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Abstract

Editing raster text is a promising but challenging task.
We propose to apply text vectorization for the task of raster
text editing in display media, such as posters, web pages, or
advertisements. In our approach, instead of applying image
transformation or generation in the raster domain, we learn
a text vectorization model to parse all the rendering param-
eters including text, location, size, font, style, effects, and
hidden background, then utilize those parameters for recon-
struction and any editing task. Our text vectorization takes
advantage of differentiable text rendering to accurately re-
produce the input raster text in a resolution-free parametric
format. We show in the experiments that our approach can
successfully parse text, styling, and background information
in the unified model, and produces artifact-free text editing
compared to a raster baseline.

1. Introduction

Typography is the art of visually arranging letters and
text. Typography greatly affects how people perceive tex-
tual content in graphic design. Graphic designers carefully
arrange and stylize text to convey their message in dis-
play media, such as posters, web pages, or advertisements.
In computer vision, letters and texts have been predomi-
nantly the subject of optical character recognition (OCR),
where the goal is to identify characters in the given image.
This includes both OCR in printed documents or automatic
scene text recognition for navigation. However, often, typo-
graphic information of text, such as font, outline, or shadow,
is ignored in text recognition because the OCR does not tar-
get at reproducing typography in the output.

In this paper, we consider raster text editing as a text
vectorization problem. There have been a few attempts at
editing raster text mainly in scene images [32, 43, 45]. Pre-
vious work frames text editing as a style transfer problem
in the pixel domain, where the goal is to apply the original
style and effect in the input image to the target characters in
the destination. However, the major limitation of the style
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Figure 1. The proposed text editing approach. Once the rendering
parameters are recovered, we can apply any text editing and style
manipulation.

transfer approach is that 1) it is hard to avoid artifacts in the
resulting image, and 2) a pixel-based model is resolution-
dependent. Our main target is display media. Compared
to scene text images [32, 43, 45] that often involve external
noise due to lighting condition, we often observe noise-free
texts in display media which is prone to small artifacts on
reconstruction. Editing in the vector format has a clear ad-
vantage in display media, as rendering results in consistent
and sharp drawing at any resolution. Our approach is equiv-
alent to viewing text recognition as a de-rendering prob-
lem [42], where the goal is to predict rendering parameters.
Figure 1 illustrates our approach to the task of raster text
editing.

Text vectorization can be an ill-posed problem. For edit-
ing raster text in the vector format, we need to first parse
characters, text styling information such as font and ef-
fects, and hidden background pixels. Once those render-
ing parameters are recovered from the input image, we can
edit and render the target text using a rasterizer. Our ap-
proach hence has to solve three sub-problems: 1) OCR, 2)
background inpainting, and 3) styling attribute recognition.
OCR has a long history of research that dates back to the
1870s [34]. In parallel, inpainting has been studied in nu-
merous literature [25, 50, 31, 24]. It might look straight-
forward to add styling attribute recognition to those two
problems for our task. However, parsing various stylistic at-
tributes is not trivial, as the presence of multiple rendering
effects can easily lead to an ill-posed decomposition prob-
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lem. For example, it is impossible to decompose the border
and fill colors if two colors are the same. For solving such
an ill-posed problem, we train neural networks to predict
statistically plausible parameters.

Our model parses text, background, and styling attributes
in two steps; we obtain the initial rendering parameters from
feedforward inference, then refine the parameters by feed-
back inference. Our feedback refinement incorporates dif-
ferentiable rendering to reproduce the given raster text, and
fit the parameters to the raster input using reconstruction
loss. Following SynthText [9], we train our feedforward
model on text images we generate using a rendering engine.
In the experiments, we show that our vectorization model
accurately parses the text information. Further, we demon-
strate that we can successfully edit texts by an off-the-shelf
rendering engine using the parsed rendering parameters.

We summarize our contributions below.

e We formulate raster text editing as a de-rendering
problem, where the task is to parse potentially ill-
posed rendering parameters from the given image.

* We propose a vectorization model to parse detailed
text information, using forward and backward infer-
ence procedure that takes advantage of differentiable
rendering.

* We empirically show that our model achieves high
quality parsing of rendering parameters. We also
demonstrate that the parsed information can be suc-
cessfully utilized in a 2D graphics engine for down-
stream edit tasks.

