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Abstract

Weakly supervised instance segmentation (WSIS) with
only image-level labels has recently drawn much atten-
tion. To date, bottom-up WSIS methods refine discrimi-
native cues from classifiers with sophisticated multi-stage
training procedures, which also suffer from inconsistent
object boundaries. And top-down WSIS methods are for-
mulated as cascade detection-to-segmentation pipeline, in
which the quality of segmentation learning heavily depends
on pseudo masks generated from detectors. In this paper,
we propose a unified parallel detection-and-segmentation
learning (PDSL) framework to learn instance segmentation
with only image-level labels, which draws inspiration from
both top-down and bottom-up instance segmentation ap-
proaches. The detection module is the same as the typi-
cal design of any weakly supervised object detection, while
the segmentation module leverages self-supervised learning
to model class-agnostic foreground extraction, following by
self-training to refine class-specific segmentation. We fur-
ther design instance-activation correlation module to im-
prove the coherence between detection and segmentation
branches. Extensive experiments verify that the proposed
method outperforms baselines and achieves the state-of-
the-art results on PASCAL VOC and MS COCO.

1. Introduction
Instance segmentation [1, 2] is one of the fundamen-

tal tasks in computer vision, which aims to simultaneously
localize bounding boxes, classify target categories and es-

*Corresponding author.

Figure 1: The overall flowchart of PDSL framework.

timate segmentation masks of object instances in images.
Despite its significant progress in recent years, the domi-
nant paradigms require a large number of training images
with instance-level pixel-wise human annotations. How-
ever, collecting such fully-labelled training data is labor-
intensive [3] and restricts applicability of instance segmen-
tation in many downstream high-level vision tasks, ranging
from autonomous driving, pose estimation to image synthe-
sis. Thus, it has motivated the exploration of weakly super-
vised instance segmentation (WSIS), especially the setting
where only image-level labels are used during training.

WSIS is an extremely challenging task with only a few
attempts in previous literature. The bottom-up WSIS meth-
ods [4, 5, 6, 7, 8, 9] used classification networks to iden-
tify object instances from discriminative localization cues
in the images. While this is a promising line of works,
the initial localization cues are quite coarse and not consis-
tent with object boundaries [10], which over-concentrates
on discriminative parts of objects and under-estimates small
instances [11]. Moreover, those methods suffer from so-
phisticated and multi-stage training processes to refine in-
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termediate results, which also rely on class activation maps
and segmentation proposals. On the other hand, the top-
down methods [10, 12] requires weakly supervise object
detection (WSOD) to generate pseudo-ground-truth masks
by leveraging gradient of image pixels w.r.t. detection re-
sults. Such detection-to-segmentation multi-task cascade
causes the quality of pseudo masks heavily depending on
WSOD, which limits further improvement with large mar-
gins. Although obtaining end-to-end pipeline, the top-down
approaches have significantly inferior performance com-
pared to the bottom-up ones with sophisticated training pro-
cedures prevailing in public benchmarks [13, 14].

To conquer the aforementioned limitations, we pro-
pose a unified parallel detection-and-segmentation learn-
ing (PDSL) framework to learn instance segmentation with
only image-level labels, which draws inspiration from
both top-down and bottom-up instance segmentation ap-
proaches. Our motivation is to parallel top-down detec-
tion and bottom-up segmentation via correlation learning
in an end-to-end manner. The proposed PDSL frame-
work has three advantages. First, compared to top-down
WSIS methods, PDSL decouples the generation of pseudo-
ground-truth masks from detectors and explores bottom-
up object cues to learn segmentation, which models class-
agnostic to class-specific foreground masks progressively.
Second, compared to bottom-up methods, PDSL imposes
bounding-box constraint from detection module on segmen-
tation learning, which are encouraged to match up with ob-
ject boundaries. Third, PDSL further collaborates detection
module with segmentation learning by explicitly modelling
correlations between them.

