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Abstract

Light-field imaging is appealing to the mobile devices

market because of its capability for intuitive post-capture

processing. Acquiring light field (LF) data with high angu-

lar, spatial and temporal resolution poses significant chal-

lenges, especially with space constraints preventing bulky

optics. At the same time, stereo video capture, now avail-

able on many consumer devices, can be interpreted as a

sparse LF-capture. We explore the application of small

baseline stereo videos for reconstructing high fidelity LF

videos.

We propose a self-supervised learning-based algorithm

for LF video reconstruction from stereo video. The self-

supervised LF video reconstruction is guided via the geo-

metric information from the individual stereo pairs and the

temporal information from the video sequence. LF estima-

tion is further regularized by a low-rank constraint based

on layered LF displays. The proposed self-supervised al-

gorithm facilitates advantages such as post-training fine-

tuning on test sequences and variable angular view interpo-

lation and extrapolation. Quantitatively the reconstructed

LF videos show higher fidelity than previously proposed un-

supervised approaches.We demonstrate our results via LF

videos generated from publicly available stereo videos ac-

quired from commercially available stereoscopic cameras.

Finally, we demonstrate that our reconstructed LF videos

allow applications such as post-capture focus control and

region-of-interest (RoI) based focus tracking for videos.

1. Introduction

Photography and videography has become ubiquitous in

our modern lives due to the availability of simple-to-use

imaging hardware. With steadily increasing image quality,

consumers long for intuitive and simple processing for post-

capture finetuning of their images. LF imaging has emerged

as a promising imaging technique to overcome the limita-

tions of conventional photography such as post-capture fo-

cus control, novel view synthesis, and post-capture depth-

of-field control. With video acquisition surging in popu-
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Figure 1: We propose a self-supervised algorithm for LF video

reconstruction from a stereo video, enabling applications such as

post-capture focus control for videos. Our proposed algorithm al-

lows for post-training fine-tuning on test sequences and variable

angular view interpolation as well as extrapolation.

larity, LF video capture could enable simple post-capture

focus control for videos acquired on consumer devices.

However, acquiring LF video data at useful frame-rates re-

mains challenging. For example, commercial LF cameras

such as Lytro acquire LF videos at only 3 frames per sec-

ond (fps) [45]. This is mainly because of the trade-off be-

tween angular, spatial, and temporal resolution. Modern

cameras easily capture videos at 720p resolution at a rea-

sonable frame-rate of 30 fps. Ignoring the challenges of

complex LF sensor, capturing a LF video at reasonable an-

gular resolution of 7 × 7 requires a staggering ~50× more

bandwidth. This is equivalent to capturing a 50MP video

at 30 fps, something that is currently unimaginable for con-

sumer devices.
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While computational photography is poised to solve

some of these problems in the upcoming decade via jointly

optimized hardware-software solutions [16, 44, 50, 43], a

practical solution is yet to be found. Numerous approaches

have been proposed to overcome this challenge of high res-

olution LF imaging using hardware, commonly available

today. Table 1 provides a concise review of such existing

methods. We particularly note the recent work attempt-

ing to reconstruct LF images from sparsely sampled angu-

lar views [19, 3]. Considering the current limitations on

available LF-hardware, we consider a simple case of sparse

samples: the stereo image pair. In this paper, we tackle the

task of reconstructing LF video from a sequence of stereo

frames and propose a self-supervised learning-based algo-

rithm as our solution.

The LF reconstruction in our self-supervised algorithm

is guided via the geometric and temporal information em-

bedded in a stereo video sequence. A recurrent neural net-

work first takes the stereo frames at the current time-step

and outputs a low-rank representation for LF frames based

on layered LF displays [51]. The full 4D LF frame is then

obtained from this representation via a deterministic linear

operation. To enforce the LF epipolar consistency, we im-

pose a disparity-based geometric consistency constraint on

the generated LF frames. To ensure temporal consistency of

the generated LF frames, we enforce an optical flow-based

constraint [21]. Two different recurrent neural networks are

learned to estimate the disparity maps and optical flow from

the input stereo video. All three networks are trained via

self-supervised cost functions during training.