2. Related work

Optical character recognition OCR has a long history
of research. The earliest ideas of OCR are conceived in
the 1870s in Fournier d’Albe’s Optophone and Tauschek’s
reading machine [34]. In the past, OCR models could not
deal with font variations, but recent methods developed for
scene texts can detect and recognize any fonts. Among
many literature, EAST [53] and CRAFT [3] are well-known
recent detection approaches. FOTS [26] and CharNet [44]
report an end-to-end detection and recognition pipelines.
FOTS incorporates a detection model and CRNN after ROI
rotation, whereas CharNet utilizes a pixel-wise character
classifier for assigning a character label to detect bounding
boxes. In this paper, we adopt the CharNet model for the
OCR module, but our model is not restricted to a specific
OCR model.

Font recognition Compared to OCR, there has been little
work for font recognition. Among a few literature, Deep-
Font [39] reports a deep learning approach to categorize
fonts. The major challenge in font recognition is that fonts

can be arbitrarily created by font designers, and it is often
impossible to define a finite set of font categories. For this
reason, some work instead resorts to font similarity evalua-
tion [10, 5]. In this paper, we only use a fixed set of fonts to
avoid the handling of infinite fonts.

Image vectorization Image vectorization aims at recog-
nizing drawing entities such as lines or shape primitives
from an image, and a classic example is line detection by
Hough transform. Image vectorization has been actively
studied and is still an open problem [13, 29, 7, 4, 18, 36,
, 21, 33, 14]. Jia et al. [15] propose an approach to pre-
serve an object arrangement and positional relationship us-
ing a depth map. Favreau et al. propose a method for vector
clip-arts [8]. They decompose the input image into a small
number of semi-transparent layers by color gradients. Liu
et al. [23] report a method to convert a rasterized floor-plan
into a vector format. Kim ef al. [17] turn Chinese charac-
ter images into vector formats by converting segmentation
to overlapping strokes. Our approach shares image vector-
ization approaches in that text effects can be seen as image
layers, but the target recognition entity is characters and ren-
dering parameters rather than low-level shape primitives.

Raster text editing There has been a few recent work on
raster text editing based on generative models in the pixel
domain. STEFANN [32] proposes a model that generates
a character mask for swapping and transferring color from
the source character to the target, then paste the transferred
character onto the background. SRNet [43] takes a raster
text image and a target text in pixels, encodes them into a
feature space, and generates a stylized target text as a decod-
ing process. Yang et al. [45] further improve SRNet by ma-
nipulating geometric control points of characters to move
text locations. Our work does not rely on pixel-domain gen-
erative models for text and styles but instead predicts para-
metric representation necessary for reproducing the raster
text image.

Scene text inpainting Apart from editing text, some re-
cent work solely focuses on erasing text by inpainting [30,
, 52,51, 22]. Nakamura et al. [30] are one of the first
attempts that applies an inpainting approach to erase scene
text. Zdeneck et al. consider text erasing under a weakly
supervised setting [51]. The background inpainting module
in our model considers the same problem, yet our model
further considers foreground text in terms of rendering.

Text style transfer Font style transfer is yet another line
of relevant work. Most of the work is based on genera-
tive networks except for Awesome Typography [46], where
Yang et al. propose to transfer text effects by a patch match-
ing algorithm. Azadi et al. [2] train the GAN-based model
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Figure 2. Overview of our approach. Our vectorization model parses rendering parameters from the raster text image in two stages. The
feedforward inference gives the initial prediction of rendering parameters, and the feedback inference refines the solution by minimizing

reconstruction loss via differentiable rendering.

for character style transfer. TETGAN [47] is another GAN-
based character style transfer method that preserves var-
ious effects. Yang et al. stylize text with arbitrary tex-
ture [48, 49]. Wenjing et al. propose to transfer style for
decorative elements [40]. Men et al. transfer video motion
to text style [28].

Our work does not consider a highly-complex textured
text image. Instead, we model basic text effects by parame-
ters in the rendering engine including font, fill, border, and
shadow, so that we can interpret and easily control the ef-
fect for editing. Although it is our future work to expand
the effect kinds, typical typography in display media do not
exhibit complex combination of effects.