To this end, the proposed PDSL consists of three key
components: object detection, image segmentation and cor-
relation learning modules, as illustrated in Fig. 1. First, the
detection branch is the same as the typical design of any top-
down detectors learned from image-level labels. Second,
the segmentation branch leverages self-supervised learning
to model class-agnostic foreground extraction, which is fol-
lowed by self-training to learn class-specific object segmen-
tation constrained by bounding boxes. Third, to improve
the coherence between detection and segmentation, we fur-
ther propose instance-activation correlation learning, which
impose a high correlation between two branches for acti-
vation of the same object instances. Extensive experiments
on PASCAL VOC [13] and MS COCO [14] show that the
proposed PDSL outperforms baseline models and achieves
the state-of-the-art results. For the first time, we show that
a top-down approach delivers competitive WSIS results.

The contributions of this work are three folds:

• We propose a cooperative parallel detection-and-
segmentation learning framework to learn instance
segmentation with only image-level labels. It intro-
duces bottom-up object cues to top-down pipeline and

disentangles segmentation supervision from detectors.

• The segmentation branch cooperates self-supervised
learning and self-training to model from class-agnostic
foreground extraction to class-specific object segmen-
tation progressively, while the detection branch uti-
lizes off-the-shelf WSOD methods to mine object in
the form of bounding boxes.

• We further propose instance-activation correlation
module to enhance the coherence between detection
and segmentation branches.

2. Related Work
Weakly Supervised Instance Segmentation (WSIS).

WSIS can be categorized into two groups according to train-
ing supervision, i.e., instance- and image-level labels. The
first group mainly utilizes bounding-box annotations to su-
pervise instance segmentation models. Khoreva et al. [15]
applied box-driven segmentation techniques for bounding
boxes individually to generate pixel-level labels and ex-
ploited recursive training as a de-noising strategy. Hsu et
al. [16] introduced multiple instance learning to generate
pseudo-ground-truth masks, which used tightness prior of
bounding boxes to build positive and negative bags. Li et
al. [17] extended [15] to iteratively refine pseudo masks
with segmentation predictions during training. Arun et
al. [18] proposed a joint probabilistic learning objective and
conditional distributions of pseudo masks for different lev-
els of weak supervision. Cholakkal et al. [19] constructed
object category density maps with the spatial distribution of
object-counting information to learn WSIS.

The second group further challenges WSIS problem
with only image-level weak supervision. The early work
commonly explored bottom-up methods, which contain so-
phisticated multi-stage training procedures. PRM [4] and
IAM [5] utilized class response maps to extract discrimi-
native localization cues via back-propagation, which lever-
aged segmentation proposals to generate instance masks.
IRNet [6] and WISE [7] propagated coarse localization cues
from CAM [20] to discover the entire object, which is fur-
ther regarded as pseudo-ground-truth masks to train fully
supervised models. Recent WSIS methods drifted from
bottom-up to top-down manner [12, 21, 22], which de-
tects and segments all object instances sequentially. Label-
PEnet [12] developed multiple cascaded modules with cur-
riculum learning strategy, which also relied on external
models, i.e., Excitation BP [23], to compute segmentation
masks at each stage. Kim et al. [21] proposed multi-task
community learning to construct positive feedback loop and
generated pseudo-ground-truth masks from CAM [20].

Unlike prevailing WSIS approaches, we propose a
blender PDSL framework to learn top-down detection and
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Figure 2: The figure illustrates the overall architecture of PDSL. The proposed PDSL consists of four components: backbone
network, object detection, image segmentation and correlation learning modules.

bottom-up segmentation in parallel, which also captures
activation-level interaction between detection and segmen-
tation with correlation learning. The proposed PDSL gets
rid of the sophisticated training procedures in the bottom-
up approaches while achieving large performance improve-
ment compared to previous top-down WSIS methods.

LIID [8] and S4Net [9] utilized graph partition algo-
rithms to assign pseudo-ground-truth labels for segmen-
tation proposals, which are used to train fully supervised
models. However, LIID [8] and S4Net [9] required exter-
nal instance-level segmentation models to compute salient
instances as segmentation proposals, which contains addi-
tional ground-truth masks for training such segmentation.