A significant advantage of our approach is that it is

self-supervised, and hence does not require hard-to-acquire

ground-truth data for supervision while training. Our al-

gorithm is able to estimate the full 4D LF with variable

number of angular views from the input stereo views. We

also show that our algorithm allows us to extend the base-

line of the input views and generate novel views outside

the original stereo baseline. Finally, our algorithm can be

fine-tuned (see Sec. 4.4 and Fig. 1 and 8) on specific video

sequences as it does not require ground truth data for super-

vision. Such self-supervised fine-tuning is especially useful

when the test sequences do not follow the same distribution

as the training sequences.

We show that our proposed algorithm outperforms

the state-of-the-art disparity-based LF reconstruction algo-

rithms. Our algorithm also performs on par with unsuper-

vised LF reconstruction approaches, e.g. X-fields [3] with

4 corner-views of the LF as its input [3]. Overall, our con-

tributions are:

• A self-supervised learning-based algorithm for LF

video reconstruction from stereo video.

• Effective use of layered display based low-rank regu-

larization for self-supervised LF video prediction.

Method Self-S
upervisio

n

Stereo-View

Video

LF synthesis [19, 52, 47, 6, 12] ✗ ✗ ✗

View synthesis [19, 29, 7] ✗ ✗ ✗

View Synthesis [30, 23, 56] ✔ ✗ ✗

LF Video [14, 45, 33] ✗ ✗ ✔

Bino-LF [58] ✔ ✔ ✗

X-fields [3] ✔ ✗ ✔

Ours ✔ ✔ ✔

Table 1: A concise, categorized overview of the related work.

• Facilitate post-training fine-tuning on test sequences

and variable angular view prediction for both view in-

terpolation and extrapolation.

• We show LF video recontruction results on publicly

available stereo videos captured in the wild.

2. Related Work

LF super-resolution The past decade saw the rise of

commercial LF cameras but quickly faded out of popular-

ity due to the inherent angular and spatial resolution trade-

off. Exploiting the correlations in the angular and spa-

tial dimensions, several algorithms have been proposed to

overcome this trade-off in LF imaging. Some of these ap-

proaches involve modified hardware setups such as coded

masks on the aperture [16, 44, 50, 43] and near the sen-

sor [13, 27, 14, 43, 42]. However, the complex optical hard-

ware setups hinder small form factors necessary for con-

sumer devices. Hence, other approaches that use conven-

tional cameras have been proposed such as focal-stack [43]

and high-resolution LF reconstruction from sparse measure-

ments [19, 52, 47, 6, 12, 3]. Alternative approaches for

a 3D scene such as Multi-Plane Image (MPI) [60, 29, 7]

and Neural Radiance Fields (NeRF) [30, 23, 56] have also

shown how to generate high-quality LFs. With the evo-

lution of machine learning-based methods to estimate dis-

parity from image semantics in a single image, synthesiz-

ing LF images from single images has also been popu-

lar [22, 36, 40].

LF video reconstruction While the spatial and angular

dimensions of LF have received much attention, commer-

cial LF cameras also suffer from low temporal resolution.

A hybrid hardware setup with a commercial LF camera and

a DSLR to enable capturing of LF videos at 30 fps was pro-

posed in [45]. A single sensor-based compressive imaging

approach that requires a mask near the sensor was proposed

in [14]. While these require complex hardware setups, an

unpublished manuscript proposes to utilize a single monoc-

ular camera for 5D LF video reconstruction [2]. Algorithms

such as [45, 14, 2] are learning-based approaches that re-

quire supervised training data. As collecting large-scale

ground-truth LF videos for training is challenging, [3] pro-

poses X-Fields, a self-supervised approach eliminating the

need for supervised training datasets. X-Fields interpolates

novel views in both angular and temporal directions. How-

ever, the X-Field results in the paper [3] use 4-views and
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Figure 2: Overall flow of the proposed self-supervised algorithm for LF video reconstruction from stereo video. The LF frames are

generated from the input stereo pair via an intermediate low-rank tensor-display (TD ) based representation. The self-supervised learning

of LF reconstruction is guided via self-supervised cost functions involving stereo pair, disparity maps and optical flow maps.

our experiments in this paper demonstrate that reconstruc-

tion quality deteriorates significantly for this method when

only two stereo views are available (see Fig. 4, Table 2).

