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Figure 1. We present a multiscale local transformer network, dubbed LocalTrans, for homography estimation. The proposed LocalTrans

network can estimate accurate homography on challenging real-captured cross-resolution cases under resolution gap up to 10×. We achieve

artifact-free stitching by warping each local high-resolution image, which substantially outperforms feature-based method in [42].

Abstract

Cross-resolution image alignment is a key problem in

multiscale gigapixel photography, which requires to esti-

mate homography matrix using images with large resolu-

tion gap. Existing deep homography methods concatenate

the input images or features, neglecting the explicit formu-

lation of correspondences between them, which leads to de-

graded accuracy in cross-resolution challenges. In this pa-

per, we consider the cross-resolution homography estima-

tion as a multimodal problem, and propose a local trans-

former network embedded within a multiscale structure to

explicitly learn correspondences between the multimodal

inputs, namely, input images with different resolutions. The

proposed local transformer adopts a local attention map

specifically for each position in the feature. By combin-

ing the local transformer with the multiscale structure, the

network is able to capture long-short range correspon-

dences efficiently and accurately. Experiments on both the

MS-COCO dataset and the real-captured cross-resolution

dataset show that the proposed network outperforms exist-

ing state-of-the-art feature-based and deep-learning-based

homography estimation methods, and is able to accurately

align images under 10× resolution gap.

* Equal contribution

1. Introduction

The rapidly development of multiscale gigapixel photog-

raphy [5, 42, 45] brings large-scale, long-term and immer-

sive visual experience. It synthesizes a single ultra-high-

resolution image through aligning plenty of high-resolution

local-views with a low-resolution global-view. In multi-

scale gigapixel photography, the large resolution gap be-

tween two views, namely cross-resolution, puts forward a

new challenge to traditional homography estimation task.

Homography estimation is defined as the estimation of the

projection mapping between two views on the same plane

in 3D space, which usually consists of three steps: feature

extraction using SIFT [18] or SURF [2], correspondence

matching, and homography matrix estimation based on the

RANSAC [9] or a direct linear transform. It relies on dense

features with the same resolution to achieve an accurate es-

timation, thus, usually fail in solving the cross-resolution

problem.

Inspired by the success of deep learning, deep homog-

raphy methods based on convolutional neural network are

studied to deal with challenging scenes. The pioneer deep

homography method proposed by DeTone et al. [8] imple-

ments the estimation of homography matrix with a typ-

ical VGG-net [30], which extracts correspondences from

14890



the concatenated image pair. Based on this pioneer work,

Le et al. [16] propose a multiscale strategy to progressively

estimate the homography via network cascade. However,

since the input views are concatenated and downsampled

together, simply applying the multiscale strategy cannot

solve the cross-resolution problem. A recent approach by

Zhang et al. [44] proposed to extract features from input im-

ages separately with shared convolution layers. While the

network directly concatenates the features in the following

layer, which can be equivalent to concatenating the input

images at the very beginning.

In this paper, we present a novel multiscale local trans-

former network, which we dubbed LocalTrans, to solve the

cross-resolution problem in homography estimation. The

transformer structure [33] has made a great success in learn-

ing the interaction between multimodal inputs [14, 26, 40]

in the field of natural language processing and visual ques-

tion answering. We therefore take a look at the cross-

resolution problem through the lens of “multimodal”, and

employ the transformer structure to explicitly capture cor-

respondences through the correlation of the cross-resolution

images in the feature space.

However, the vanilla transformer structure introduced

in [33] brings high GPU memory and computational costs

due to the outer product between high-dimensional matri-

ces. To achieve a fast and accurate homography estima-

tion, we introduce a local transformer and embed it within

a multiscale structure. More specifically, we design a lo-

cal convolution-based operation in the proposed local trans-

former, which applies a specific kernel to each position of

the high-level feature to efficiently capture a local attention.

