating model robustness: ImageNet-Vid-Robust
and YTBB-Robust, carefully curated from the ImageNet-
Vid and Youtube-BB datasets [27, 24]. To the best of our
knowledge these are the first datasets of their kind, contain-
ing tens of thousands of images that are human reviewed and
grouped into thousands of perceptually similar sets. In total,
our datasets contain 3,139 sets of temporally adjacent and
visually similar images (57,897 images total).

We use these datasets to measure the robustness of current
models to small, naturally occurring perturbations. Although
we use videos to sample these images, our datasets allow
evaluating the robustness of standard, image-based computer
vision models, such as those trained on ImageNet. Our
testbed contains over 47 different models, varying model
types (CNNs, transformers), architectures (e.g., AlexNet,
ResNet) and training methods (e.g., adversarial training, aug-
mentation). To systematically characterize flicker, we also
introduce a stringent robustness metric.

Our experiments show that all models in our testbed de-
grade significantly in the presence of small, natural perturba-
tions in video frames. Under our metric, we find such pertur-
bations in ImageNet-Vid-Robust and YTBB-Robust in-
duce median accuracy drops of 16% and 10% respectively
for classification, and a median 14 point AP drop for detec-
tion1. Even for the best-performing classification models
trained on public datasets, we observe an accuracy drop of
14% for ImageNet-Vid-Robust and 8% for YTBB-Robust.
Recently introduced, contrastive models trained on weakly
supervised web images [23] can reduce this gap, but require
over 400 million images, and still exhibit noticeable gaps of
6.1% and 6.7%, respectively.

Our results show that robustness to natural perturbations
in videos is problematic for a wide variety of models. Practi-
cal deployment of models, especially in safety-critical envi-
ronments like autonomous driving, requires predictions that
are not only accurate, but also robust over time. Our analysis
indicates that ensuring reliable predictions on every frame
of a video is an important direction for future work.

2. Related work
Adversarial examples. While various forms of adver-

sarial examples have been studied, the majority of research
1We only evaluated detection on ImageNet-Vid-Robust as bounding-

box labels in Youtube-BB are not temporally dense enough for our evalua-
tion.

focuses on ℓp robustness [11, 2, 32]. However, it is unclear
whether adversarial examples pose a problem for robust-
ness outside of a truly worst case context. It is an open
question whether perfect robustness against a ℓp adversary
will induce robustness to realistic image distortions such as
those studied in this paper. Recent work has proposed less
adversarial image modifications such as small rotations &
translations [6, 1, 7, 17], hue and color changes [14], image
stylization [9] and synthetic image corruptions such as Gaus-
sian blur and JPEG compression [13, 10]. Even though the
above examples are more realistic than the ℓp model, they
still synthetically modify the input images to generate per-
turbed versions. In contrast, our work performs no synthetic
modification and instead uses unmodified video frames.

Studying robustness in videos. In recent work, [12] ex-
ploit the temporal structure in videos to study robustness.
However, their experiments suggest a substantially smaller
drop in accuracy. The primary reason for this is a less strin-
gent metric used in [12]. By contrast, our PM-k metric is
inspired by the “worst-of-k” metric used in prior work [6],
highlighting the sensitivity of models to natural perturba-
tions. In the appendix, we study the differences between
the two metrics in more detail. Furthermore, the lack of
human review and the high label error-rate we discovered
in Youtube-BB (Table 1) presents a potentially troubling
confounding factor that we resolve in our work.

Distribution shift. Small, benign changes in the test
distribution are often referred to as distribution shift. [25]
explore this phenomenon by constructing new test sets for
CIFAR-10 and ImageNet and observe substantial perfor-
mance drops for a large suite of models on the newly con-
structed test sets. Similar to our Figure 3, the relationship
between their original and new test set accuracies is also
approximately linear. However, the images in their test set
bear little visual similarity to images in the original test set,
while all of our failure cases are on perceptually similar
images. In a similar vein of study, [29] studies distribu-
tion shift across different computer vision data sets such as
Caltech-101, PASCAL, and ImageNet.