Weakly Supervised Object Detection (WSOD).
WSOD aims to predict object instance in the form of
bounding boxes with weak supervision. WSDDN [24]
selected proposals by parallel detection and classification
branches in deep convolutional networks. Many work
extended WSDDN [24] and leveraged contextual infor-
mation [25, 10], attention mechanism [26] to suppress
low-quality object proposals. Several different strategies
to train the MIL model had been proposed in the litera-
ture [27, 28, 29, 30, 31, 32, 10]. Work in [33, 34, 35, 36, 37]
treated the top-scoring proposals as supervision to train
multiple instance refinement classifiers. Other different
strategies [38, 39, 40, 41, 42, 43] are also proposed to gener-
ate pseudo-ground-truth bounding boxes and assign labels
to proposals. The above framework is further improved by
min-entropy prior [44, 45], gradient information [46, 47],
continuation MIL [48], utilizing uncertainty [49, 50, 51],
generative adversarial learning [52], spatial likelihood
voting [53], objectness consistent [54, 55] and deep resid-
ual learning [56]. Methods in [57, 58, 59] trained object

detection systems from different supervisions.
Collaboration mechanism between object detection and

semantic segmentation is proposed to take advantages of
the complementary interpretations of weakly supervised
tasks [60, 61, 62, 54]. However, those approaches aimed
to improve detection results with segmentation guidance
from full-image masks, which are produced from off-the-
shelf segmentation models [63, 6] or additional segmen-
tation branches. Moreover, they neglected the correlation
relationship between detection and segmentation, and only
reported detection performance. As demonstrated in [21], a
straightforward combination of such two techniques failed
to achieve competitive results for instance segmentation.

3. The Proposed Method
3.1. Overall Framework

Given an image I and corresponding image-level labels
t = [t1, t2, . . . , tnc ] during training, WSIS aims to esti-
mate segmentation masks for all object instances. Here t
is an binary vector, where tc = 1 denotes that image I
contains the cth target category, and otherwise, tc = 0.
And nc is the number of target categories. In this paper,
we propose a unified parallel detection-and-segmentation
learning (PDSL) framework to learn instance segmentation
with only image-level labels, which draws inspiration from
both top-down and bottom-up instance segmentation ap-
proaches. As illustrated in Fig 2, the proposed PDSL con-
sists of four modules: backbone network, object detection,
image segmentation and correlation learning modules. The
backbone network first outputs full-image feature maps of
input I . Then we use RoIPool [64] and RoIAlgin [65] layers
to extract pooled features for pre-computed object propos-
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als [66, 67], which are the inputs of object detection and im-
age segmentation branches, respectively. Specifically, a top-
down detection branch mines object instances by classify-
ing and refining object proposals, while the image segmen-
tation branch explores bottom-up object cues to learn class-
agnostic and class-specific segmentation within bounding
boxes via self-supervised learning and self-training. As
both branches process the same proposals, we further in-
troduce a correlation learning module to enhance the coher-
ence between detection and segmentation. During training,
we have following objective function

L = LOD + LIS + LCL, (1)

where LOD and LIS are the loss functions of object detec-
tion and image segmentation, respectively. And LCL is the
loss function of correlation learning.

3.2. Object Detection Branch

We follow the multiple-instance learning [68] pipeline
in deep convolutional networks and utilize two-stream WS-
DDN [24] algorithms for object detection branch. Given
pooled features from RoIPool [64] layer, we extract pro-
posal features by two fully-connected layers, each of which
is followed by ReLU activation and dropout layer. Then the
proposal features are forked into two streams, i.e., classifi-
cation and detection stream, to produce two score matrices
C,D ∈ Rnp×nc

by another two fully-connected layers, re-
spectively, where np is the number of proposals. Both score
matrices are normalized by softmax functions σ(·) over cat-
egories and proposals, respectively. Finally, the element-
wise product of the output of the two streams is again a
score matrix: S0 = σ(C) � σ(DT )T . To acquire image-
level multi-label classification scores, a sum pooling is ap-
plied: yc =

∑np

r=1 S
0
rc. Then we employ multi-label cross-

entropy loss function to utilize image-level labels as

LOM =−
nc∑
c=1

{
tc logyc + (1− tc) log(1− yc)

}
.