Then the local transformer is deployed in each level of the

multiscale structure, enabling the network to capture corre-

spondences with a long-short range attention. The combi-

nation of the local transformer and the multiscale structure

is significantly faster than the global attention mechanism in

the vanilla transformer [33]. But most importantly, the pro-

posed LocalTrans network shows a superiority to the vanilla

transformer with the same backbone in the homography es-

timation task.

Benefiting from the combination of the local transformer

layer and the multiscale structure, the proposed LocalTrans

network outperforms the state-of-the-art homography esti-

mation methods in terms of PSNR and corner error on the

MS-COCO dataset [17]. Moreover, we demonstrate that the

LocalTrans network highlights a superior performance on

challenging real-captured cross-resolution cases under res-

olution gap up to 10×, and further apply it to multiscale

gigapixel photography, see Fig. 1. The main contributions

are summarized as

• We propose to solve the cross-resolution problem in

homography estimation using the transformer struc-

ture by explicitly capturing the correspondences be-

tween the inputs.

• We design a novel local transformer layer embedded

within multiscale structure, which is able to capture

correspondences with a long-short range attention. Ex-

periments demonstrate that the proposed structure out-

performs the global attention mechanism.

• The proposed local transformer has significantly faster

speed and lower GPU memory cost compared with the

vanilla transformer structure, achieving real-time ho-

mography estimation at 60fps (please see Table 1).

2. Related Work

In this section, we review topics on homography estima-

tion, cross-resolution image alignment and attention mech-

anism that are the most relevant to our work.

Feature-based Homography Estimation. Methods in

this category utilize feature points extracted from the image

pair to obtain a set of feature correspondences. Then a ho-

mography is estimated based on the direct linear transform

or the robust fitting algorithms such as RANSAC [9]. The

accuracy of homography estimation depends on the quality

of the detected image features. Traditional feature detec-

tors, such as SIFT [18], SURF [2], ORB [29], are able to de-

tect reasonable keypoints, which are robust to lighting, blur

and perspective distortion. Recently, several deep learning-

based feature extraction methods are also developed, e.g.,

LFNet [25] and ASLFeat [21], and reach a higher matching

accuracy. Despite existing feature-based homography esti-

mation methods can be robust to illuminance changes and

foggy inputs, they often fail in cross-resolution cases.

Deep Homography Estimation. Deep learning-based

homography estimation is first proposed by [8] using VGG-

net [30] as backbone, which is more robust compared to

traditional feature-based methods. To improve the general-

ization capacity on real data, Nguyen et al. [24] proposed

an unsupervised learning method by minimizing a pixel-

wise intensity error metric instead of the regression loss of

homography matrix. To address the potential large motion

problem, Le et al. [16] proposed to use a cascade strategy

to estimate the motion mask and the homography matrix in

a coarse-to-fine manner. The above methods implicitly esti-

mate the correlation between the two views by concatenat-

ing the images along the channel dimension. Alternatively,

Zhang et al. [44] proposed to use a feature extractor with

shared weights to extract image features separately, and di-

rectly concatenate the features in the following homography

estimator network. However, this architecture is equivalent

to concatenating the input images at the beginning of the

network, and thus, fail to address the cross-resolution prob-

lem, please refer to the comparison in Fig. 7 and Table.2.

Cross-Resolution Image Alignment. Cross-resolution

image alignment is an open problem in cross-scale
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Figure 2. Architecture of the proposed LocalTrans network for homography estimation. (a) Overall structure of the LocalTrans; (b)

Architecture of the local transformer that captures correspondences in different scales via a local self-attention encoder module (SAEM)

and a local transformer decoder module (TDM); (c) Architecture of the homography estimation module that adopts local attention maps

and high-level feature as input to estimate homography matrices from coarse-to-fine.

stereo [50], hybrid light field imaging [4, 48], multiscale

gigapixel videography [42], etc. Commonly a pixel-to-

pixel warping field is estimated and applied for registration

between images with different resolutions. For example,

Zhao et al. [47] presented a disparity estimation and refine-

ment method for reconstructing high resolution light field

in a hybrid light field imaging system. Zheng et al. [49]

further proposed a deep learning-based optical flow estima-

tion and image fusion method in a coarse-to-fine manner.