Temporal consistency in computer vision. Authors of
[16] explicitly identify flickering failures and use a tech-
nique reminiscent of adversarially robust training to improve
image-based models. A similar line of work focuses on
improving object detection in videos as objects become oc-
cluded or move quickly [18, 8, 33, 30]. The focus in this
work has generally been on improving object detection when
objects transform in a way that makes recognition difficult
from a single frame, such as fast motion or occlusion. In this
work, we document a broader set of failure cases for image-
based classifiers and detectors and show that failures occur
when the neighboring frames are imperceptibly different.
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Anchor frame Discarded frame Anchor frame Anchor frame Discarded frameDiscarded frame

Figure 2: Temporally adjacent frames may not be visually similar. We show three randomly sampled frame pairs where the
nearby frame was marked as “dissimilar” to the anchor frame during human review and then discarded from our dataset.

ImageNet-Vid
Robust

YTBB
Robust
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es Reviewed 1,314 2,467
Accepted 1,109 (84%) 2,030 (82%)

Labels updated - 834 (41%)
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e
pa
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s Reviewed 26,029 45,631

Accepted 21,070 (81%) 36,827 (81%)

Table 1: Dataset statistics of ImageNet-Vid-Robust and
YTBB-Robust. For YTBB-Robust, we updated the labels
from for 41% (834) of the accepted anchors due to incom-
plete labels in Youtube-BB.

3. Evaluating temporal robustness
ImageNet-Vid-Robust and YTBB-Robust are sourced

from videos in the ImageNet-Vid and Youtube-BB datasets
[27, 24]. All but one 2 of the object classes in ImageNet-Vid
and Youtube-BB are from the WordNet hierarchy [21] and di-
rect ancestors of ILSVRC-2012 classes. Using the WordNet
hierarchy, we construct a canonical mapping from ILSVRC-
2012 classes to ImageNet-Vid and Youtube-BB classes,
which allows us to evaluate off-the-shelf ILSVRC-2012
models on ImageNet-Vid-Robust and YTBB-Robust. We
provide more background on the source datasets in the ap-
pendix.

3.1. Dataset construction

Next, we describe how we extracted sets of naturally per-
turbed frames from ImageNet-Vid and Youtube-BB to create
ImageNet-Vid-Robust and YTBB-Robust. A straightfor-
ward approach would be to select a set of anchor frames and
use temporally adjacent frames in the video with the assump-
tion that such frames contain only small perturbations from
the anchor. However, as Figure 2 illustrates, this assumption
is frequently violated, especially due to fast camera or object
motion.

Instead, we first collect preliminary datasets of natural
perturbations following the same approach, and then man-

2the class “skateboard" in Youtube-BB is not present in ILSVRC-2012

ually review each of the frame sets. For each video, we
randomly sample an anchor frame and take k = 10 frames
before and after the anchor frame as candidate perturbation
images3. This results in two datasets containing one an-
chor frame each from 3,139 videos, with approximately 20
candidate perturbation per anchor frame4.

Next, we curate the dataset with the help of four expert
human annotators. The goal of the curation step is to ensure
that each anchor frame and its nearby frames are correctly
labeled with the same ground truth class, and that the anchor
frame and the nearby frames are visually similar.

Denser labels for Youtube-BB. As Youtube-BB con-
tains only a single category label per frame at 1 frame per
second, annotators first inspected each anchor frame indi-
vidually and added any missing labels. In total, annotators
corrected the labels for 834 frames, adding an average of 0.5
labels per anchor frame. These labels are then propagated to
nearby, unlabeled frames at the native frame rate and verified
in the next step. ImageNet-Vid densely labels all classes per
frame, so we skipped this step for this dataset.