3. Our approach

In this paper, we consider raster text editing as a text vec-
torization problem, where we solve three sub-problems: 1)
OCR, 2) background inpainting, and 3) text attribute recog-
nition. We approach this task by two-stage inference model
consisting of a feedforward parser and a feedback refiner.
We illustrate our model architecture in Fig 2.

3.1. Feedforward parsing

Our feedforward parser builds upon an OCR model that
detects and recognizes characters in the image. We utilize
an image-level feature map and box-level feature maps from
the OCR model to further parse background colors, alpha
maps of effects, and text attributes at each bounding box.

Detection and recognition Formally, our model takes a
raster image x and first detects a set of bounding boxes

B(z) = {b*,b°}, where b* and b° are boundig boxes for
texts and characters. For the detection task, we train an en-
coder E to obtain a global feature map e(x) € RE*HXW,
where C, H, W are the channels, height, width of the fea-
ture map. We use the hourglass-like network [44] to obtain
the feature map. ! The detector localizes the location of
characters in the image. We follow the approach of Char-
Net [44] and generate a foreground segmentation and a ge-
ometry map that predicts distance to the center of the region
to obtain localized bounding boxes B(z). After localizing
text and character regions, we apply a character decoder
D haracter to predict a sequence of characters. Internally,
our model combines the foreground segmentation, the ge-
ometry map, and a character class map to parse the text in
the given region. Note that we use CharNet [44] to im-
plement our model, but can be any other model as long as
characters can be localized.

Font recognition Similarly to text, we predict font cate-
gories of the given region using the local feature maps at
the given bounding box e} (x) and e (z), which is a subset
of the global feature map e(z) at the bounding box b* and
b°. We apply pooling followed by a multi-layer perceptron
to classify fonts.

Background inpainting The purpose of the background
inpainting is to erase foreground raster text so that after-
wards we can render manipulated text on the occluded back-
ground region. We can apply any image inpainting ap-
proach, but the challenge here is that we need to erase not

'We show the detailed architecture in the supplementary.
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only text but also composited text effects. Since inpainting
is a pixel-domain problem, we adopt a pixel-based genera-
tor. Our background inpainter takes a raster text image and
predicts background RGB pixels . Note that we utilize
OCR (Sec 3.1) and pixel-level alpha (Sec 3.1) to specify the
region to inpaint. In our experiment, we adopt either an off-
the-shelf inpainting method [37] or we learn the inpainting
model of MEDFE [25].

Text effects Text effects involves a complex compositing
process. We briefly describe the compositing process in the
following. Formally, let us denote an alpha map of the k-th
effect layer by a (i, 7) = fr(2(3, ), 0 ), where f, is an ef-
fect function that generates an alpha map given the source
shape z and 0y is the effect parameter. In our setting, z
is a text rasterizer that generates a mask pixel at location
(i, 7). For a plain source-over blending on an opaque back-
ground?, a rendering engine composites the k-th effect layer
to the background image in the following equation:

C('L,]) = (1_ak(i,j))cbg(i,j)+O[k(i7j)Ck, (1)

where c(i, j) is the color of the composited image, cg (1, /)
is the background color, and cy, is the effect color. When
there are multiple effects, a rendering engine repeats the
above compositing operation by substituting cg(7,j)
c(, 7) at each effect k.

In this paper, we restrict the available effects to three
basic but commonly-used kinds: fill, border, and shadow.
We also assume the ordering of the effects is fixed to
(shadow, fill, border). In our setting, all effects have color
ci. Shadow and border effects have visibility parameter
v € {0,1} that indicates whether the effect is enabled.
Border has a width parameter: Oporder = {Pwidth} and
shadow has three additional parameters that control the ef-
fect generation: Oshadow = {Pblurs Pdx; Pdy }- For each ef-
fect k € {fill, border, shadow}, we learn effect decoders
from the feature maps:

U = Dyi(es(z)), )
91@ = Dgﬁk(eb(x)). (3)
For decoding color ¢y, we first decode the alpha map «, for
the entire canvas, and sequentially decomposite the color

following the inverse of eq | and averaging the color in the
bounding box region:

ar = Dgi(e(x)), )

Viin = c(i,j) — (1 - d{c(?,j))cbg(iyj), )
ak(/&m?)