To synthesize a multiscale gigapixel video, Yuan et al. [42]

proposed an iterative feature matching and warping method

to perform global and mesh-based homography estimations.

In this paper, we investigate the cross-resolution problem in

the homography estimation task by using transformer struc-

ture to pay attention to the correspondences across different

resolution inputs.

Attention Mechanism. Attention was built to imitate

the mechanism of human perception that mainly focuses

on the salient part [13, 28, 7]. Vaswani et al. [33] indi-

cated that the global attention mechanism is able to solve

the long term dependency problem even without the back-

bone of a convolutional or a recurrent network. Wang et

al. [36] introduced a self-attention to capture long-range de-

pendencies (i.e., correspondences) by using matrix multi-

plication between reshaped feature maps. Alternative to the

above global attention, many researches also investigated

local attention approaches that focus on short-range depen-

dencies [10, 22, 31, 38, 34]. For example, Sperber et al. [31]

introduces a soft Gaussian bias and a hard mask that is non-

zero in a local region to control the context range attended

by the network. Woo et al. [37] introduced a spatial atten-

tion module by using a convolution layer to extract inter-

spatial relationship in a feature map.

Recently, numerous literatures show that the attention

mechanism is efficient to obtain correlation across multi-

modal inputs, e.g., for visual question answering [3, 15, 41],

video description [11] and texture transferring [39]. We

therefore apply the attention mechanism to explicitly cap-

ture the correspondences across the input images, especially

cross-resolution images, for homography estimation.

3. Methodology

3.1. Overview

In this paper, we introduce a novel deep homography es-

timation network with a multiscale local transformer struc-

ture, dubbed LocalTrans. The proposed LocalTrans net-

work first applies a deep siamese network (i.e., an image

encoder with shared weights) to extract features φIT and

φIU from the target image IT and the unaligned image

IU , respectively. Two convolution layers followed by a

2×2 max-pooling layer constitute a basic block in the deep

siamese network. Therefore, we construct features with dif-

ferent scales in the multiscale structure by controlling the
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Figure 3. Visualization of the attention map. Top: self-attention
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; Bottom: cross-attention map M
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block number of the deep siamese network in each scale-

level. In concrete details, we use K − k + 1 blocks to con-

struct feature maps φ
(k)
I of shape Hk ×Wk in scale level k

(k = [1, 2, . . . ,K]), where Hk = H
2K−k+1 , Wk = W

2K−k+1 ,

and H and W are the height and width of the input images.

Different from existing deep homography methods that

simply concatenate the images or features, we then explic-

itly formulate correspondences between the features φIT

and φIU by using the transformer structure (Sec. 3.2). In

each scale-level, a homography estimation module (Sec.

3.3) is adopted to estimate a homography matrix H̃k based

on the attention map and feature maps. Then the unaligned

image IU is warped according to the homography matrix

H̃k and then fed into the next scale-level (please refer to

Fig. 2 (a)).

3.2. Multiscale Local Transformer Network

In this section, we introduce the proposed local trans-

former incorporating a multiscale structure. A straightfor-

ward option to achieve a long-short range perception of

correspondence between features is to implement the trans-

former structure [33] after the siamese network. However,

the vanilla transformer structure brings high GPU memory

and computational costs when processing high-dimensional

features. To accelerate the transformer, we replace the

global attention in the vanilla transformer structure by de-

signing a novel local attention kernel (Sec. 3.2.2) and com-

bining it with a multiscale structure. Despite the designed

local transformer kernel only captures correspondences in

a limited range in the low scale-level, the multiscale struc-

ture enables the network to perceive the correspondence in

a long-short range manner.