Frame pairs review. Next, for each pair of anchor and
nearby frames, a human annotates (i) whether the pair is
correctly labeled in the dataset, and (ii) whether the pair is
similar. We took several steps to mitigate the subjectivity
of this task and ensure high annotation quality. First, we
trained reviewers to mark frames as dissimilar if the scene
undergoes any of the following transformations: significant
motion, significant background change, or significant blur
change. We asked reviewers to mark each dissimilar frame
with one of these transformations, or “other”, and to mark
a pair of images as dissimilar if a distinctive feature of the
object is only visible in one of the two frames (such as the
face of a dog). If an annotator was unsure about the correct
label, she could mark the pair as “unsure”. Second, we
present only a single pair of frames at a time to reviewers
because presenting videos or groups of frames could cause
them to miss large changes due to the phenomenon of change
blindness [22].

3For YTBB-Robust we use a subset of the anchor frames used by [12].
4Anchor frames near the start or end of the video may have less than 20

candidate frames.
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Verification. In the previous stage, all annotators were
given identical labeling instructions and individually re-
viewed a total of 71,660 image pairs. To increase consistency
in annotation, annotators jointly reviewed all frames marked
as dissimilar, incorrectly labeled, or “unsure”. A frame was
only considered similar to its anchor if a strict majority of
the annotators marked the pair as such.

After the reviewing was complete, we discarded all an-
chor frames and candidate perturbations that annotators
marked as dissimilar or incorrectly labeled. The final
datasets contain a combined total of 3,139 anchor frames
with a median of 20 similar frames each.

3.2. The pm-k evaluation metric

Given the datasets introduced above, we propose a metric
to measure a model’s robustness to natural perturbations. In
particular, let A = {a1, ..., an} be the set of valid anchor
frames in our dataset. Let Y = {y1, ..., yn} be the set of
labels for A. We let Nk(ai) be the set of frames marked as
similar to anchor frame ai. In our setting, Nk is a subset
of the 2k temporally adjacent frames (plus/minus k frames
from the anchor).

Classification. The standard classification accuracy on the
anchor frame is accorig = 1 − 1

N

∑N
i=1 L0/1(f(ai), yi),

where L0/1 is the standard 0-1 loss function. We define
the pm-k analog of accuracy as

accpmk = 1− 1

N

N∑
i=1

max
b∈Nk(ai)

L0/1(f(b), yi) , (1)

which corresponds to picking the worst frame from each set
Nk(ai) before computing accuracy. We note the similarity of
the pm-k metric to standard ℓp-robustness. If we let Nk(ai)
be the set of all images within an ℓp ball of radius ϵ around
ai, then the notions of robustness are identical. For frames
with multiple labels, we count a prediction as correct if the
model predicts any of the correct classes for a frame for both
accuracy measures.

Detection. The standard metric for detection is mean aver-
age precision (mAP) of the predictions at a fixed intersection-
over-union (IoU) threshold [19]. We define the pm-k metric
analogous to that for classification: We replace each anchor
frame with the nearest frame that minimizes the average
precision (AP, averaged over recall thresholds) of the pre-
dictions, and compute pm-k as the mAP on these worst-case
neighboring frames.

4. Main results
We evaluate a testbed of 47 classification and three detec-

tion models on ImageNet-Vid-Robust and YTBB-Robust.

We first discuss the various types of classification mod-
els evaluated with the pm-k classification metric. Sec-
ond, we evaluate the performance of detection models on
ImageNet-Vid-Robust using use the bounding box anno-
tations inherited from ImageNet-Vid and using a variant of
the pm-k metric for detection. We then analyze the errors
made on the detection adversarial examples to isolate the
effects of localization errors vs. classification errors. Finally,
we analyze the impact of dataset review, video compression,
and video frame rate on the accuracy drop.

4.1. Classification

The classification robustness metric is accpmk defined in
Equation (1). In Figure 3, we plot the benign accuracy,
accorig, versus the robust accuracy, accpmk, for all classifica-
tion models in our test bed and find a consistent drop from
accorig to accpmk. Further, we note that the relationship be-
tween accorig and accpmk is approximately linear, indicating
that while improvements in the benign accuracy do result in
improvements in the worst-case accuracy, they do not suffice
to resolve the accuracy drop due to natural perturbations. We
provide implementation details and hyperparameters for all
models in the supplementary.

