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Abstract

Pixel-to-mesh has wide applications, especially in virtual
or augmented reality, animation and game industry. How-
ever, existing mesh reconstruction models perform unsat-
isfactorily in local geometry details due to ignoring mesh
topology information during learning. Besides, most meth-
ods are constrained by the initial template, which can-
not reconstruct meshes of various genus. In this work,
we propose a geometric granularity-aware pixel-to-mesh
framework with a fidelity-selection-and-guarantee strategy,
which explicitly addresses both challenges. First, a geome-
try structure extractor is proposed for detecting local high
structured parts and capturing local spatial feature. Sec-
ond, we apply it to facilitate pixel-to-mesh mapping and re-
solve coarse details problem caused by the neglect of struc-
tural information in previous practices. Finally, a mesh edit
module is proposed to encourage non-zero genus topology
to emergence by fine-grained topology modification and a
patching algorithm is introduced to repair the non-closed
boundaries. Extensive experimental results, both quantita-
tively and visually have demonstrated the high reconstruc-
tion fidelity achieved by the proposed framework.

1. Introduction
Mesh is a widely used 3D representation, especially in

virtual/augmented reality, animation and game industry, for

its capability of modeling geometric details. As an alter-

native or auxiliary of traditional manual mesh, 3D recon-

struction from pixel level attracts a growing attention and

has achieved promising results. According to the format

of the generated 3D model, existing reconstructed methods

can be divided into image to voxel, image to point-cloud,

image to mesh, etc [22]. More recently, implicit repre-

sentation [41, 8, 58] has been used for 3D reconstruction

and some new reconstructing forms also come up, such as

NeRF [37]. Among these methods, 3D mesh reconstruc-

tion attracts much attention because it is the most popular

shape representation in game and movie industries. Recent

progress in single-view mesh reconstruction proposes to re-

construct a 3D mesh by deforming a template model based
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Figure 1: Monocular reconstruction results of the state of

the art deformation-based learning approaches. (a) Ground

truth; (b) Deep Mesh [40], the green lines and triangles mark

the non-closed boundaries correspondingly; (c) Ours; (d) In-

put image; (e) Pixel2Mesh [51]; (f) GEOMetrics [46]. Rel-

atively, our method can better deal with the topology in de-

tails and reconstruct holes of the object without non-closed

boundaries.

on the perceptual features extracted from the input image

[51]. Though promising results have been achieved, the re-

constructed results are unsatisfactory on local details and

non-zero genus objects.

The first challenge in reconstruction is to generate precise

and rich details. Existing methods mainly utilize the cham-

fer distance between two point clouds, which are sampled

from predicted mesh and the ground truth respectively, to

restrict the reconstruction. Although some other constraints

are added, such as normal loss [27] which enforces the con-

sistency of surface normal and edge length regularization to

prevent outliers [45]. All of them only focus on the point

clouds, without considering the topology of mesh. Replac-

ing mesh with point cloud smooths out local structure de-

tails and corresponding local structure information, leading

to coarse reconstruction details. Besides, it is not reasonable

to treat all parts of a mesh equally for the uneven informa-

tion distribution on it, which means high-fidelity parts need

extra attention. Treating the mesh as point cloud and in-
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discriminately overall processing of existing methods show

disadvantages in parts with large curvature changes and rich

details, like table corners and chair legs, represented by ab-

normally smooth and even disordered connection on the re-

constructed mesh. The lack of details leads to noticeable

gaps between reconstructed mesh and manual one, which

affects practical application.

Another obstacle is to reconstruct non-zero genus ob-

jects, where the holes need to be reproduced. This problem

is especially obvious in pixel-to-mesh reconstruction, where

initial template is imported and the network is trained to

guide movements of vertices. According to topology defor-

mation theory [52, 2], the objects of same genus are home-

omorphism and can be transformed into each other through

deformation while objects of different genus cannot. This

suggests the initial template restricts the reconstruction re-

sults, which we show in Figure 2. Thus, how to realize

the change of genus is a key problem to precise mesh re-

construction. Mesh edit provides a way out for the change

of genus, but the refinement of the pruned area and ensu-

ing open boundary issues are also shown in related attempts

[40]. Although other methods, such as point/voxel and SDF

reconstruction [14, 11, 41] seem to avoid this problem, they

may suffer from missing parts and holes when transformed

to mesh using Marching Cubes algorithms [4]. Therefore

Deformation Deformation + Mesh edit

Figure 2: Translation relationship between different genus

topologies.