3.2.1 Transformer Structure

The detailed architecture of the transformer structure in

each scale-level is shown in Fig. 2(b). The inputs of the

transformer are two features φ
(k)
IT

and φ
(k)
IU

output by the

deep siamese network. Two modules, Self-Attention En-

coder Module (SAEM) and Transformer Decoder Module

(TDM), are employed to exploit internal relations within

the feature maps via self-attention and to capture the cor-

respondences across the two features from the multimodal

inputs via the cross-attention, respectively.

Self-Attention Encoder Module (SAEM). The SAEM

first applies three 1× 1 convolution layers fQ(φI), fK(φI)
and fV (φI) without activation function to encode the input

image feature φI (φ
(k)
IT

or φ
(k)
IU

) into features φQ,I , φK,I ,

φV,I of shape C × Hk × Wk, where C denotes the chan-

nel number. Then the self-attention result in the SAEM is

computed as follows

Ms = σ(
φQ,I ⊙ φK,I√

C
),

φh,I = Ms ⊗ φV,I ,

(1)

where σ denotes the softmax function, and ⊙ and ⊗ denote

the operations in the designed local transformer structure,

which will be described in Sec. 3.2.2. The tensor Ms is

usually interpreted as a self-attention map.

Since φQ,I , φK,I and φV,I are derived from the same in-

put φI , the self-attention mechanism encourages to enhance

the edges and corners in the input feature φ(I). As shown

in an example in Fig. 3 (top), the network pays more atten-

tion to the edge with the same feature of the center pixel,

which is more prominent in attention maps of higher scale-

levels (e.g., M(2)
s and M(3)

s ). The final high-level feature

φs,I output by the SAEM is generated by encoding the self-

attention result φh,I with a 1× 1 convolution layer.

Transformer Decoder Module (TDM). In this mod-

ule, two iterations of cross-attention are used. In the first

iteration, we first adopt three 1 × 1 convolution layers

f ′
Q(·), f ′

K(·), f ′
V (·) without activation function to encode

the high-level features φs,I into features φ′
Q,I , φ′

K,I and

φ′
V,I as those in the SAEM. But different with the self-

attention in the SAEM (Eqn. 1), we apply a cross-attention

mechanism between features from target image IT and un-

aligned image IU , denoted as

MIU→IT =σ(
φ′
Q,IU

⊙ φ′
K,IT√

C
),

φ′
h,IT

=MIU→IT ⊗ φ′
V,IT

,

MIT→IU =σ(
φ′
Q,IT

⊙ φ′
K,IU√

C
),

φ′
h,IU

=MIT→IU ⊗ φ′
V,IU

,

(2)

where MIU→IT and MIT→IU are usually interpreted as

cross-attention map, and φ′
h,IT

and φ′
h,IU

are attention-

aware features.

In the second iteration, features φ′
h,IT

and φ′
h,IU

are first

encoded into φ′
s,IT

and φ′
s,IU

using two 1 × 1 convolution

layers, as shown in Fig. 2(b). Then we compute the atten-

tion map Matt using φ′
s,IT

and φ′
s,IU

as inputs

Matt = φ′
s,IT

⊙ φ′
s,IU

. (3)
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The attention map Matt is served to estimate the homogra-

phy matrix, which will be introduced in Sec. 3.3.

The attention mechanism described in Eqn. 2 enables an

interaction between target image IT and unaligned image

IU in the feature space, and therefore, captures correspon-

dence information more explicitly than simply feeding the

image pair into the network through channel-wise concate-

nation [30, 8, 24, 16]. Besides, the network with the trans-

former structure is more robust when the input two images

have considerably large resolution differences. Fig. 3 (bot-

tom) visualizes the cross-attention map MIU→IT for input

images under 4× resolution gap. In this cross-resolution

case, more attention values (weights) are assigned to the

same edge as that in the self-attention map Ms,IU .