We propose a self-supervised algorithm capable of LF re-

construction from only a pair of stereo frames. The distin-

guishing factor of our work is the rank-constraint on the LF

to enforce correlations between horizontal and vertical dis-

parity. This constraint enables high-quality LF reconstruc-

tion even when only 1D disparity information is available

(e.g., 2 stereo views).

Layered LF displays and neural networks Previously,

layered LF display representations have been used in con-

junction with neural networks. [26] built an end-to-end

pipeline from a coded aperture scene acquisition to display-

ing the scene on a layered LF display. Similar work in

[37, 20] aims at capturing a focal stack and then learning

to display the scene onto the LF display. Although layered

display representations have been used in conjunction with

neural networks, to the best of our knowledge, we are the

first ones to use it as a regularizer for self-supervised LF

reconstruction.

3. Self-supervised LF Video Reconstruction

In this section, we introduce our self-supervised algo-

rithm for LF video reconstruction from an input stereo

video. The input stereo video is assumed to be captured

using a pair of rectified, synchronized and identical stereo

cameras. A deep recurrent neural network first takes as in-

put an individual stereo pair at the current time-step. It out-

puts an intermediate low-rank LF representation based on

layered LF displays [51] (or Tensor Displays (TD)). A dif-

ferentiable TD layer then takes this representation as input

and generates the corresponding LF frame at the current

time-step. Three different self-supervised cost functions

based on photometric, geometric, and temporal constraints

guide the self-supervised learning for LF reconstruction.

The geometric and temporal constraints are imposed by dis-

parity and optical flow maps, respectively. These are ob-

tained via two separate self-supervised recurrent neural net-

works similar to [8, 28]. Self-supervision of the full 4D LF

prediction is explained in Sec. 3.1. Obtaining the LF frame

from the intermediate representation is a deterministic lin-

ear operation as elaborated in Sec. 3.3.

3.1. Stereo LF estimation

In our proposed algorithm, to obtain the LF video se-

quence, we estimate the full 4D LF frame for each input

pair of stereo frames. Let the required full 4D LF video se-

quence be denoted by L
t(u), where u = (u, v) denotes the

2D coordinates of the LF sub-aperture image (SAI). Here,

we assume the input left-right frames, Itl and Itr as sparse

samples of L
t(u) at SAI co-ordinates ul = (0, vm) and

ur = (U, vm), as shown in Fig. 2. Specifically, we have

L
t(ul) = Itl and L

t(ur) = Itr. To predict the LF, we

use a deep residual neural network [26], V , coupled with

a recurrent architecture based on convolutional long short-

term memory (ConvLSTM) [34] as shown in Fig. 2. The

network V takes as input the stereo frames (Itl , I
t
r) and out-

puts a low-rank approximation, F , of the desired LF L̂
t.

A parameter-free TD layer [26], added after V , takes the

representation F as input and outputs the estimated 4D LF

frame L̂
t. We further elaborate on this TD layer in Sec.

3.3 and for now, we assume that V finally outputs the LF

frame L̂
t from the input frames (Itl , I

t
r). As we do not have

ground truth LF L
t, we supervise the training of V by three

different self-supervised cost functions based on photomet-

ric, geometric and temporal consistency constraints.

Photometric consistency We define the photometric con-

sistency cost as

Lt
stereo = ∥L̂t(ul)− Itl ∥1 + ∥L̂t(ur)− Itr∥1 , (1)
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which ensures the consistency of L̂t with respect to the two

known measurements, Itl , I
t
r, of Lt.

Geometric consistency The geometric consistency cost

enforces L̂t to follow the same underlying scene geometry

as that of the captured stereo pair. To enforce such a con-

straint, we first estimate dense disparity maps from the in-

dividual input stereo frames via a recurrent neural network

D. The network architecture D is inspired from FlowNet[4]

and is augmented with a ConvLSTM network after the en-

coder network. The disparity maps dtl and dtr are estimated

as,

dtl = D
(

Itl , I
t
r

)

dtr = D
(

Itr, I
t
l

)

. (2)

As no ground-truth disparity maps are available for super-

vision, we self-supervise disparity prediction via a photo-

consistency based loss [8, 9, 59, 55, 10],

Lt
disp = ∥W

(

Itl ; d
t
l

)