in this paper, we aim to address the above mentioned lim-

itations by introducing geometric granularity-aware pixel-

to-mesh framework with a fidelity-selection-and-guarantee

strategy. The model selects high-fidelity parts and realizes

partially re-sampling, which are used to guide subsequent

deformation and in turn guarantee the fidelity of reconstruc-

tion results. The framework consists of a Multi-scale Geom-

etry Structure Extractor (GSE), a geometry-aware deforma-

tion network, and a fine-grained mesh edit module. Firstly,

in order to capture important local geometry features, we

propose the multi-scale geometry extractor. It locates vi-

sually perceptible high-fidelity areas by detecting semantic

key points around with rich details and complex structure.

Then it captures the geometry structures of the key areas

by forming subgraphs rooted by the key points. Leverag-

ing the subgraphs sets of given meshes, geometry extrac-

tor measures local structural similarity of the meshes us-

ing weighted graph kernel [50]. Then, to improve the re-

construction details of existing methods, we introduce the

Geometry Structure Extractor into monocular 3D mesh re-

construction. Note that the GSE is general and can be ex-

tended to other tasks related to mesh data, such as classifica-

tion and retrieval. In the deformation stage, multi-scale lo-

cal geometry features captured by the extractor restrict and

guide movements of vertexes on the template mesh. Af-

ter deformation, to break through the restrict of the genus

0 initial template on reconstructed objects, we introduce a

Fine-grained Edit Module. In order to realize fine-grained

edit, faces are subdivided adaptively according to the esti-

mated error degrees. Then after the second error estima-

tion, pruning is operated. Finally, the edit module refines the

boundaries and provides a Patching Algorithm to repair the

non-closed boundaries. By the GSE and the Fine-grained

Edit modules, our framework realizes geometry granularity-

aware reconstruction and reformulates the pipeline of pixel-

to-mesh. To the best of our knowledge, our framework is

the first to realize integral reconstruction while focusing on

the two core issues in reconstruction at the same time. It’s

also the first to explicitly extract local features of meshes

and realize fine-grained edit.

The contributions of this paper can be summarized as:

• We propose a Geometry Structure Extractor (GSE) for

mesh data to locate key areas and explicitly extract local ge-

ometry information, which helps to retain structure informa-

tion of the graph data in Hilbert high-dimensional space.

• We design a Multi-scale Shape Preserving Constraint

to facilitate pixel-to-mesh mapping and then validate its ef-

fectiveness on a deformation-based reconstruction network.

• We introduce a Fine-grained Mesh Edit module which

consists of an adaptive pruning module and a patching repair

algorithm that break the restriction of the template mesh and

allow objects of various genus to emergence.

2. Related Work
2.1. Mesh Reconstruction from Pixel

Mesh Reconstruction from Pixel can be divided into

two routes, including indirect and direct approaches. The

former reconstructs 3D model in another format, such as

point cloud and voxels, and then translates it into mesh.

Point cloud reconstruction [14, 13] and voxel reconstruction

[17, 18] are common explicit 3D reconstructions. 3D R2N2

[11] proposed a voxel reconstruction framework, which is

the representation of monocular 3d shape generation using

deep learning techniques. Besides, AtlasNet [19] based on

parametric representation also emerged. But it needs to

solve how to stitch multiple meshes tightly together. Re-

cently, implicit representations are widely applied in recon-

struction [60, 10, 41, 9, 36, 10]. They are typically cre-

ated with a pipeline that couples simultaneous localization,

mapping-based pose estimation, and depth image integra-

tion using Signed Distance Functions (SDFs). While it is

possible to produce accurate shapes using above methods,

models may suffer from missing parts and holes due to the

translation to mesh by Marching Cube algorithm [34, 15].
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Comparing with the indirect methods, reconstructing

mesh directly can avoid information loss caused by post-

processing. Most existing direct mesh reconstruction meth-

ods are deformation-based [49, 56], which regress to coor-

dinate movements from the image feature and the ground

truth model. Pixel2mesh [51] propose the earliest end-to-

end deep learning architecture that produces a 3D shape in

triangular mesh from a single color image. Pixel2mesh++

[53, 25] introduces multi-view images and utilizes the dis-

tance between images and the projection of the recon-

structed model at different angles to refine the reconstruc-

tion. However, there are two core issues that hinders the

further development of reconstruction. One is the restriction

of the initial template. The other is the fine-grained recon-

struction of geometry. For the first challenge, Kanazawa et.