3.2.2 Local Attention Kernel

To accelerate the transformer structure in Sec. 3.2, we pro-

pose a Local Attention Kernel (LAK) that captures corre-

spondences in a local range, which is inspired by conven-

tional 2D deconvolution (also known as transposed convo-

lution) and convolution. The main difference is that the pro-

posed local transformer applies variable slice in the atten-

tion map as the convolution kernel while the traditional 2D

convolution or deconvolution adopts a fixed kernel in the

feedforward path. In the following, we will introduce the

proposed LAK by decomposing the attention mechanism in

Eqn. 1 and 2 into two steps, as shown in Fig. 4.

Local attention map generation. Local attention map

describes the correspondences between features φQ and φK

in a local range, i.e., a squared window. Consider φQ ∈
R

C×Hk×Wk , φK ∈ R
C×Hk×Wk and the radius of LAK is r.

Then for a certain element at position x = (x, y) in φQ will

first query the relationship with elements in a local range

of N (x) with radius r in φK . Suppose the position of an

element in φK is u ∈ N (x), then a local correspondence

map M′ could be described as

M′(x, u) = φT
Q(x)φK(u),

where φT
Q(x) ∈ R

1×C and φK(u) ∈ R
C×1. The above

formulation also explains the operation φQ⊙φK in Eqn. 1,

Eqn. 2 and Eq. 3. And the final local attention map M is

M = σ(
M′

√
C
).

The above equation shows that the local attention map

M is a 4D tensor with shape Hk×Wk×(2r+1)×(2r+1),
which records the correspondence of each position in φQ

with that in φK in a local range. For instance, an el-

ement M(x, y, u, v) records the correspondence between

point φQ(x, y) and φK(x+ u, y + v), u, v ∈ [−r, r].
Local attention convolution. This operation uses the

4D local attention map M and the feature φV to obtain

ϕQ ϕK

M' (x, y)

σ(·)

ϕV

Local Attention Map Generation Local Attention Convolution

ϕh

(x, y)

x-1, y-1 x, y-1 x+1, y-1

x-1, y x, y x+1, y

x, y+1 x+1, y+1x-1, y+1

x-1, y-1 x, y-1 x+1, y-1

x-1, y x, y x+1, y

x, y+1 x+1, y+1x-1, y+1

M (x, y)

1

C

(x, y)

Figure 4. The process of Local Attention Kernel (LAK). In the first

step, a 2D slice of the local attention map is generated for each

element of feature φQ in position x. In the next step, we regard

the 2D slice of the local attention map as a convolution kernel for

a patch centered at position x in feature φV .

high-level feature φh. Consider a 2D slice of M at a certain

position x = (x, y), denoted as ωx. The feature φh is then

obtained by performing the convolution between the feature

φV and the 2D slice ωx

φh(x) = ωx ∗ φV (x) =
∑

u∈N (x)

M(x, u)φV (x + u),

where M(x, u) ∈ R
1×1 and φV (x+u) ∈ R

C×1. The above

formulation also explains the operation (·) ⊗ φV in Eqn. 1

and Eqn. 2.

Discussions. It should be noted that there is a clear dif-

ference between the proposed LAK and existing approach

with local attention [10, 31, 38, 34, 37, 35]. Existing ap-

proaches typically implement local attention by setting an

attention bias (a Gaussian bias [38] or a hard mask that is

non-zero in a local region [31]) or convolution layers to per-

form channel squeezing [34, 37, 35]. In our proposed Lo-

calTrans, the convolution kernel in the LAK, i.e., the 2D

slice ωx, varies with the position x, while the kernel in a con-

ventional convolution is fixed in every position. We there-

fore term the operation as local attention convolution. The

most related local attention structure was proposed in [22],

which computes a local weights within a small window and

produce feature vector though weighted average. We gen-

eralize this concept to 2D space in combination with 2D

convolution, making it more suitable for visual tasks.