− Itr∥1 + ∥W
(

Itr; d
t
r

)

− Itl ∥1 . (3)

Here, W denotes the bilinear inverse warping operator [17]

that takes as input a displacement map and remaps the im-

ages. To impose the geometric consitency on L̂
t, we take

a SAI L̂t(u) at u and approximate the LF views at ul and

ur via disparity based warping as seen in Fig. 2. But, we

already know the ground-truth intensity frame at SAI co-

ordinates ul and ur which are the input stereo frames Itl , I
t
r

respectively. The error between the approximated and the

known input stereo views acts as the supervisory signal for

LF estimation. In essence, we warp L̂
t(u) to the SAIs at ul

and ur to obtain L̂
t(u � ul) and L̂

t(u � ur) respectively.

This can be expressed as,

L̂
t(u � ur) = W

(

L̂
t (u) ; (u− ur) d

t
r

)

(4)

L̂
t(u � ul) = W

(

L̂
t (u) ; (u− ul) d

t
l

)

(5)

The geometric consistency error between the approximated

stereo pairs (from the estimated LF) and the known input

stereo pairs is then defined as,

Lt
geo =

∑

u

∑

k∈{l,r}

∥L̂t (u � uk)− Itk∥1. (6)

Temporal consistency The sequence of estimated LF

frames L̂t form a video sequence when they are temporally

consistent. Here, we use the optical flow estimated from the

input sequence of stereo frames to enforce temporal consis-

tency between successive predicted LF frames. With solely

the stereo frames as input, it is only possible to estimate op-

tical flow at SAIs ul and ur. We employ a recurrent neural

network O to estimate the optical flows otl , o
t
r ∈ Rh×w×2

for the left and right temporal sequences, respectively. The

Ground Truth No TD With TD

Figure 3: The figure shows epipolar plane image (EPI) for vertical

views for a small region of the image. It can be seen that the

intermediate representation F assists in better recovery of the LF

frame than direct regression.

input left-right pairs are input to O and the optical flow is

obtained as

otl = O
(

Itl , I
t−1

l

)

otr = O
(

Itr, I
t−1

r

)

. (7)

Since the ground truth optical flow is unavailable, we

choose to learn the optical flow with a self-supervised learn-

ing algorithm [28, 32, 49, 48, 18]. We define the photocon-

sistency based self-supervised cost function [28, 32, 49, 48,

18] for training optical flow network O as,

Lt
flow =

∑

k∈{l,r}
∥W

(

Itk; o
t
k

)

− It−1

k ∥1 (8)

where we use k = l, r to sum over both left and right

images. To enforce temporal consistency, we utilize the

images L̂
t (u � ul) and L̂

t (u � ur) which represent the

LF SAIs warped to the stereo SAI co-ordinates ul and ur.

With the estimated optical flows otl and otr, L̂t (u � ul) and

L̂
t (u � ur) are warped to approximate the images at the

SAIs ul and ur at the timeframe t − 1. The SAIs ul and

ur at the timeframe t − 1 are given by It−1

l and It−1

r re-

spectively. The corresponding temporal error is defined as,

Lt
temp =

∑

u

∑

k∈{l,r}

∥W
(

L̂
t
(

u � uk; o
t
k

)

)

−It−1

k ∥1 (9)

where minimizing the error enforces temporal consistency

between successive frames.

3.2. Overall loss

We finally add total-variation (TV)-based smoothness

constraint on the predicted disparity maps, optical flow and

the LF frames. We define the TV smoothness loss as,

TV (I) = ∥∇xI∥1 + ∥∇yI∥1 , (10)

where ∇x and ∇y are the x and y-gradient operators respec-

tively. We define the overall smoothness loss as,

Lt
TV = TV

(

L̂
t
)

+
∑

k∈{l,r}
TV

(

dtk
)

+TV
(

otk
)

. (11)

Including all the cost functions, the overall cost function

used to optimize the neural networks is defined as,
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L =

T
∑

t=1

λ1L
t
disp + λ2L

t
flow + λ3L

t
stereo+

λ4L
t
geo + λ5L

t
temp + λ6L

t
TV , (12)

where T is the total number of frames in the video sequence.