(2)
To further reduce mis-localizations, we tweak the sim-

ilar ideal from OICR [35] to refine detection results via
multiple detection refinement heads. To this end, each
head has proposal classification and bounding-box regres-
sion subnets, which enables to refine both bounding-box
scores and coordinates. In details, it produces classifica-
tion scores Sr ∈ <np×(nc+1) and new bounding boxes
Br ∈ <np×nc×4 for the rth refinement head, where nc + 1
indicates nc object categories and 1 background category.

During training, for the rth head and the cth category
that tc = 1, the highest-score bounding box from previous
prediction is selected as pseudo-ground-truth boxes and as-
signs positive/negative labels for each proposal. Thus, the

corresponding objective function is

Lr
OR =

np∑
p=1

ytrpLCE(S
r
p, t

r
p)+

[trp ≥ 1]ytrpLsmoothL1(B
r
ptrp
, B̂r

p),

(3)

where tr ∈ <np

and B̂r ∈ <np×4 are the classification
and regression targets for object proposals in the rth head,
respectively. LCE is the softmax cross-entropy loss, and
LsmoothL1 is the smooth L1 loss [64]. The iverson bracket
indicator function [trp ≥ 1] evaluates to 1 when trp ≥ 1 and
0 otherwise. With above definition, the overall objective
function for object detection module is

LOD = LOM +

nr∑
r=1

Lr
OR, (4)

where nr is the number of detection refinement heads. Dur-
ing testing, the average output of all heads is used.

3.3. Image Segmentation Branch

Image segmentation branch aims to predict instances
masks given bounding boxes in images. In fully supervised
learning, image segmentation can directly learn ground-
truth masks within positive bounding boxes [65]. How-
ever, recent top-down WSIS methods, i.e., WSJDS [10]
and Label-PEnet [12], back-propagated detection results to
images to generate object heatmaps, which are then post-
processed as supervision for segmentation learning. Thus,
the quality of pseudo-ground-truth masks is strongly tied
to the performance of object detection, which limits further
improvement with large margins.

In this paper, we formulate image segmentation as
foreground extraction via a progressive class-agnostic to
class-specific strategy. Particularly, we first leverage self-
supervised learning to learn class-agnostic foreground seg-
mentation from bottom-up object cues within bounding
boxes, which disentangles the pseudo-ground-truth mask
generation from detection module. Then, the class-agnostic
mask predictions are treated as supervision to learn class-
specific segmentation branches via self-training. To this
end, image segmentation module consists of multiple mask
prediction heads with the same structure. In detail, image
segmentation module has 4 convolutional layers with 3× 3
kernels and 256 channels to extract feature maps, which fol-
lowed by a deconvolutional layer with 2×2 kernels and nm

final prediction layer with 1 × 1 kernels. Given a set of
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object proposals, the objective function LIS is defined as

LIS =

np∑
p=1

LBCE(M
0
p , M̂

0
p )+

np∑
p=1

nc∑
c=1

[tn
r

p = c]ytnr
p
LBCE(M

1
pc,M

0
p )+

nm∑
m=2

np∑
p=1

nc∑
c=1

[tn
r

p = c]ytnr
p
LBCE(M

m
pc,M

m−1
pc ),

(5)
where the first term and the last two terms are loss function
of class-agnostic and multiple class-specific mask heads, re-
spectively. And LBCE(M,M̂) = −

∑
i,j M̂ij logMij −

(1 − M̂ij) log(1 − Mij) is the binary cross-entropy loss.
Specifically, M0

p and M̂0
p are the mask prediction and

pseudo-ground-truth targets for the pth proposal in class-
agnostic mask head. AndMm

pc denotes the prediction masks
for the pth proposal and the cth category in class-specific
mask heads. Different to class-agnostic mask head, class-
specific mask heads only compute losses for the categories
existed in the images, which are weighted by the image-
level classification scores ytnr

p
.