Comparing with the global attention in the vanilla trans-

former structure, the proposed LAK effectively reduces

the computational complexity from O(H2
k · W 2

k · C) to

O(Hk ·Wk · (2r + 1)2 · C), and the memory usage of the

attention map from H2
k · W 2

k to Hk · Wk · (2r + 1)2. For

a certain scale-level k ∈ K, we set the radius of the LAK

r = k + 1 to encourage the local transformer to notice a

longer range of correspondence in the higher levels.

To demonstrate the effectiveness of the proposed local

attention, we compare the local transformer against the

vanilla transformer with the same deep siamese network

and the homography estimation module, as shown in Fig.

8. The result shows that the proposed LAK with even 1

scale is superior to the global attention in the vanilla trans-
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former structure. In conclusion, the proposed local trans-

former kernel not only shows high computational efficiency

but also has superior performance to the vanilla transformer

structure with global perception of correspondences.

3.3. Homography Estimation Module

In each scale-level, the homography estimation module

applies the attention map Matt in Eqn. 3 as input. A

8-dimensional vector is obtained by several convolution-

pooling blocks to estimate the final homography matrix, as

shown in Fig. 2(c).

More specifically, in a certain scale-level k, since the

the attention map Matt is a 4D tensor, we first re-

shape it from [ H
2K−k+1 ,

W
2K−k+1 , 2k + 3, 2k + 3] to [(2k +

3)2, H
2K−k+1 ,

W
2K−k+1 ] (similar to the processing of cost vol-

umn in [32]) before feeding to the homography estimation

module. Then we feed the feature into k + 1 convolution

blocks, where each block contains two 3 × 3 convolution

layers and one max-pooling layer. In the last block, the

max-pooling layer is replaced by an average-pooling layer

for generating a feature of shape C × 1 × 1. After a 1D

convolution layer (kernel size 1), the final output becomes

a 8-dimensional vector, denoting the 2D offsets of 4 corner

points ĉ
(k)
1 , · · · , ĉ

(k)
4 in scale-level k. We can simply obtain

the homography matrix H̃k from the offset vectors and warp

the the unaligned image I
(k)
U using homography transform

to obtain the input for the next level, i.e.,

I
(k+1)
U = Warp(I

(k)
U , H̃k).

Note that H̃ in each scale-level represents the homography

matrix of the full resolution. Thus, the final homography

matrix Ĥ is computed directly by accumulating the esti-

mated homography matrix H̃ in each level as follows

Ĥ = H̃1 × H̃2 × · · · × H̃K .

3.4. Implementation Details

In our experiment, we set the number of scale-level

K = 3. Except the 1 × 1 convolution layers fQ, fK , fV ,

f ′
Q, f ′

K and f ′
V in the local transformer and the 1D convolu-

tion layer at the end of the homography estimation module,

every other 2D convolution layer has a 3×3 kernel followed

by a batch normalization layer [12] and a ReLU activation.

More details of the network specification are listed in the

supplementary file. For the local transformer layer, we im-

plement the LAK including local attention map generation

and local attention convolution in CUDA. To make them

differentiable, we also deduce a backward propagation and

package it to PyTorch autograd function [27].

For the training objective, we use the L1 norm of the cor-

ner error as the loss function L = 1
4

∑4
i=1 ‖c− ĉi‖1, where

ci and ĉi are corner point i transformed by the ground-truth

homography and the estimated homography, respectively.

We only use the MS-COCO dataset [17] for the network

training. And we follow the same data processing schemes

in [8, 6] to generate image pairs. Moreover, we also add

Gaussian noise and randomly adjust brightness, saturation

and contrast to increase the robustness of the network.

4. Experiments

We compare the proposed LocalTrans network with both

feature-based and deep learning-based homography estima-

tion methods. We evaluate the proposed LocalTrans net-

work in two different settings, common data (Sec. 4.1) in

the MS-COCO dataset [17] as that in most deep homogra-

phy estimation methods, and cross-resolution setting where

the target image has lower resolution.