3.3. Lowrank regularization

As elaborated in Sec. 3.1, the LF reconstruction network

V learns to estimate a low-rank representation F of the de-

sired LF frame. Let’s consider the direct estimation of the

full 4D LF frame L̂
t of angular resolution U × V . In this

case, V outputs U × V × 3 independent channels repre-

senting U × V RGB frames. Such a network design ig-

nores the grid-like structure inherent to a 4D LF frame. Ef-

fective utilization of such a structure can lead to a better

overall performance of the algorithm. We choose to im-

pose the grid-like structure of the 4D LF frames via the

tensor-display [51] based low-rank representation. In Fig. 3

we show that imposing such a low-rank regularizer indeed

helps in better recovery of the LF frame. The network

V outputs an intermediate low-rank representation F =
[f−L/2, . . . , f0, . . . , fL/2], where fk = [f1

k , f
2

k , . . . , f
M
k ]T ,

fm
k ∈ [0, 1]h×w×3 consists of LM RGB channels, where

L and M represent the number of layers and the rank, re-

spectively. A linear, parameter-free layer TD(·) takes as

input the representation F and outputs the corresponding

LF frame. An intuitive picture of the TD layer is shown

in Fig. 2. The operation of TD(·) can be mathematically

described as [51],

L(x, y, u, v) = TD(F) =

M
∑

m=1

L/2
∏

l=−L/2

f l
m(x+ lu, y + lv)

(13)

where L(x, y, u, v) represents the 4D LF rays, where (x, y)
and (u, v) represent the spatial and angular dimensions re-

spectively.

3.4. Implementation details

We employ three different recurrent neural networks, D,

O and V for predicting disparity maps, optical flow and the

4D LF frames. The LF prediction network V consists of

1 convolutional layer followed by 11 ResNet blocks [15].

A ConvLSTM [34] layer follows the 11 residual blocks,

whose output is then used to predict the intermediate LF

representation F . A final convolutional layer outputs the

intermediate representation F with L = 3 layers and rank

of M = 12, i.e. a total of 36 RGB channels. We augment

the FlowNet [4] architecture with a ConvLSTM [34] after

the encoder to form our disparity and flow estimation net-

works, D and O. The output of D and O consist of 1 and 2

channels respectively. Please refer the supplementary ma-

terial for the detailed architecture of the neural networks D
and O.

For training our proposed algorithm, we first obtain a

LF image dataset from [19]. Assuming a static scene, we

generate stereo videos by simulating random 6-DoF camera

motion through resampling the 4D LF data [25, 35]. The

dataset contains a total of 125 LF images, and we generate

ten videos of five frames each from each LF image. The

camera motion for ten videos is randomly sampled from a

pool of 40 simulated camera motions. Hence, in total, we

have 1250 stereo video sequences, each with five frames

and a spatial resolution of 375 × 540. More details of the

stereo video generation from a given 4D LF image is given

in the supplementary material. While training, we obtain a

stereo video of 4 frames and randomly crop a patch of size

128× 128 from both left and right image pairs. We further

augment the data by shifting the focal plane of the stereo

images between [−5, 5] pixels. The network is trained in

Pytorch [31] using AdamW optimizer [24] for 200 epochs,

with an initial learning rate of 0.0001. The learning rate

is decreased by 1.1× when the validation loss plateaus for

more than 10 epochs. We empirically choose the hyperpa-

rameters as λ1 = 1, λ2 = 1, λ3 = 0.1, λ4 = 1, λ5 = 0.1
and λ6 = 0.01 in Eq. (12).

4. Experiments

To validate our proposed algorithm, we perform various ex-

periments on a variety of datasets. For quantitative com-

parison against the ground truth, we use the Raytrix dataset

comprising of ground truth LF videos acquired using an in-

dustrial LF camera [11]. However, this dataset has only

three video sequences with limited scene diversity and a

limited angular resolution of 5 × 5 views. Moreover, it has

a maximum disparity of < 2 pixels between adjacent views

at a spatial resolution of 1080 × 1920. To further validate

on challenging video sequences from the Hybrid video data

from [45]. Furthermore, to include more diversity in the

scenes, we simulate videos from 15 LF images in the test

set of [19] and call this dataset ViewSynth. While testing,

we obtain the stereo sequences from these datasets and pro-

vide them as an input to the network V and generate the

LF sequences. During inference, note that we don’t need to

estimate the disparity and optical flow maps from D and O.