To acquire initial pseudo-ground-truth masks M̂0 for
class-agnostic mask head, we use unsupervised Grab-
Cut [69] methods to extract bottom-up object cues as fore-
ground segmentation given bounding boxes. We are not re-
stricted with the algorithms that generate object cues from
input images. However, extract foreground segmentation
for all proposals is computationally inefficient during train-
ing. As a large number of proposals are necessary to achieve
a reasonable recall rate and good performance. Recall that
object proposals are always redundant and highly overlap
each other, which makes their masks shareable. Thus, we
introduce a seed sample acquisition strategy. Specifically,
we first pick the highest-score object proposal for each cat-
egory that appears in the category-label. We then sort the
object proposals according to IoU overlaps with the se-
lected proposal. After that, the top nseed proposals are
sampled as seeds to estimate foreground segmentation for
pseudo-ground-truth masks, where nseed � np. Finally,
the pseudo-ground-truth masks of the rest proposals are the
same as that of seed proposals with the highest box IoU
overlap. Despite its simplicity, our experiment shows that,
even with a small nseed = 10 for each category, the gener-
ated pseudo-ground-truth masks still enable class-agnostic
mask head to learn high-quality foreground segmentation.

3.4. Correlation Learning Module

Theoretically, the loss functions of detection and seg-
mentation task lead to complementary knowledge [10].
MIL-based WSOD explicitly penalizes all false positives,

and counts a prediction as correct as long as it has IoU
with ground truth over a threshold. This brings clean back-
ground with few false positives, but also lacks sensitivity
to fine tune the localizer. On the other hand, for segmen-
tation, the lack of explicit penalty on false positives often
results in noisy background. But the fine granularity gives
it better precision on ambiguous regions to guide the object
localizer. So these two tasks complement well with each
other. Our motivation of correlation learning is to exploit
complementary knowledge learned from individual tasks by
enhancing the coherence between detection and segmenta-
tion. Our ablation study also demonstrates that correlation
learning is vital to achieve high performance for parallel
detection-and-segmentation learning.

Although PDSL learns detection and segmentation in
parallel, both modules are applied to feature maps cropped
by the same proposals from fully-image feature maps.
Thus, we design an instance-activation correlation learning
with overall objective function formulated as

LCL =

nm∑
m=1

Lm
ACL, (6)

where Lm
ACL is the loss functions of instance-activation cor-

relations for the mth segmentation branch.
The instance-activation correlation learning requires

consistent prediction activation between detection and seg-
mentation for the same proposals. We first compute the pro-
posal activation amp of the pth proposals and the mth mask
head using Log-Sum-Exp [70] as

amp =
1

τ
log
( 1

hw

∑
exp(τMm

ptnr
p
)
)
, (7)

where h,w are the spatial size of prediction mask M r
pc, and

hyper-parameter τ = 5 controls the smooth. The instance
activation from detection module is the predicted scores
from the last object refinement heads: âp = Snr

ptnr
p

. Thus,

the instance-activation correlation loss Lm
ACL for the mth

mask refinement head computes p-norm distance as

Lm
ACL =

1

np

np∑
p=1

||amp − âp||2. (8)

4. Quantitative Evaluations
4.1. Datasets

We evaluate the proposed method on PASCAL VOC
2012 [13] and MS COCO [14]. PASCAL VOC 2012 con-
sists of 20 target categories as well as a background cate-
gory. We follow [4, 6, 8] to utilize the main trainval subset,
excluding segmentation val images, to train our models. We
evaluate our approach and baseline models using the 1,449
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Figure 3: Object detection and instance segmentation per-
formance on VOC 2012 for parallel and cascade learning.

segmentation val images. MS COCO dataset consists of 80
target categories. We follow [9] to train on the standard
train set and evaluate on the val set. Note that only image-
level labels are used for model training.