We have two kinds of datasets for the cross-resolution

setting. The first is synthesized cross-resolution data (Sec.

4.2), in which the target images are downsampled using

bicubic interpolation with factors 4× and 8×. The second is

optical zoom-in cross-resolution data (Sec. 4.3), which we

apply multiscale gigapixel dataset from Yuan et al. [42] and

cross-resolution stereo dataset from Zhou et al. [50]. In the

cross-resolution setting, the proposed LocalTrans network

as well as the baseline networks are re-trained.

4.1. Data in Common Setting

We compare our model on the MS-COCO dataset [17]

in common setting with the following baseline methods,

AffNet [23], LFNet [25], DHN[8], UDHN by Zhang et

al. [44], MHN [16], PFNet [43], PWC [32], SIFT +Con-

textDesc+RANSAC [19], SIFT+GeoDesc+RANSAC [20],

SIFT+MAGSAC [1], SIFT+RANSAC [18]. Fig. 5 shows

that the proposed LocalTrans outperforms feature-based ho-

mography estimation methods [18, 32, 43, 25, 19, 20, 1] and

state-of-the-art deep learning-based methods [8, 23, 44, 16]

in common setting. We also compare the proposed Local-

Tran network with a similar multiscale structure-based deep

homography network MHN [16] with different numbers of

scales on the MS-COCO dataset, as shown in Fig. 6. The

result shows that the proposed network with the local trans-

former outperforms the MHN with different scale-levels.

Moreover, our network on with 2 scales performs even bet-

ter than the MHN with 3 scales. The experiment empirically

validates that the proposed local transformer is able to cap-

ture correspondences more accurately than simply stacking

the images [16] or feature maps [44] as input.

Ablation study. To verify the efficiency of local trans-

former structure, we replace the proposed LAK with the

vanilla (global) transformer in [33] while keeping the rest

architecture of the network unchanged. This experiment

is performed on an Intel(R) Xeon CPU E5-2699 V4 with

16GB memory and a NVIDIA RTX 2080 GPU. The com-

parison in Table 1 shows that the proposed LAK has higher

computational efficiency in terms of both running time and
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Figure 5. Evaluations in common setting on the MS-COCO.
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Figure 6. Comparison with MHN [16] on the MS-COCO dataset

with different numbers of scales.

Global Transformer Local Transformer

Memory Speed Memory Speed

128× 128 (1 scale) 52.0M 152fps 48.9M 249fps

128× 128 (2 scales) 75.0M 104fps 50.7M 203fps

128× 128 (3 scales) 476.9M 16.4fps 67.7M 132fps

256× 256 (1 scale) 208.4M 129fps 196.9M 213fps

256× 256 (2 scales) 313.9M 52.9fps 204.8M 173fps

256× 256 (3 scales) 2434M 4.31fps 287.0M 87.7fps

Table 1. Per-image memory consuming and speed comparison be-

tween global and local transformer using different sizes of inputs.

GPU memory cost than the vanilla transformer. Moreover,

results in Fig. 8 also validate the superior performance com-

pared with a single scale global transformer network. Please

refer to the supplementary for more ablation studies.

4.2. Synthesized Cross­Resolution Data

We compare our model on synthesized cross-resolution

dataset with 6 baseline methods, a coventional feature-

based method, SIFT+RANSAC [18], three deep learning-

based methods, DHN [8], UDHN [44] and MHN [16],

as well as two state-of-the-art Reference-based Super-

Resolution (RefSR) methods, SRNTT [46] and TTSR [39].

Fig. 7 shows the quantitative comparison on the MS-

COCO dataset under 4× and 8× resolution gaps. The pro-

posed LocalTrans network demonstrates superior perfor-

mance on cross-resolution cases comparing with the con-
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Figure 7. Evaluation on the MS-COCO dataset under 4× and 8×

resolution gaps.
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Figure 8. Comparison between the proposed LAK in different

scale-levels and the vanilla (global) transformer structure on the

MS-COCO dataset [17].