4.1. LF video reconstruction

We compare the accuracy of our proposed algorithm

with self-supervised [3] and disparity based methods [58,

46, 54, 38, 1, 5]. For each LF test video, we extract a stereo

pair from each frame of the sequence. We consider the

two extreme SAIs of the central row of the 4D LF frame

as the stereo input to our algorithm to estimate the corre-

sponding 4D LF video. We compare our proposed self-

supervised algorithm with X-fields [3], also an unsuper-
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Figure 4: Qualitatively, our algorithm out-performs disparity-based LF prediction techniques. Our proposed algorithm also performs on

par with unsupervised LF prediction technique that requires 4 corner views as input.

Datasets
Hybrid ViewSynth Raytrix Average

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

AnyNet [46] 27.59 0.070 14.88 0.181 16.35 0.251 19.61 0.167

DeepPruner [5] 30.49 0.068 21.35 0.094 30.98 0.064 27.61 0.075

HighRes [54] 30.79 0.069 25.57 0.063 32.59 0.057 29.65 0.063

HITNet [38] 30.78 0.070 25.51 0.078 32.71 0.061 29.67 0.069

Reversing [1] 29.58 0.061 13.51 0.262 14.97 0.247 19.35 0.188

X-fields [3] 2-view 25.53 0.089 24.58 0.099 31.24 0.089 27.12 0.092

X-fields [3] 4-view 31.66 0.076 28.21 0.091 32.66 0.095 30.84 0.087

Ours 34.21 0.054 30.10 0.122 35.57 0.045 33.29 0.071

Table 2: A quantitative comparison of our algorithm against exist-

ing algorithms on various datasets. We show that our method out-

performs existing methods for self-supervised LF video synthesis.

Note that the first five methods require warping. Blue and green

represent the first and second best algorithm in each column.

Model [46] [5] [38] [1] [54] [3] 2-view [3] 4-view Ours

Error(×10−2) 2.58 2.50 2.49 2.54 2.43 3.10 1.73 1.58

Table 3: Mean absolute error (lower is better) obtained after warp-

ing successive predicted LF frames via optical flow computed

from ground truth LF frames. Our proposed algorithm shows bet-

ter temporal consistency than other algorithms.

vised algorithm. Since X-fields aim at interpolating views,

it fails to generate the full 4D LF from only the stereo views

(X-fields (2-view)) as input (Fig. 4). For completeness in

our comparisons, we include results for LF generation with

the four corner views as input (X-fields (4-view)). We also

compare with disparity-based unsupervised LF estimation

approach [58], which reconstructs LF via disparity-based

warping. Without access to the implementation of [58], we

first estimate the disparity from learning-based methods and

warp the input views to the LF. We use several state-of-the-

art supervised (AnyNet [46], HighRes [54], DeepPruner [5],

HITNet [38]) and unupservised (Reversing [1]) stereo dis-

parity estimation algorithms for comparison.

For quantitative comparison, we used two metrics: peak-

signal-to-noise ratio (PSNR) (higher is better) and learned

perceptual similarity (LPIPS) [57] (lower is better). Table 2

details the quantitative comparisons of various algorithms

against all 3 datasets: Raytrix, Hybrid, and ViewSynth.

When compared to algorithms that use only 2-views as in-

put, our algorithm outperforms in terms of PSNR. Other

algorithms have a slightly better LPIPS [57] metric as their

output is just a warped input image and hence tend to be

much sharper than the ones generated from our algorithm.

However, we can see the real distinction when we compare

the images qualitatively in Fig. 4 and especially take into

account the EPI for the LF views. Algorithms dependent on

disparity-based warping suffer from artifacts arising from

incorrect disparity estimation, as seen in Fig. 4. Our pro-

posed algorithm performs consistently better in predicting

LF frames as can be seen from both Table 2 and Fig. 4.