Our test bed consists of six model types with increasing
levels of supervision. We present results for representative
models from each model type in Section 4.1.

ILSVRC Trained The WordNet hierarchy enables us to
repurpose models trained for the 1,000 class ILSVRC-2012
dataset on ImageNet-Vid-Robust and YTBB-Robust We
evaluate a wide array of ILSVRC-2012 models (available
from [4]) against our natural perturbations. Since these
datasets present a substantial distribution shift from the origi-
nal ILSVRC-2012 validation set, we expect the benign accu-
racy accorig to be lower than the comparable accuracy on the
ILSVRC-2012 validation set. However, our main interest
here is in the difference between the original and perturbed
accuracies accorig - accpmk. A small drop in accuracy would
indicate that the model is robust to small changes that oc-
cur naturally in videos. Instead, we find significant median
drops of 15.0% and 13.2% in accuracy on our two datasets,
indicating sensitivity to such changes.

Noise augmentation One hypothesis for the accuracy
drop from original to perturbed accuracy is that subtle ar-
tifacts and corruptions introduced by video compression
schemes could degrade performance when evaluating on
these corrupted frames. The worst-case nature of the pm-k
metric could then be focusing on these corrupted frames.
One model for these corruptions are the perturbations intro-
duced in [13]. To test this hypothesis, we evaluate models
augmented with a subset of the perturbations (exactly one of:
Gaussian noise, Gaussian blur, shot noise, contrast change,
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Figure 3: Model accuracy on original vs. perturbed images. Each data point corresponds to one model in our testbed (shown
with 95% Clopper-Pearson confidence intervals). If models were robust to perturbations, we would expect them to fall on
the dashed line (y = x). Instead, we find they all lie significantly below this ideal line, consistently exhibiting a significant
accuracy drop to perturbed frames. Each perturbed frame was taken from a ten frame neighborhood (approximately 0.3
seconds) of the original frame, and reviewed by experts to confirm visual similarity to the original frame.

Model Type Accuracy
Original

Accuracy
Perturbed ∆

ImageNet-Vid-Robust
Trained on ILSVRC 67.5 [64.7, 70.3] 52.5 [49.5, 55.5] 15.0
+ Noise Augmentation 68.8 [66.0, 71.5] 53.2 [50.2, 56.2] 15.6
+ ℓ∞ robustness (ResNext-101) 54.3 [51.3, 57.2] 40.8 [39.0, 43.7] 12.4
+ FT on ImageNet-Vid 80.8 [78.3, 83.1] 65.7 [62.9, 68.5] 15.1
+ FT PM-k loss on ImageNet-Vid 36.2 [33.3, 39.1] 29.8 [27.1, 32.5] 6.4
+ FT on ImageNet-Vid (ResNet-152) 84.8 [82.5, 86.8] 70.2 [67.4, 72.8] 14.6
+ FT on ImageNet-Vid-Det 77.6 [75.1, 80.0] 65.4 [62.5, 68.1] 12.3
CLIP Zero-Shot 95.3 [93.8, 96.4] 89.2 [87.2, 91.0] 6.1

YTBB-Robust
Trained on ILSVRC 57.0 [54.9, 59.2] 43.8 [41.7, 46.0] 13.2
+ Noise Augmentation 62.3 [60.2, 64.4] 45.7 [43.5, 47.9] 16.6

+ ℓ∞ robustness (ResNext-101) 53.6 [51.4, 55.8] 43.2 [41.0, 45.3] 10.4
+ FT on Youtube-BB 91.4 [90.1, 92.6] 82.0 [80.3, 83.7] 9.4
+ FT on Youtube-BB (ResNet-152) 92.9 [91.6, 93.9] 84.7 [83.0, 86.2] 8.2
CLIP Zero-Shot 95.2 [93.9, 95.8] 88.5 [87.0, 89.8] 6.7

Table 2: Accuracies of six model types and the best performing model (shown with 95% Clopper-Pearson confidence intervals).
∆ denotes accuracy drop between evaluation on anchor frame (accorig) and worst frame in similarity set (accpmk). The model
architecture is ResNet-50 unless noted otherwise. ‘FT’ denotes ‘fine-tuning.’ See Section 4.1 for details.

impulse noise, or JPEG compression). We found that these
augmentation schemes did not improve robustness against
our perturbations substantially, and still result in a median
accuracy drop of 15.6% and 16.6% on the two datasets.