al. [24, 16] propose to find a more likely template by re-

trieval, which is hard to generalize. Pan et. al. [40] recon-

structed holes on the mesh by prune faces with large error

possibility. However, the prune is coarse and it also leads to

non-closed boundaries which make mesh abnormal. For the

second problem, Smith et. al. [46] utilize adaptive splitting

to allow detail to emerge, which alleviates the coarse details

problem to some extent. However, it has no special consid-

eration for local geometry structure, equally treating every

part of the mesh. Tang et. al. [48] roundbreakingly realized

direct mesh reconstruction by a skeleton-bridged approach.

But it cannot be trained end-to-end.

2.2. Geometry Structure Similarity

Measuring the similarity between geometry structures is

critical in the mesh reconstruction. Existing reconstruction

methods roughly equal the similarity between meshes to the

similarity between their sampled point clouds, which leads

to the loss of shape information. Actually, mesh is a fully

connected graph and its local structures can be described

by local subgraphs. Then the geometry similarity can be

measured by the similarity of the subgraphs.

Graph similarity is calculated mainly by Kernel methods,

which can be summarized into two categories, graph embed-

ding and graph kernel algorithm [38]. The former vectorizes

graph, structures and utilizes vector kernels like RBF ker-

nel and Sigmoid kernel, represented by GCNs [6, 12, 35]

which are widely applied in pixel to mesh reconstruction

[30, 50]. But this kind of methods reduce the dimensional

of structure data to vector space and loses a lot of struc-

ture information. The graph kernel algorithm [50] directly

makes use of graph structure data, which not only retains the

advantages of efficient kernel function calculation but also

contains the structure information of graph data in Hilbert’s

high-dimensional space. According to the difference of ker-

nel function, common graph kernel algorithms can be di-

vided into Graphlet kernels, Weisfeiler-Lehman subtree ker-

nels, and Shortest-Pathkernels [30]. We import Wasserstein

Weisfeiler-Lehman Graph Kernel, which integrates Wasser-

stein distance, preserves features of the node, and proposes

a graph embedding scheme.

2.3. Mesh Edit

Most researches about pixel to mesh use a genus-0 3D

model such as sphere and ellipse as their initial model [24, 1,

42, 49, 59], while some others find proper initial template by

retrieval [31, 49]. However, all of them cannot cope with the

genus difference between the template and the target. Pan et.

al. [40] propose to reconstruct holes by estimating the face

error and pruning the incorrect part. However, it has two

disadvantages. The first is that the number of faces on the

template is limited, for which it is very possible to prune a

bigger part than the real wrong part. In order to realize fine-

grained prune, we adopt the main idea of mesh subdivision

[33, 26, 43, 21], which is also utilized by Smith et. al. [46] to

encourage details to emergence. Secondly, pruning leads to

non-closed boundaries and abnormal mesh structure, which

will affect its application. This problem can be resolved by

repairing the boundaries. There have been some mesh repair

methods [3, 23, 44] , which can recovery normal mesh by

patching. However, they are not suitable for objects born

with holes. Using existing filling holes method directly will

filling the holes, instead of repair the boundaries smartly. So

inspired by methods mentioned above, we propose a novel

repair algorithm in section 3.2.

3. Methodology
The existing mesh reconstruction models mainly utilize

Chamfer Distance (CD) between the predict mesh and the

ground truth to constrain the deformation of the initial tem-

plate, while some constraints such as normal loss, laplacian

loss, and edge loss are accompanied sometimes. All these

indicators only describe the similarity between two point

sets, which are sampled from faces of predicted and ground

truth meshes. Due to the neglect of topology structure, nei-

ther of them performs well on complicated shapes. Besides,

deformation-based reconstruction is limited by the initial

template, the general genus 0 ball cannot reconstruct non-

zero topology accurately. Focusing on the two problems,

we propose an enhanced deep pixel to mesh framework

which explicitly addresses the challenge of fine-grained de-

tail reconstruction. Figure 3 overviews our framework. The

framework consists of three modules: 1. Multi-scale Geom-

etry structure Extractor; 2. Geometry-aware Mesh Defor-

mation; 3. Fine-grained Mesh Edit Module. The details of

each module are described below.