Method
4× ↓ 8× ↓

PSNR SSIM PSNR SSIM

SIFT+RANSAC [18] 19.32 0.802 11.93 0.64

DHN [8] 19.64 0.818 17.04 0.762

UDHN [44] 21.44 0.864 18.78 0.834

MHN [16] 25.42 0.951 20.24 0.860

SRNTT [46] 27.06 0.901 - -

TTSR [39] 27.89 0.915 - -

LocalTrans 30.17 0.981 24.12 0.930

Table 2. Numerical comparison (PSNR/SSIM) in different cross-

scale setings on the MS-COCO datasets.

ventional feature-based method, SIFT+RANSAC [18], and

two deep learning-based methods, DHN [8] and MHN [16].

The numerical comparison in Table 2 shows that the pro-

posed LocalTrans network significantly outperforms the

deep learning-based methods, DHN [8] and MHN [16], and

the RefSR methods, SRNTT [46] and TTSR [39], which

validates the superiority of the proposed local transformer

structure in solving the cross-resolution problem.

4.3. Optical Zoom­in Cross­Resolution Data

In this experiment, 4 baseline methods, SIFT+RANSAC

[18], DHN [8], UDHN by Zhang et al. [44] and MHN [16]
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Figure 9. Visual evaluation on the multiscale gigapixel dataset [42] (top, 6×) and the cross-resolution stereo dataset [50] (bottom, 10×).

We mix the GB channels of the aligned image and the R channel of the target image. The misaligned pixels appear as red or green ghosts.

are compared. On the multiscale gigapixel dataset [42], we

then apply the local patches in a 5 × 5 grid of the global

low-resolution image to estimate homography matrices sep-

arately. To ensure the spatial smoothness between neigh-

bouring patches, we calculate the four corner points of each

patch and take an average among its neighbors. The final

result is obtained by warping each local high-resolution im-

age to the corresponding grid as in [42].

Since there is no groundtruth for qualitative evalua-

tion, we only demonstrate the visual comparison on the

datasets [42, 50], as shown in Fig. 9. The resolution gaps

between the local target images and the unaligned images

are 6× in the multiscale gigapixel dataset [42] (top of

Fig. 9) and 10× in the cross-resolution stereo dataset [50]

(bottom of Fig. 9). The results show that the conven-

tional SIFT+RANSAC [18] fails to estimate reasonable ho-

mography matrix in the first case, and the deep learning-

based methods DHN [8], UDHN [44] and MHN [16] ap-

pear different degrees of missing alignments (please zoom-

in for details). The proposed LocalTrans demonstrates the

best visual results on the optical zoom-in cross-resolution

datasets [42, 50], which has more complicated degradation

model than synthesized cross-resolution data. More visual

results on the optical zoom-in cross-resolution dataset are

provided in the supplementary.

5. Conclusions

In this paper, we proposed a novel multiscale local trans-

former network, termed LocalTrans, for addressing the

cross-resolution problem in homography estimation. We

consider the cross-resolution images as some kind of multi-

modal input, and employ the transformer structure to ex-

plicitly capture correspondences between two modalities

(cross-resolution images) in the feature space. To accel-

erate the transformer, we design a Local Attention Kernel

(LAK) that generates a local attention map specifically for

each position in the feature. By embedding the LAK within

a multiscale structure, the proposed LocalTrans is able to

capture correspondences in a long-short range manner. The

proposed LocalTrans network outperforms state-of-the-art

methods on the MS-COCO dataset and highlights a supe-

rior performance on the challenging real-captured cross-

resolution dataset under resolution gap up to 10×.

We believe LocalTrans gives a new opportunity to learn

robust and accurate interactions between cross-resolution

inputs, and would be further applied to various applications,

such as reference-based super-resolution, cross-resolution

stereo matching and hybrid light field imaging.
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