ℓ∞-robustness. We evaluate the model from [31], which
currently performs best against ℓ∞-attacks on ImageNet. We

find that this model has a smaller accuracy drop than the two
aforementioned model types on both datasets. However,
the robust model achieves substantially lower original and
perturbed accuracy than either of the two model types above,
and the robustness gain is modest (3% compared to models of
similar benign accuracy). In section 4.3 of [28], the authors
further analyze the performance of ℓ∞-robust models on
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Task Model mAP
Original

mAP
Perturbed

mAP
∆

FRCNN, ResNet 50 62.8 48.8 14.0
FRCNN, ResNet 101 63.1 50.6 12.5Detection
R-FCN, ResNet 101 [30]* 79.4* 63.7* 15.7*
FRCNN, ResNet 50 76.6 64.2 12.4
FRCNN, ResNet 101 77.8 66.3 11.5Localization
R-FCN, ResNet 101* 80.9* 70.3* 10.6*

Table 3: Detection and localization mAP for Faster R-CNN and R-FCN models. Both detection and localization suffer from
significant mAP drops due to perturbations. (R-FCN was trained on ILSVRC Det and VID 2015, and evaluated on the 2015
subset of ILSVRC-VID 2017, indicated by *.)

Figure 4: Naturally perturbed examples for detection. Red boxes indicate false positives; green boxes indicate true positives;
white boxes are ground truth. Classification errors are common failures, such as the fox on the left, which is classified correctly
in the anchor frame, and misclassified as a sheep in a nearby frame. However, detection models also have localization errors,
where the object of interest is not correctly localized in addition to being misclassified, such as the airplane (middle) and the
motorcycle (right). All visualizations show predictions with confidence greater than 0.5.

ImageNet-Vid-Robust and YTBB-Robust.

Fine-tuning on video frames. To adapt to the new class
vocabulary and the video domain, we fine-tune several net-
work architectures on the ImageNet-Vid and Youtube-BB
training sets. For Youtube-BB, we train on the anchor frames
used for training in [12], and for ImageNet-Vid we use all
frames in the training set. The resulting models significantly
improve in accuracy over their ILSVRC pre-trained coun-
terparts (e.g., 13% on ImageNet-Vid-Robust and 34% on
YTBB-Robust for ResNet-50). This improvement in ac-
curacy results in a modest improvement in robustness for
YTBB-Robust, but still suffers from a substantial 9.4% drop.
On ImageNet-Vid-Robust, there is almost no change in
the drop from 15.0% to 15.1%.

Fine-tuning with a robust loss. Training on videos opti-
mizes for the average accuracy on video frames. However,
our goal at test-time is to improve the worst-case, PM-k ac-
curacy. We adopt a strategy inspired by work in adversarial
robustness [20], which uses the PM-k metric as the training
loss. Specifically, for each frame xt, let the standard training
loss be for a model f be L(xt, yt; f). We instead train the
model using

L̂(f(xt), yt) = max
x̂∈Nk(xt)

L(f(x̂), yt),

where Nk(xt) contains all images within k frames of xt

with labels that match yt. Unfortunately, this results in a
drastic drop in both the original and perturbed accuracies by
31.3% and 22.7% respectively. However, the strategy does
reduce the robustness gap from 15.1% to 6.4%, suggesting
this loss may be a promising avenue for future improvements
in robustness. We provide implementation details and further
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Accuracy
Reviewed Original Perturbed ∆

ImageNet-Vid-Robust
✗ 80.3 64.1 16.2
✓ 84.8 70.2 14.4

YTBB-Robust
✗ 88.1 78.1 10.0
✓ 92.9 84.7 8.9

Table 4: Impact of human review on ImageNet-Vid-Robust and YTBB-Robust on original and perturbed accuracy, using
ResNet-152 fine-tuned on ImageNet-Vid and Youtube-BB, respectively.

analysis of this model in the supplementary.