3.1. Geometry Structure Extractor

Mesh of an object can be taken as a large-scaled un-

directed graph. However, its connection information and

topology structure are rarely used by previous methods.

Although deformation-based methods put an ellipsoid into

GCN or CNN [32]and utilize losses such as Laplician loss to

restrict the edge of the predicted mesh, they never learn the

geometry structure of ground truth meshes. In order to take

advantage of the geometry structure of mesh data, we pro-

pose an extractor that can detect semantic key points and ex-

plore local geometry. Compared with embedding methods
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Figure 3: The overview of our framework. When a ground truth mesh (a) is input to the pretrained Geometry Structure

extractor, its key areas are located, which is marked by red areas in (b). Then, subgraphs describing local shapes are captured

in (c) and then translated into vectors (d), which provide geometry constraints for mesh deformation. The Deformation Module

progressively moves the mesh vertices, and the Edit Module hierarchically modifies the topology to approximate the target

object model. After two rounds of deformation and edit, boundaries are refined and the non-closed mesh is repaired.

which encode the whole structure into vector space, GSE is

more flexible and keen. It focuses on local details and re-

tains more geometry structure information in Hilbert high-

dimensional space.

Locate Key Areas According to the law of human per-

ception, we first focus on the overall shape and secondly

pay attention to some intuitive key areas. The overall shape

have already derived by existing reconstruction methods

[51, 53, 40, 46]. We mainly focus on the key areas. On the

basis of our empirical visual habits, we prefer to define se-

mantically significant areas as key areas, such as chair legs

and table corners. In order to describe the shape of these

key areas, we utilize key points, which are approximately

the centers of the key areas. Taking key point as root, we

derive subgraphs of predefined size around it to locate the

key area.

To detect semantic key points, we use the hand-marked

data provided by KeypointNet [57] to train a key-points de-

tector. The network is based on Pointconv [54]. Although

some key points are not accurate absolutely due to the insuf-

ficient generalization caused by limited data categories, this

will not bring negative gains to subsequent modules for the

loss calculating approach in sections 3.1.

Capture Structures by DeepWalk In order to learn the

local geometry structure of mesh data, we decouple local

structures from the overall graph. Taking the detected se-

mantic key-point as root, we derive a sub-graph consist-

ing of its nearest neighbors. The edge of the sub-graph is

weighted by the descending function of distance between

vertices at both ends. Then we explore the geometry of the

sub-graph by deep walk [5, 55], which encodes the structure

information.

Take the mesh M in Figure 3 as an example, we detect

a set of n key-points K (n) = [k1, k2, ..., kn]. Then, tak-

ing ki as root and fix the local scale as m, we derive a set

of n subgraphs G (m,n) = [g1, g2, ..., gn], where gi con-

tains coordinates of vertexes and connecting edges of them

gi =
{
V = [v1, v2, ..., vm], E

}
. Taking g1 as an example,

rooted by k1, it is a sub-graph of the M and captures the

local geometry structure in area1. As a collection of sub-

graphs gi, G contains all feature of areas where the semantic

and structural information is rich.

Geometry Similarity Calculation The similarity of two

or more meshes is widely applied in classification, detection,

and reconstruction tasks. However, most similarity calcula-

tions of mesh are manipulating on sampled points, wasting

the topology information. In order to further excavate mesh

data, we introduce a geometry similarity calculation method.

Given two mesh M1 and M2, we firstly use the method

in 3.1 to locate their key areas A = [a1, a2, · · · , an] and

B = [b1, b2, · · · , bn] . Then according to section 3.1, two

sets of geometry structures are captured in G1 and G2. For

subgraphs of G1 and G2, we use g1i and g2i to represent them

correspondingly. Then we use weighted graph kernel to cal-

culate their similarity, represented by S. First, we need to

determine the corresponding points of the two subgraphs g1i
and g2i . Node2vec [20] is imported here to learn the embed-

ding of each point. Specifically, Node2vec algorithm en-

codes coordinate and connecting relationship of each vertex

into the vector e. For gj in G, using Node2vec, we address

its integral geometry structure vector

gsj = [e1, e2, ..., em]. (1)

The em here is the embedding of the vertex m. Credit to the

process of solving the likelihood problem, vector e greatly

retains geometric structure information.