¢, = arg Inax P(yi k), (6)

2Generic blending further considers different color blend modes,
but we leave out for simplicity. See https://www.w3.org/TR/
compositing-1/ for further details.

where the decompositing order is (border, fill, shadow), and
if o, = 0, we skip decompositing of the effect k. For the
initial border decompositing, we set ¢ (4, 7) from the result
of the inpainting in Sec 3.1, and otherwise use the color of
the previously decomposited effect.

3.2. Feedback refinement

While the feedforward parsing produces plausible ren-
dering parameters, usually there are still inaccuracy in ex-
actly reproducing the appearance of the input image. In our
feedback refinement stage, we fill the appearance gap be-
tween the input and the vector reconstruction by minimizing
the error in the rasterized image. The goal is to minimize the
error between the input image x and the raster reconstruc-
tion R with all the rendering parameters O:

min [R(©) - . )

The raster reconstruction function R produces the final re-
construction using compositing equation (eq 1). As long as
the compositing process is differentiable, we can apply back
propagation to efficiently optimize parameters ©. We pro-
pose to reconstruct a raster image using pre-rendered alpha
maps so that the rendering process becomes differentiable.
Note, while there exist recent approaches on differentiable
rendering of strokes or shape primitives [19, 6, 16], we are
not aware of any existing work on direct vectorization of
text styling.

Pre-rendered alpha maps In the compositing process
(eq 1), the glyph shape function z and the effect function
fx 1s usually not differentiable with respect parameters like
font category and character class. We circumvent this is-
sue by replacing the actual effect function by pre-rendering.
The key idea is to rasterize non-differentiable glyphs and ef-
fects beforehand so that we can approximate rendering pro-
cess as a linear combination of pre-rendered shapes. Let
us denote the non-differentiable rendering parameters by
© = {60l € {char,font,---}} C ©. We approximate
the non-differentiable shape function z by:

ZP

where P(©’) = [], P(6;) is the joint probability (or so-
called attention map) of parameter ©’, and Ae/ (i, j) is the
pre-rendered alpha maps for the corresponding parameter
set ©’. Since ©’ is defined over a finite set, we can pre-
render Ae (4, j) for all possible combination of ©’. P(©')
is differentiable with respect to ©’, and consequently eq 8
becomes also differentiable. Similarly, we approximate the
borderline effect function f in the same pre-rendering ap-
proach to make differentiable approximation. An alpha map
constructed from eq 8 visually looks blurred because the

2(i,7;0") VAo (i,7), ®)
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shape is a linear combination of different font glyphs. How-
ever, the purpose of this alpha construction is to compute
gradients over ©’ and not to produce the final raster recon-
struction.

In this work, we use 100 fonts for the pre-rendered alpha
maps randomly picked from Google Fonts®. Note that the
pre-rendered alpha maps require large memory footprint if
the parameter space is huge; e.g., if there are 100 fonts for
100 characters, we have to pre-render and keep 100 x 100
alpha maps, and also computing shape z becomes expen-
sive. In practice, we compute sparse attention map P(©’)
for only the top 20 fonts and zero-out the rest to save com-
putation. We choose 64 x 64 resolution for alpha maps con-
sidering the balance between the reconstruction quality and
the memory footprint.

Character adjustment Although the OCR model gives
the initial prediction of character bounding boxes, those lo-
cations do not perfectly align with the actual position of
each character in the given input image. We introduce im-
age warping to adjust the location of each character dur-
ing feedback refinement. We prepare affine transformation
parameters for each character and also for the word-level
bounding box, and solve for the best adjustment during the
optimization (eq 7). We set initial warping parameters to
identity transformation at the beginning.

Differentiable compositing We use pre-rendered alpha
for fill and border effects, but shadow has differentiable ef-
fect such as blur or offset. We directly implement those
differentiable operators for shadow effect fihadow-

To reconstruct an image, we composite alpha maps by
eq 1 and image warping in character adjustment. The visi-
bility flag controls whether to enable the effect compositing.
All the operators are differentiable with respect to parame-
ters ©. We binalize the effect visibility v with differentiable
binarization [20] and multiply to the foreground alpha. Note
that our differentiable reconstruction is only for refinement
purpose. The final output of our model is the refined ren-
dering parameters ©.

We show in Fig 3 the intermediate results during feed-
back refinement. Our refinement process starts from the
rough initialization by feedforward parser, and gradually fits
the parameters to reproduce the given raster image.