Table 1: Ablation study of PDSL on PASCAL VOC 2012
instance segmentation.
nr nm nseed LACL mAP mAP0.50 mAP0.75 mAPS mAPM mAPL

0 4 10 X 8.7 31.8 2.5 0.6 2.8 13.6
1 4 10 X 14.3 40.6 8.7 1.8 6.0 19.1
2 4 10 X 19.1 45.4 14.7 2.4 11.1 26.1
3 4 10 X 20.2 47.3 15.5 2.5 12.9 28.3
4 4 10 X 20.8 47.8 15.6 2.3 12.7 28.7
5 4 10 X 20.9 47.8 15.6 2.2 12.3 28.8

4 0 10 X 16.0 45.4 11.7 1.4 10.1 18.1
4 1 10 X 16.6 45.8 12.1 1.1 10.9 20.1
4 2 10 X 16.6 46.4 12.2 1.4 11.3 20.1
4 3 10 X 17.3 46.9 13.0 1.8 12.9 22.8
4 4 10 X 20.8 47.8 15.6 2.3 12.7 28.7
4 5 10 X 20.8 47.9 15.0 2.1 13.1 28.9

4 4 1 X 15.1 38.5 9.3 1.2 7.8 22.1
4 4 10 X 20.8 47.8 15.6 2.3 12.7 28.7
4 4 50 X 21.0 47.8 15.6 2.6 12.9 28.4
4 4 100 X 20.9 48.0 15.0 2.3 12.7 28.5

4 4 10 17.8 43.7 11.6 1.6 9.1 26.1
4 4 10 X 20.8 47.8 15.6 2.3 12.7 28.7

4.2. Evaluation Protocol

For the evaluation metrics of instance segmentation, we
report the standard COCO metrics [14], which is mean av-
erage precision (AP) over IoU thresholds. For object detec-
tion on Pascal VOC, we follow the standard PASCAL VOC
protocol to report the mAP at 50% Intersection-over-Union
(IoU) of the detected boxes with the ground-truth ones. We
also report CorLoc to indicate the percentage of images in
which a method correctly localizes an object of the target
category according to the PASCAL criterion.

4.3. Implementation Details

We implement our method using the PyTorch frame-
work. All backbones are initialized with the weights pre-
trained on ImageNet ILSVRC [71]. We use synchronized
SGD training on 4 GPUs. A mini-batch involves 1 im-
ages per GPU. We use a learning rate of 0.01, momentum

of 0.9, and dropout rate of 0.5. We use a step learning
rate decay schema with decay weight of 0.1 and step size
of 70, 000 iterations. The total number of training itera-
tions is 100, 000. We adopt 240, 000 training iterations for
MS COCO. In the multi-scale setting, we use scales range
from 480 to 1216 with stride 32. To improve the robust-
ness, we randomly adjust the exposure and saturation of
the images by up to a factor of 1.5 in the HSV space. A
random crop with 0.9 of the size of the original images is
applied. We use MCG [67] to generate object proposals
for all experiments, including our implementation of base-
line methods. We set the maximum number of proposals
in an image to be 2, 000. The test scores are the average
of scales of {480, 576, 672, 768, 864, 960, 1056, 1152} and
flips. Detection results are post-processed by NMS with
threshold of 0.5. We use the following parameter settings in
all the experiments, unless specified otherwise. We set the
both hyper-parameters nr and nm in Eq. 4 and 5 to 4. For
the seed sample acquisition strategy, we set the number of
sampled proposals nseed to 10.

4.4. Ablation Study

Before the comparison with other competitors, we per-
form several ablation studies to evaluate the effectiveness
of different design choices and parameter settings. All ab-
lation studies are conducted on the PASCAL VOC 2012 in-
stance segmentation. Here, we use ResNet18-WS [56] as
backbone to save time if not mentioned. When tuning each
hyper-parameter, other parameters are kept as default.

Parallel vs. cascade learning strategies. Recall that
previous top-down methods [10, 12] are based on multi-
task cascade and utilized the gradient of detection results
with respect to images to generate pseudo masks. The pro-
posed PDSL method leverages correlation learning and self-
supervised learning with bottom-up cues to model segmen-
tation in parallel with detection. Thus, we also show the
influence of different learning strategies, i.e., parallel and
cascade learning, as plotted in Fig. 3. We compute the AP
results for object detection and instance segmentation for
each 2, 000 iterations with single-scale testing. It is ob-
vious that parallel learning provides superior performance
for instance segmentation compared to cascade learning.
As detection-to-segmentation multi-task cascade causes the
quality of pseudo masks heavily relying on object detection.