Then, according to the distance between the feature vec-

tors, we reorder the vertices of g1i and g2i into one-to-one
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corresponding format. For each pair of vertices, euclidean

distance is used to represent the difference between their

features. Euclidean distance of each pair of nodes is com-

bined to construct distance matrix D. Euclidean distance is

calculated as follows:

dE(e, e
′) = ‖e− e′‖2 . (2)

Subsequently, we utilize weighted graph kernel to calculate

the similarity of g1i and g2i .

S(g1i , g
2
i ) = e−λD, λ > 0. (3)

Finally, the similarity of the two mesh G1 and G2 can be

derived by the mean of similarities of all subgraphs.

S(G1, G2) =
1

m

m∑

i=1

S(g1i , g
2
i ). (4)

3.2. Geometry-aware Mesh Reconstruction

In this section, we apply geometry structure extracted

by GSE in section 3.1 to 3D mesh reconstruction. Existed

3D mesh reconstruction methods mainly focus on the cor-

respondence of the 2D image and sampled 3D points on the

mesh and neglect geometry structure, which leads to the lack

of details and even abnormal topology. Our deformation net-

works follow the architectures in Deep Mesh [40]. The fea-

tures of images are extracted by resnet, and then put into

CNNs to guide the movement of vertexes of template ellip-

soid. In addition to the existed constraints which have been

widely in mesh reconstruction [53, 40], GSE preferentially

re-samples local shape features which enable the network to

learn more geometry structure of mesh data.

First, we can detect n key points by GSE on the ground

truth mesh. For each of them, GSE finds the nearest ver-

tices on the predicted mesh and saves them as n key points

of the predicted mesh. Then, GSE extract a graph whose

size is predefined m around every key point. All m vertexes

of graphs on the ground truth mesh form a set Ggt(m,n)
while the one on the predicted mesh is Gpred(m,n). The

geometry structure of the ground truth mesh can be repre-

sented as GSgt(m,n) = [gs1, gs2, ..., gsn]
T , while the ge-

ometry structure of the predicted mesh is GSpred(m,n) =

[gs1
′
, gs2

′
, ..., gsn

′
]T . Hence, we have vi and v

′
i in gsi and

gs
′
i. In this geometry vector space, use ci to represent the

correspondence vertex of vi.

ci =
{
v

′
i|i = argminL(ei, e

′
i), i = 1, 2, ..., n

}
, (5)

where L is a distance function. According to the equation 5,

we can reorder vertices in the matrix Gpred(m,n) and save

it as Gpred−ordered(m,n). Finally, the similarity of local

geometry structures on predicted mesh and the ground truth

can be measured.

L(m,n) = L{
Ggt(m,n), Gpred−ordered(m,n)

}
, (6)

The n here is determined by the number of detected key

points and the m is the scope of the local area. If m is too

small, we cannot capture complete structures. But if it is too

large, the attention on the local area will be weakened. In

order to obtain feature in various levels, we utilize a multi-

scale geometry extractor. The local geometry structure re-

strict can be described as follows:

Lgs(s) =

s∑

k=1

αkL(mk, n), (7)

where s is the number of scales and αk is the weight of

different scales.

3.3. Fine-grained Mesh Edit

Deformation-based reconstruction method is the only ap-

proach to gain mesh from pixel-wise directly. However, it is

restricted by the initial template, for the reason that only ob-

jects of the same genus can be transformed from each other

through deformation, which is demonstrated in topology

theory [2, 52]. The most universal template is genus 0 ball or

ellipsoid for its better generalization, which is destined to be

impossible to reconstruct non-zero genus object. Although

adopting template by retrieval has been practiced [31, 49],

it is still helpless to the change of genus. Inspired by deep

mesh, to generate objects of various genus from a genus 0

template, we introduce a fine-grained mesh edit module that

is illustrated in Figure 3. The error estimation network di-

vides vertexes into different error levels, according to which

we do super-resolution of a different degree. Then, we re-

judge on fine faces and prune error one. Finally, a patch-

ing algorithm is implemented to repair details. Compared

with deep mesh, our mesh edit module not only enables the

face pruning to be performed in a fine-grained manner but

also repairs the abnormal meshes with non-closed bound-

aries. Specially, if the target mesh is genus 0, the estimated

errors of faces are generally low. Thus, the edit module will

not affect the reconstruction of genus 0 object.