Fine-tuning for detection on video frames. We further
analyze whether additional supervision in the form of bound-
ing box annotations improves robustness. To this end, we
train the Faster R-CNN detection model [26] with a ResNet-
50 backbone on ImageNet-Vid. Following standard practice,
the detection backbone is pre-trained on ILSVRC-2012. To
evaluate this detector for classification, we assign the class
with the most confident bounding box as label to the image.
We find that this transformation reduces accuracy compared
to the model trained for classification (77.6% vs. 80.8%).
While there is a slight reduction in the accuracy drop caused
by natural perturbations, the reduction is well within the
error bars for this test set.

Contrastive Language-Image Pre-training (CLIP) Re-
cent advancements in large scale contrastive learning has
leveraged supervision from text to achieve high zero shot
performance on down stream tasks [23, 15]. We evaluate
the performance of the largest CLIP model5 trained on 400
million image, text pairs from the internet. We evaluate two
versions of this model, a “zero-shot” variant trained solely on
400 million images, text pairs and a “linear-probe” variant
where the last linear layer was fine-tuned on ILSVRC-2012.
We find that the zero shot variant while still suffering from a
6% accuracy drop is significantly more robust and accurate
than any of the other models in our test bed. We note that due
to the sheer amount of training data and the size of the model,
these models are incredibly expensive to train and are out
of reach to the computational resources of most researchers.
Thus we leave further investigation of the robustness of these
models to future work.

4.2. Detection

We further study the impact of natural perturbations on ob-
ject detection. Specifically, we report results for two related
tasks: object localization and detection. Object detection is
the standard computer vision task of correctly classifying
an object and finding the coordinates of a tight bounding

5The underlying model was a large visual transformer evaluated on 336
x 336 images (ViT-L/14@336px)

box containing the object. “Object localization”, meanwhile,
refers to only the subtask of finding the bounding box, with-
out attempting to correctly classify the object.

We provide our results on ImageNet-Vid-Robust,
which contains dense bounding box labels unlike Youtube-
BB, which only labels boxes at 1 frame per second. We use
the popular Faster R-CNN [26] and R-FCN [5, 30] architec-
tures for object detection and localization and report results
in Table 3. For the R-FCN architecture, we use the model
from [30]6. We first note the significant drop in mAP of 12
to 15 points for object detection due to perturbed frames for
both the Faster R-CNN and R-FCN architectures. Next, we
show that localization is indeed easier than detection, as the
mAP is higher for localization than for detection (e.g., 76.6
vs 62.8 for Faster R-CNN with a ResNet-50 backbone). Per-
haps surprisingly, however, switching to the localization task
does not improve the drop between original and perturbed
frames, indicating that natural perturbations induce both
classification and localization errors. We show examples of
detection failures in Figure 4.

4.3. Impact of Dataset Review

We analyze the impact of our human review, described
in Section 3.1, on the classifiers in our testbed. First, we
compare the original and perturbed accuracies of a repre-
sentative classifier (ResNet-152 finetuned) on frames with
and without review in Section 4.1. We find that before re-
view, the gap between the two accuracies is 16.2 and 10.0
on ImageNet-Vid-Robust and YTBB-Robust respectively.
Our review improves the original accuracy by 3 to 4% (by
discarding mislabeled or blurry anchor frames), and im-
proves perturbed accuracy by 5 to 6% (by discarding dis-
similar frame pairs). As a result, our review reduces the ac-
curacy drop by 1.8% on ImageNet-Vid-Robust and 1.1%
on YTBB-Robust. These results indicate that the changes
in model predictions are indeed due to a lack of robustness,
rather than due to significant differences between adjacent
frames.