The number nr of detection refinement heads. The
detection refinement heads output bounding boxes for seg-
mentation during testing, which heavily influence the per-
formance of instance segmentation. The hyperparameter nr

in Equ. 4 controls the number of refinement heads. Differ-
ent settings of nr are evaluated in Tab. 1. When we have
nr = 0, the second term of loss function LOD in Equ. 4 are
omitted. We can see that the results of this setting are worse
than using more refinement heads, demonstrating that the
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Table 2: Comparison with the state-of-the-art methods on PASCAL VOC 2012 instance segmentation. The termsM, B, C
and I denote pixel-level, bounding-box-level, object-count and image-level labels, respectively.

Method Supervision Backbone mAP0.25 mAP0.50 mAP0.70 mAP0.75

Mask R-CNN [65] M ResNet-101 76.7 67.9 52.5 44.9

Khoreva et al. [15] B VGG-16 - 44.8 - 16.3
Cholakkal et al. [19] C ResNet-50 48.5 30.2 - 14.4
Hsu et al. [16] B ResNet-101 75.0 58.9 30.4 21.6
Arun et al. [18] B ResNet-101 73.8 58.2 34.3 32.1

Bottom-up multi-stage-training WSIS methods

CAM MCG [20] I VGG-16 20.4 7.8 - 2.5
MELM MGC [45] I VGG-16 36.9 22.9 - 8.4
SPN MGC [72] I VGG-16 26.4 12.7 - 4.4
PRM [4] I ResNet-50 44.3 26.8 - 9.0
IAM [5] I ResNet-50 45.9 28.8 - 11.9
IRNet [6] I ResNet-50 - 46.7 23.5 -
WISE [7] I ResNet-50 49.2 41.7 - 23.7
Arun et al. [18] I ResNet-50 59.7 50.9 30.2 28.5
LIID [8] I ResNet-50 – 48.4 – 24.9

Top-down end-to-end WSIS methods

Label-PEnet [12] I VGG-16 49.1 30.2 - 12.9
Kim et al. [21] I VGG-16 52.4 28.9 - 5.2
Kim et al. [21] I ResNet-50 57.0 35.7 – 5.8
JTSM [22] I ResNet18-WS – 44.2 – 12.0

PDSL I

ResNet18-WS 58.6 47.8 – 15.6
ResNet50-WS 59.3 49.6 – 12.7
ResNet101-WS 59.2 49.7 – 13.1

Table 3: Comparison with the state-of-the-art methods on MS COCO instance segmentation. The termsM, S and I denote
pixel-level, instance saliency and image-level labels, respectively.

Method Supervision Backbone mAP mAP0.50 mAP0.75 mAPS mAPM mAPL

Mask R-CNN [65] M ResNet101 35.7 58.0 37.8 15.5 38.1 52.4

Bottom-up multi-stage-training WSIS methods with external supervision

Fan et al. [9] I,S ResNet101 13.7 25.5 13.5 0.7 15.7 26.1
LIID et al. [8] I,S ResNet50 16.0 27.1 16.5 3.5 15.9 27.7

Top-down end-to-end WSIS methods

WS-JDS [10] I VGG16 6.1 11.7 5.5 1.5 7.1 12.2
JTSM [22] I ResNet18-WS 6.1 12.1 5.0 0.1 3.0 12.6

PDSL I ResNet18-WS 6.3 13.1 5.0 0.1 3.6 12.2

detection refinement is very helpful for instance segmenta-
tion predictions. When nr ≥ 4, the performance gains are
margin. Therefore, we use 4 as the default values for nr.

The number nm of class-specific mask heads. To an-
alyze how AP varies with the number of segmentation re-
finement, we range hyper-parameter nm in Equ. 5 from 0
to 5 When we have nm = 0, the second and third terms
of loss function LIS in Equ. 5 are omitted, as we only have
class-agnostic mask head. In Tab. 1, the performances are
improved consistently for all metrics with hyper-parameter
nm increasing. For nm ≥ 4, the performance improvement
is relatively small. Therefore, we set nm to 4 by default.