Error estimation and Local Super-resolution The

biggest gap between different genus meshes is the number

of holes. Our main idea to span over different genus is to

dig holes in proper area. To do this, a classification network

is trained to estimate the error property of each face. How-

ever, the error is the mean error of sampled points, prun-

ing whole faces directly will lead to excessive delete, coarse

boundaries, and unnecessary error. Thus, different from the

discriminating problem in deep mesh [40], we set up an er-

ror classification and hierarchically super-resolution mech-

anism. The upper part of the edit module in Figure 3 de-

scribes branches of the super resolution. When the error is

in the interval of τ1 and τ2, we think the error property is

lower and the error area is smaller correspondingly. Then

we do super resolution two times, after which one face is

divided into sixty faces. If the error is bigger than τ2, we do

super resolution only once, after which one face is divided

into four faces.

Prune and Repair As one of the topology-changing ap-

proaches, pruning is the key to break through the limitation

of the genus 0 initial template in reconstruction. After error
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estimation and local super resolution, we will prune neigh-

bor faces of vertices whose error property is higher than τ .

Pruning operation encourages holes to generate by forc-

ing mesh to change its genus. However, mentioned in

deepmesh [40], deleting faces leads to non-closed bound-

aries, which makes mesh abnormal and unsuitable to general

rendering, rigging, and other subsequent applications. In or-

der to solve the problem, we propose the following patching

algorithm. By detecting non-closed boundaries and classi-

fying them into two categories, we can fill holes to repair the

mesh. The detailed proof and explanation of the algorithm

are provided in the supplementary material.

Algorithm 1 Patching Algorithm

Input: A mesh with non-closed boundaries

Output: A closed mesh

Detect a set of circles C = {C1, C2, ..., Cl}, where Ci is

formed by non-closed boundary edges

for Ci in C do
if dist(Ci, Cj) < γ then

Connect corresponding points on Ci, Cj and tri-

angulate new surfaces

end if
if dist(Ci, Cj) � γ for any j then

Connect turning points P1, P2, ..., Pn in turn and

generate new circles S = {S1, S2, ..., Sm}
for Sj in S do

Find center vj of Sj and generate triangular

surface by connecting vj with every vertex of Sj

3.4. Training Objectives

Our network is restricted by losses of three parts. For

the overall shape, we extend commonly used Charmfer Dis-

tance to support larger batchsize on multiple GPUs. In order

to complete local details, we propose multi-scale setting Ge-

ometry Structure loss utilizing GSE in section 3.1. Besides,

to avoid abnormal movements of vertexes and guarantee the

high quality of reconstructed 3D geometry, we also apply a

series of regularization losses.

Charmfer Distance Charmfer Distance(CD) is a nor-

mally used restrict in supervised 3D reconstruction [51, 53,

40]. It measures the similarity of two shapes by calculat-

ing the distance between two point sets, which is generally

defined as:

LCD =
∑

x∈M

min
y∈S

‖x− y‖22 +
∑

y∈S

min
x∈M

‖y − x‖22 , (8)

where x ∈ M and y ∈ S are respectively the point sets

down-sampled from vertices of generated mesh M and the

ground truth points set.

Regularization Loss. We employ three regularization

techniques defined in [51, 27]. The normal loss Lnormal

measures the normal consistency between the generated

mesh and ground truth. The smoothness loss Lsmooth flat-

tens the intersection angles of the triangle faces and supports

the surface smoothness. And the edge loss Ledge penalizes

the flying vertices and overlong edges to guarantee the high

quality of recovered 3D geometry.

Error estimation loss. We adopt the error estimation

loss in Deep Mesh [40] to train the error estimation network.

For every face on the predicted mesh M , we sampled a point

set {x ∈ M} on it. fe is the estimated error of the network

and ex is the corresponding ground truth error.

Lerror =
∑

x∈M

|fe(x)− ex|2 , (9)

The final training objective of our system is defined as:

L = λ1Lgs+λ2LCD+λ3Lnormal+λ4Lsmooth+λ5Lerror.
(10)

4. Experiments
4.1. Experimental setup

Dataset In the GSE module, we use the dataset provided

by You et. al. [57] to train a key-points discovery network.

The dataset contains hand-marked 3D keypoint dataset on

16 categories of the ShapeNet [7], which is a collection of

3D CAD models. In 3D mesh reconstruction, we use five

categories of the ShapeNet [7] dataset to train the deforma-

tion network. In terms of category selection, we focus on

common objects in indoor scenes, which are more valuable

for daily applications. We use the rendering images pro-

vided by Choy et. al. [11] as input. For fair comparison, we

use the same training/testing split as in Choy et. al. [11].