Temporal consistency Our proposed algorithm aims to

reconstruct LF video sequences where temporal consistency

is a crucial factor. To establish the temporal consistency,

we first predict optical flow for individual ground-truth LF

frames [39]. Then the mean absolute error is computed after
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Model TD Lgeo Ltemp Lstereo PSNR

V 1 ✔ ✔ ✔ ✗ 32.20

V 2 ✔ ✔ ✗ ✔ 31.98

V 3 ✔ ✗ ✔ ✔ 19.20

V 4 ✗ ✗ ✔ ✔ 6.04

V 5 ✗ ✔ ✔ ✔ 30.50

Ours ✔ ✔ ✔ ✔ 32.39

Table 4: Ablation study of the proposed model with various loss

terms from Eq. (12)

Metric
Rank of F (Layers=3) V 5

1 3 6 9 12 –

PSNR 31.43 32.21 31.87 31.92 32.39 30.50

Time 0.103 0.167 0.248 0.319 0.381 0.108

Table 5: Quantitative comparison of the efficacy of the proposed

layered-display regularizer. V 5, as shown in Table 4, refers to the

model where the LF frame is directly output from V instead of

through the intermediate representation F .

warping successive predicted frames via the pseudo-ground

truth optical flow. As can be seen in Table 3 our algorithm

shows much better temporal consistency.

4.2. Ablation Study

Effect of various loss terms In Table 4, we quantitatively

compare our proposed model with its variants based on the

loss terms in Eq. (12). The loss terms, Lstereo and Ltemp

do not have a significant effect on the model performance,

but are still important to ensure the photometric and tem-

poral consistencies. Enforcing the epipolar geometric con-

sistency via Lgeo is crucial for our task as we observe a

significant performance drop in V 3. However, between V 3
and V 4 we observe that the structure imposed by TD layer

helps in obtaining reasonable accuracy even in the absence

of Lgeo term. When using the Lgeo constraint, the perfor-

mance of both without and with TD model, V 5 and Ours

respectively, is enhanced. For V 5, we modify V to output

49 RGB frames corresponding to each view of the 7× 7 LF

frame. Between V 5 and our proposed model, we observe a

PSNR gain of ~1.9dB due to the low-rank intermediate rep-

resentation. Please refer supplementary material for quali-

tative comparisons of the various model variants.

Efficacy of layered-display regularizer We study the ef-

fect of varying rank configurations (M = [1, 3, 6, 9, 12]) for

the low-rank representation F , with number of layers fixed

to L = 3 [51, 26, 37]. The quantitative comparison is shown

in Table 5 for 7 × 7 angular resolution LF output. While

the PSNR improves with increasing rank, we also observe a

corresponding increase in time complexity. Hence, we use

a rank of M = 12 for the representation F in all our experi-

ments, unless stated otherwise. As seen from Table 5, direct

regression of LF frame provides the computational advan-

tage but underperforms in terms of PSNR of the output LF.

We also see from Fig. 5 that the intermediate representation

helps obtain sharper LF reconstructions. More qualitative

comparisons can be seen in the supplementary material.

Rank 1 Rank 6 Rank 12 Without Tensor Display

Center-view of LF
Rank 1 Rank 3

Ground TruthRank 12

Without Tensor Display
Corresponding EPI images

Rank 9

Figure 5: Predicted LF frames are sharper when using higher rank

than at lower ranks or not using the low-rank representation at all.

3× 3 LF 5× 5 LF 7× 7 LF 9× 9 LF

PSNR / LPIPS

34.43 / 0.052 32.50 / 0.073 29.97 / 0.088 – / –

Figure 6: We show the LF sequence predicted at angular reso-

lutions of 3, 5, 7, 9 and also provide the PSNR / LPIPS metrics

where ground truth is available.

4.3. Variable Angular View Prediction

Commercial LF cameras such as Lytro capture 14 × 14
angular resolution images, where only the central 8 × 8
views are usable due to vignetting. Unlike supervised tech-

niques, our proposed self-supervised algorithm is not re-

stricted to predict the angular views at the ground-truth an-

gular co-ordinates provided by the LF. In Fig. 6, we demon-

strate reconstruction of LF frames with variable angular res-

olutions such as 3 × 3, 5 × 5, 7 × 7, and 9 × 9, with our

proposed technique. Note that our algorithm allows us to

generate frames with higher angular resolution (9× 9) than

that of the ground-truth frames from Lytro (8× 8).