The number nseed of sampled proposals for seed sam-
ple acquisition strategy. We continue by evaluating the
effect of hyper-parameter nseed. Recall that we only sam-
ple nseed proposals to estimate foreground segmentation us-

ing unsupervised traditional methods. And generating such
pseudo-ground-truth masks is time-consuming during train-
ing. Thus, we seek to balance the quality of pseudo-ground-
truth masks and training speed by tuning hyper-parameter
nseed. As shown in Tab. 1, when only the highest-score
proposal is used, i.e., nseed = 1, the quality of learned
masks drop dramatically. We can observe that compared
with nseed = 1, even just using only 10 object proposals
boosts the performance a lot, which confirms the effective-
ness of leveraging object cues for segmentation module. We
also find that more seed proposals help to improve pseudo-
ground-truth masks for class-agnostic mask head. We set
the default values for nseed as 10, which provides a good
balance between final performance and training time.

The instance-activation correlation learning loss
LACL. To understand the importance of the correlation
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Figure 4: Visualization results on the PASCAL VOC 2012 val. Left: predictions, Right: ground truths.

learning, we evaluate the influence of different loss func-
tions in this module. The instance-activation correlation
loss LACL punishes the activation diversity of the same pro-
posals between detection and segmentation modules. As
we can see in Tab. 1, results can be improved by instance-
activation correlation learning.

4.5. Comparison with State of the Arts (SOTAs)

We comprehensively evaluate our method with three
ResNet-WS [56] backbones in our experiments, which are
variation of ResNet [73]. It should be noted that our de-
fault hyper-parameters are not the best setting according
to Tab. 1. Comparisons with recent state-of-the-art meth-
ods on PASCAL VOC 2012 and MS COCO are listed in
Tab. 2 and 3. Some previous methods achieve high per-
formance, thanks to the specially designed inter-pixel rela-
tion module [6], graph partition algorithm [8, 9] and salient
detector [9, 8]. Unlike previous methods [7, 6, 4, 5], our
PDSL does not rely on require sophisticated and multi-
ple sequential training process, i.e., fully-supervised model
retraining [7, 6], class activation map module [6, 7] and
segmentation proposals [4, 5]. Instead, we utilize a pow-
erful unified parallel detection-and-segmentation learning
framework and correlation learning module to capture intra-
modular and inter-modular dependencies across separate
branches. Thus, we achieve consistent accuracy gain over
existed methods and set the new state-of-the-art results.

The qualitative results on the PASCAL VOC 2012 val
are shown in Fig. 4. As can be observed in the first five
columns, our approach outputs semantically meaningful
and precise predictions despite the existence of complex ob-
ject appearances and challenging background contents. It
demonstrated the effectiveness of the proposed unified par-
allel detection-and-segmentation learning framework. We
further visualize our failure mode in the last column, mainly
resulting from confusion with similar objects, localization
error and failing to distinguish multiple instances.

Each iteration of PDSL with ResNet50 takes about 1
second for forward-backward propagation on GTX 1080Ti
GPUs and several seconds on CPUs to extract bottom-up
object cues. Thus, the total training times are about 12 days
for PASCAL VOC. Noted that parallel GPU computing of
bottom-up cues can further reduce training time. We can
also use pre-computed GrabCut masks, segmentation pro-
posals and attention maps as bottom-up object cues. During
inference, PDSL runs at 539 ms per image including NMS.

5. Conclusion

In this paper, we propose a unified parallel detection-
and-segmentation learning (PDSL) framework to learn in-
stance segmentation with only image-level labels, which
draws inspiration from both top-down and bottom-up in-
stance segmentation approaches. In order to improve the
coherence between detection and segmentation branches,
we further propose instance-activation correlation learning,
which impose a high correlation on activation between two
branches for the same object instance. For the first time, we
show a top-down WSIS approach could deliver the state-of-
the-art results on both PASCAL VOC and MS COCO.
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