Evaluation Metric We use standard evaluation metrics

for 3D shape generation. Following Fan et al. [13], we

calculate Chamfer Distance(CD) between points clouds uni-

formly sampled from the ground truth and our prediction to

measure the surface accuracy. We also use F1-score fol-

lowing Wang et al. [51] to measure the completeness and

precision of generated shapes. Both metrics are computed

between the ground truth point cloud and 10, 000 points

uniformly sampled from the generated mesh. For CD, the

smaller is better. For F-score, the larger is better.

Implementation Detail The key-points discovery net-

work in GSE module is a classifier based on pointconv [54],

which is trained firstly for only 4 hours on NVIDIA 2080Ti.

The reconstruction network including deformation module

and edit module is implemented in Pytorch and every sub-

module is trained separately. We use a batch size of 32 and

Adam [28] optimizer at a learning rate of 1e−3 (dropped to

1e − 4 after 200 epochs) for 400 epochs. The whole model

is trained on NVIDIA 2080Ti for 72 hours. The values of

hyper-parameters mentioned above are τ1 = 0.001, τ2 =
0.01, τ = 0.01, γ = 0.1, λ1 = 0.1, λ2 = 1, λ3 =1e-

3, λ4 =5e-7, λ5 = 0.1.

4.2. Results and Comparisons

We first Quantitatively compare the performance of

our approach with three state-of-the-art methods, including
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Table 1: CD and F1 on the ShapeNet test set. For CD, the smaller is better. For F-score, the larger is better.

Category
CD F1

P2M GEOMetrics DeepMesh Ours P2M GEOMetrics DeepMesh Ours

chair 0.610 0.823 0.514 0.389 54.38 56.61 59.19 74.32
table 0.498 0.797 0.404 0.316 66.30 66.33 73.42 76.54
bench 0.624 0.690 0.516 0.427 57.57 72.11 71.55 74.82

monitor 0.755 0.793 0.629 0.517 51.39 59.50 57.64 71.20
lamp 1.295 0.813 1.043 0.798 48.15 58.65 56.75 59.13

Mean 0.7564 0.7832 0.6212 0.4894 55.558 62.64 63.71 71.202

(a) Image (f) Ground truth(b) Pixel2Mesh (c) GEO (d) DeepMesh (e) Ours

Figure 4: Qualitative results. (a) Input image; (b) Pixel2Mesh [51]; (c) GEOMetrics [46]; (d) Deep Mesh [40], the green lines

and triangles mark the non-closed boundaries correspondingly; (e) Ours; (f) Ground truth.

Pixel2Mesh [51], GEOMetrics [46] and Deep Mesh [40].

We adopt the widely used Chamfer Distance (CD) and F1

score [29] to quantitatively evaluate the reconstruction accu-

racy. Results are shown in Tab 1, where CD and F1 are in the

unit of 1e− 2. Our approach outperforms the other methods

in most categories and achieves the best mean score. The

most obvious category is chair, which is improved by 24%
than the best method before, followed by the table with 22%
improved. Although the lamp has the least improvement,

probably because of that the large variance within the class

weakens shape constraints and the edit module, our method

still achieves improvement relative to others. GEOMetrics

performs well in F1 score while its CD is the worst. This is

probably caused by its sparse vertices strategy. In order to

analyze comprehensively, we also compare the quantitative

results.

The visual reconstruction results are shown in Fig 4.

While Pixel2Mesh can reconstruct the rough shapes, it fails

to capture the fine details of the geometry, such as the slim

chair legs, square table corner, and smooth curved surfaces,

which is due to the lack of partial shape constraints. Thanks

to the local face slitting operation, GEOMetrics reconstructs

relatively refined geometry. But overlap and intersection

make glitches appear in the results. Besides, due to the con-

strain of the initial genus-0 ball template, both Pixel2Mesh

and GEOMetrics can not generate holes under the chair han-

dle or desks, which seriously affects the accuracy of recon-

struction for that objects of non-zero genus are widespread

in nature. In contrast, our baseline Deep Mesh utilizes topol-

ogy modification module to break the constrain of the ini-

tial module. The results show holes in corresponding parts.

However, pruning brings two problems. The one is the non-

closed boundaries and faces, which is marked with green

line and light green triangles correspondingly in the results

of Deep Mesh. The other is the large scale of the prune

which brings imprecise cropped contour. In comparison, we
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Table 2: Ablation study that evaluates the contribution of

GSE and Fine-grained Edit module to the performance of

the framework.