6This model was originally trained on the 2015 subset of ImageNet-Vid.
We evaluated this model on the 2015 validation set because the method
requires access to pre-computed bounding box proposals which are available
only for the 2015 subset of ImageNet-Vid.
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Figure 5: We plot how often each frame offset resulted in error, across all models, before and after review. Frames further
away more frequently cause errors. Our review reduces errors by removing dissimilar frames, especially ones further away.

Accuracy
Original Perturbed ∆ # anchors

All frames 84.8 70.2 14.6 1109
w/o ‘i-frames’ 84.7 70.3 14.4 1104
w/o ‘p-frames’ 83.9 73.7 10.2 415
w/o ‘b-frames’ 85.4 73.2 12.2 699

Table 5: Analyzing results based on compressed frame type
(See Section 4.4).

To further analyze the impact of our review on model
errors, we plot how frequently each offset distance from
the anchor frame results in a model error across all model
types in Figure 5. Larger offsets indicate pairs of frames
further apart in time. For both datasets, we find that such
larger offsets lead to more frequent model errors. Our review
reduces the fraction of errors across offsets, especially for
large offsets, which are more likely to display large changes
from the anchor frame.

4.4. Video compression analysis

One concern with analyzing performance on video frames
is the impact of video compression on model robustness.
In particular, the ‘mp4’ videos in ImageNet-Vid-Robust
contain 3 frame types: ‘i-’, ‘p-’, and ‘b-’ frames. ‘p-frames’
are compressed by referencing pixel content from previous
frames, while ‘b-frames’ are compressed via references to
previous and future frames. ‘i-frames’ are stored without
references to other frames.

We compute the original and perturbed accuracies, as well
as the accuracy drop for a subset without each frame type
in Table 5. While there are modest differences in accuracy
due to compression, our analysis suggests that the sensitivity
of models is not significantly due to the differences in quality
of frames due to video compression.

5. Conclusion
We analyze and quantify a common phenomenon in im-

age models: flicker in predictions over time, which is caused
by a lack of model robustness to natural perturbations. We

show this results in significant accuracy drops for a wide
range of classification and detection models. We highlight
two key avenues for future research:

Building more robust models. Our benchmarks provide
a standard robustness measure for classification and detec-
tion models. In Section 4.1, we found that several models
suffer from substantial accuracy drops due to natural per-
turbations. Further, improvements with respect to artificial
perturbations (like image corruptions or ℓ∞ adversaries) in-
duce only modest robustness improvements. One exception
to this bleak overview are recent contrastive learning ap-
proaches trained on large-scale web data [23], which confer
partial robustness to natural perturbations. We hope our
standardized benchmarks will enable progress in improv-
ing the robustness of such models, and in generalizing their
improvements to models trained on more limited datasets.

Further natural perturbations. Videos provide a
straightforward method for collecting natural perturbations
of images, enabling the study of realistic forms of robust-
ness. Other methods for generating such natural perturba-
tions are likely to provide additional insights into robustness.
As an example, photo sharing websites contain many near-
duplicate images: image pairs of the same scene captured at
different times, viewpoints, or from a different camera [25].
More generally, devising similar, domain-specific strategies
to collect, verify, and measure robustness to natural pertur-
bations in domains such as natural language processing or
speech recognition is a promising direction for future work.

Acknowledgements. We thank Rohan Taori for providing
models trained for robustness to image corruptions, and
Pavel Tokmakov for his help with training detection models
on ImageNet-Vid. This research was generously supported
in part by ONR awards N00014-17-1-2191, N00014-17-1-
2401, and N00014-18-1-2833, the DARPA Assured Auton-
omy (FA8750-18-C-0101) and Lagrange (W911NF-16-1-
0552) programs, an Amazon AWS AI Research Award, and
a gift from Microsoft Research.