Next, in Fig 7, we demonstrate our algorithm’s capability

for extrapolating the angular views to new views outside of

the input baseline. For extrapolating the views beyond the

input baseline, we employ a simple trick: the input stereo

views are now assumed to correspond to adjacent horizon-

tal views of the predicted LF frame. We show qualitative

results in Fig. 7 where the EPI of the extended images show

increased slopes, indicating increased disparity between ad-

jacent views compared to original frames.

4.4. Finetuning on test sequences

The training procedure for our algorithm is to minimize

the overall cost function in Eq. (12), while jointly estimat-

ing the LF video, disparity, and optical flow maps from the

input stereo video. However, due to domain mismatch, the

network can fail to reconstruct reasonable sequences during

inference. For such cases, our proposed algorithm allows

for fine-tuning the neural network on single test sequences.

During fine-tuning, the overall cost function in Eq. (12) is

minimized with AdamW optimizer for 500 iterations. As

can be seen from Fig. 8, fine-tuning consistently improves
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Original Extended Original Extended

Figure 7: Our proposed self-supervised algorithm can be used to

predict novel views beyond the baseline of the input image pair.

Ours Ours (Finetuned)

Disparity Center-view Disparity Center-view

PSNR/LPIPS: 34.76/0.009 PSNR/LPIPS: 36.77/0.007

PSNR/LPIPS: 24.80/0.044 PSNR/LPIPS: 24.92/0.039

PSNR/LPIPS: 28.64/0.030 PSNR/LPIPS: 28.88/0.028

PSNR/LPIPS: 37.12/0.011 PSNR/LPIPS: 37.35/0.009

Figure 8: We show the results of finetuning the trained networks on

novel test sequences. The first two columns show cases where the

network does not perform well initially but we observe significant

improvement with finetuning.

the accuracy of the predicted LF sequence while also pro-

ducing significant qualitative improvements in the recon-

structed disparity maps.

4.5. Application to video refocusing

In Fig. 1 we show post-capture focus control on video se-

quence from [41] acquired using a commercial stereoscopic

camera. As the video is acquired with a large baseline (6
cm) stereoscopic camera, we synthetically reduce the base-

line by downsampling the spatial resolution to 270 × 480
from 1080× 1920. Each stereo frame is rectified using [53]

and the corresponding LF video is generated using our algo-

rithm. The reconstructed LF frames are then used to demon-

strate post-capture focus control as seen in Fig. 1. In Fig.

9, we show another instance of post-capture focus control.

We extract a stereo video sequence consisting of 8 frames

from the LF video dataset in [45]. The proposed algorithm

Frame 1 RoI - Frame 1 RoI - Frame 4 RoI - Frame 7

F
ix

ed
fo

cu
s

D
y

n
am

ic
fo

cu
s

Figure 9: The focal-plane of the video is dynamically adjusted on

the toy using the reconstructed LF video.

is used to generate the LF video from the stereo video. The

focal plane is fixed in the original video, due to which the

toy gets increasingly blurred. However, with our predicted

LF video sequence, we can dynamically change the focal

plane to be fixed on the toy. More results can be seen in the

accompanying supplementary video.

4.6. Discussion

Our proposed algorithm can recover perceptually appeal-

ing light-field videos from only a stereo video sequence.

With only a stereo video input, there is limited knowledge

about the objects being disoccluded in the vertical direction.

However, occlusions do not pose a huge challenge because

we use a relatively small baseline. The proposed algorithm

implicitly learns to inpaint the disoccluded regions. One

of the ways to handle occlusions would be to exploit long-

range temporal correlations in the input video. Another op-

tion would be to use a small corpus of training data for su-

pervised training to handle occlusions.

5. Conclusion

We propose a self-supervised algorithm for light-field

video reconstruction from a stereo video. A layered light

field display-based low-rank representation is used as a

regularizer for guiding the self-supervised reconstruction

of light-field frames. The algorithm is applicable for

widespread consumer use because we require only a stereo

video as input. The proposed self-supervised algorithm

confers advantages over supervised learning, such as post-

training fine-tuning on test sequences. Other advantages

include variable angular view synthesis both between and

beyond the input baseline. The reconstructed light-field

videos also enable post-capture focus control applications

for video sequences.
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