Category
CD F1

Ours
(full model)

Ours
(without GSE)

Ours
(without Edit)

Ours
(full model)

Ours
(without GSE)

Ours
(without Edit)

chair 0.389 0.424 0.573 74.32 72.67 58.01
table 0.316 0.351 0.432 76.54 75.22 71.76
bench 0.427 0.433 0.498 74.82 74.13 73.64

monitor 0.517 0.560 0.539 71.20 59.89 70.35
lamp 0.798 0.871 0.922 59.13 58.16 57.08

Mean 0.4894 0.5278 0.5928 71.202 68.014 66.168

boast highly accurate reconstructions both in global shape

and local details. We are able to generate meshes with com-

plex geometry structure, shown in high-fidelity areas such

as corners and edges. In addition, our method is able to

reconstruct holes with fine-grained boundaries with closed

stereoscopic repaired faces, which is especially shown on

the right side of Fig 4. We also validate the advance of our

method on real dataset Pix3D [47], and compare with To-

tal3DUnderstanding [39]. The results are shown in the sup-

plementary material.

4.3. Ablation Study

Components Analyses Now we conduct controlled ex-

periments to analyze the effectiveness of the proposed ge-

ometry structure extractor and fine-grained edit module in

our framework. Tab 2 reports the performance of each mod-

ule by removing one component from the full model.

We first remove the Geometry Structure Extractor. It is

observed that for every category, there is still more than 10%
improvement on CD compared with the baseline, which is

also the best model of the three competitors. This reflects

that the fine-grained edit module performs obviously better

than the simple topology modification in Deep Mesh. Then

we remove the edit module. The results show that moni-

tor and lamp still has a 14.3% and 11.6% improvement cor-

respondingly than the baseline, which validates the effec-

tiveness of the GSE. But for chair and table, the results are

slightly worse than the baseline, which is because that the

larger proportion of the holes in the two categories leads to

larger sensitivity to the edit module.

In order to prove the wide applicability of the two mod-

ules, we also experiment on the gradually refined recon-

struction framework of Pixel2Mesh. The average results of

five categories are shown in Tab 3. In these results, GSE

achieves great improvement while the editing module is rel-

atively low. This is probably because that the graph convolu-

tional network of Pixel2Mesh does not support the deforma-

tion after prune, which hinders the stretching of the border

after pruning.

The size of subgraphs In order to decide the suitable

settings of GSE, we first investigate the effect of the size

of local geometry areas, where Chamfer distance (CD) is

used as the measure of the GT mesh and reconstructed mesh.

In order to explore how geometry extractor is affected by

Table 3: Ablation study that evaluates the effectiveness of

GSE and the edit module on Pixel2Mesh.

P2M P2M+GSE P2M+Edit

CD 0.756 0.659 0.603

F1 55.56 57.94 59.87

relevant factors, The architecture without mesh edit module

is adopted. Figure 5 plots the result, suggesting that best

performance can be achieved when the number of points is

8 in every sub-graph. The result also hints that too small

or large sub-graph cannot describe local geometry properly

while computing expense is increasing continuously.

(a) (b)

Figure 5: Effect of the size of subgraphs and the number of

points

The number of key points Under same settings of the

first investigation, we explore the effect of the number of

key points. The number of key points is changed by ran-

domly increasing non-semantic points or deleting semantic

key points. According to the trend in Figure 5, the results

will be improved as the number of points increases. But con-

sidering the heavily increased calculation and limited com-

puting resources we choose 10 key-points for every model.

The ablation studies on thresholds of the super-resolution

and pruning are provided in the supplementary material.

5. Conclusion
In this paper, we presented a geometric granularity-aware

pixel-to-mesh framework. The framework contains a Geom-

etry Structure Extractor, which can select high-fidelity areas

and capture the local shape information tendentiously. The

GSE facilitates pixel-to-mesh mapping and resolves coarse

details problem caused by the neglect of structural infor-

mation in previous practices. Furthermore, we address the

restrictive constant topology prescribed by the initial mesh

object through fine-grained mesh edit, which encourages

non-zero genus topology to emergence and repair abnormal

mesh. Extensive experimental results have demonstrated

that our framework achieves high reconstruction quality. Fu-

ture research directions include mining genus information

in the picture to reconstruct tiny holes on objects and fusing

multi-view 2D information to facilitate 3D reconstruction.
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