9668



References
[1] Aharon Azulay and Yair Weiss. Why do deep convolutional

networks generalize so poorly to small image transforma-
tions? arXiv preprint arXiv:1805.12177, 2018. 2

[2] Battista Biggio and Fabio Roli. Wild patterns: Ten years after
the rise of adversarial machine learning. Pattern Recognition,
2018. https://arxiv.org/abs/1712.03141. 1, 2

[3] NTS Board. Collision between vehicle controlled by de-
velopmental automated driving system and pedestrian. Nat.
Transpot. Saf. Board, Washington, DC, USA, Tech. Rep. HAR-
19-03, 2019. 1

[4] Remi Cadene. Pretrained models for pytorch. https://
github.com/Cadene/pretrained-models.pytorch.
Accessed: 2019-05-20. 4

[5] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object
detection via region-based fully convolutional networks. In
NeurIPS, 2016. 7

[6] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig
Schmidt, and Aleksander Madry. A rotation and a translation
suffice: Fooling cnns with simple transformations. arXiv
preprint arXiv:1712.02779, 2017. 1, 2

[7] Alhussein Fawzi and Pascal Frossard. Manitest: Are classi-
fiers really invariant? In BMVC, 2015. 1, 2

[8] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.
Detect to track and track to detect. In ICCV, 2017. 2

[9] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. ICLR, 2019. 2

[10] Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H
Schütt, Matthias Bethge, and Felix A Wichmann. Generalisa-
tion in humans and deep neural networks. In NeurIPS, pages
7538–7550, 2018. 2

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1, 2

[12] Keren Gu, Brandon Yang, Jiquan Ngiam, Quoc Le, and
Jonathan Shlens. Using videos to evaluate image model
robustness. arXiv preprint arXiv:1904.10076, 2019. 2, 3,
6

[13] Dan Hendrycks and Thomas Dietterich. Benchmarking neural
network robustness to common corruptions and perturbations.
arXiv preprint arXiv:1903.12261, 2019. 1, 2, 4

[14] Hossein Hosseini and Radha Poovendran. Semantic adversar-
ial examples. In CVPR Workshop, pages 1614–1619, 2018. 1,
2

[15] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision, 2021. 7

[16] SouYoung Jin, Aruni RoyChowdhury, Huaizu Jiang, Ashish
Singh, Aditya Prasad, Deep Chakraborty, and Erik Learned-
Miller. Unsupervised hard example mining from videos for
improved object detection. In ECCV, 2018. 2

[17] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal
Frossard. Geometric robustness of deep networks: analysis
and improvement. arXiv preprint arXiv:1711.09115, 2017. 2

[18] Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie
Yan, Xihui Liu, and Xiaogang Wang. Object detection in
videos with tubelet proposal networks. In CVPR, 2017. 2

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV. Springer, 2014. 4

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. ICLR, 2018. 6

[21] George A Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995. 3

[22] Harold Pashler. Familiarity and visual change detection. Per-
ception & psychophysics, 44(4):369–378, 1988. 3

[23] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
arXiv preprint arXiv:2103.00020, 2021. 2, 7, 8

[24] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan,
and Vincent Vanhoucke. Youtube-boundingboxes: A large
high-precision human-annotated data set for object detection
in video. In CVPR, 2017. 2, 3

[25] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to ima-
genet? ICML, 2019. 2, 8

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NeurIPS, pages 91–99, 2015. 7

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li
Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
IJCV, 115(3):211–252, 2015. 2, 3

[28] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini,
Benjamin Recht, and Ludwig Schmidt. Measuring robust-
ness to natural distribution shifts in image classification. In
NeurIPS, 2020. 5

[29] Antonio Torralba, Alexei A Efros, et al. Unbiased look at
dataset bias. In CVPR, 2011. 2

[30] Fanyi Xiao and Yong Jae Lee. Video object detection with an
aligned spatial-temporal memory. In ECCV, 2018. 2, 6, 7

[31] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille,
and Kaiming He. Feature denoising for improving adversarial
robustness. arXiv preprint arXiv:1812.03411, 2018. 5

[32] Haichao Zhang and Jianyu Wang. Towards adversarially
robust object detection. In ICCV, pages 421–430, 2019. 2

[33] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen
Wei. Flow-guided feature aggregation for video object detec-
tion. In ICCV, 2017. 2

9669