Refinement details We do not optimize location and
background during refinement, because bounding box gen-
eration in our OCR model is not differentiable. Background
pixels are differentiable, but we observe unstable behavior
during optimization, perhaps due to ill-posed decomposit-
ing setup. We also do not optimize character probability

3https://github.com/google/fonts
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Figure 3. Intermediate outputs during feedback refinement.

maps of OCR because of unstable behavior. We refine pa-
rameters using Adam optimizer with 200 iterations. In our
implementation, optimization requires about 1 minute for
one word.

3.3. Exporting rendering parameters

Parsed rendering parameters can be directly used in ex-
ternal 2D graphics rendering engine, though we need to
adjust the scale of each parameter for the external format.
Most of the parameters can be exported to the rendering en-
gine with simple normalization, but we need to take care of
computing geometric information such as font size or offset
that our parser does not predict. Although our OCR model
produces bounding boxes, it is not trivial to convert to those
geometric information.

We convert these information in the following post-
processing. We first transform character bounding boxes us-
ing affine parameters we obtain in letter adjustment. Next,
we obtain a word-level bounding box by taking the mini-
mum and maximum coordinates from the OCR bounding
box and the set of character bounding boxes. Once we ob-
tain both the character- and word-level bounding boxes, we
use them to as guidance and conduct a grid search over con-
figuration, starting from the parameters of best-fit character
in the refinement.

4. Training

4.1. Training objective

For training our model, we minimize the following loss
function, where each term corresponds to training of each
decoder module in our model:

L = Eocr + ‘Cinpaint + /\fontﬁfont + (9)

§ k k k
Aalpha‘calpha + ‘C’visibility + ‘Cparam'
k
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The loss functions for text recognition £, and background
inpainting Linpaint are identical to those defined in Char-
Net [44] and MDEDF [25]. Lot is the categorical soft-
max cross entropy for font categories. Lglpha is the mean
squared error of pixel-wise difference of the effect alpha
map. £V1s1b111ty is the binary cross entropy of the effect vis-
ibility. Eparam is the total of mean squared error for effect
parameters. In the experiment, we apply weighting to each
term for better convergence. Agont and Aaiph, are the hyper-
parameters for balancing. We empirically set the hyperpa-
rameter values to Afone = 0.1 and Aqjpna = 10.

4.2. Training data generator

We follow the approach of SynthText [9] to generate text
images for training. In addition to the scene background
images from SynthText, we collect background images
from single-color background data, book cover dataset [12],
BAM dataset [41] and FMD dataset [35]. For the book
cover dataset and BAM dataset, we erase text regions by
text detection and inpainting, then generate candidate loca-
tions from a saliency map. We take the vocabulary set from
SynthText. We implement our data generator using the Skia
graphics library*, which can handle both font and effects in
a purely resolution-free manner.

4.3. Implementation detail

We pre-train the OCR model for 5 epochs with 80,000
SynthText images. The condition is the same as the pre-
training of CharNet [44]. The resolution of the input image
is 640 x 640 , and the feature map is 160 x 160 with the
channel size to be 256. We train our model with the SGD
optimizer. We set the learning rate to 10~ to the pre-trained
encoder and 10~2 to all the other decoders, with batch size
4. We decrease the learning rate with cosine warm up [27].

We independently train the inpainting model on the gen-
erated text data °. In the training phase, we make holes for
text regions with a mask generated by thresholding alpha
values in each effect, and train to fill the holes. At test time,
we make holes for text regions with predicted alpha maps,
then fill the holes using the inpainting model. The resolu-
tion of the inpainting output [25] is 256 x 256. We resize the
inpainted image to the target image size. This upsampling
often causes undesired artifacts. To alleviate the quality is-
sue, we replace text regions with text erased images and
blend using predicted alpha.

S. Experiments

In this experiments, we evaluate 1) how accurately our
model parse text information in vectorized representation,

4nhttps://skia.org/
SWe also attempted joint training in the experiment but did not observe
a clear advantage.
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Figure 4. Our two-stage vectorization process. From left to right,
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and 2) how well our model can perform raster text editing
through vectorized information. For experiments, we use
two datasets, the book cover dataset [12] and the advertising
image dataset [ 1].
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but the vector reconstruction fails to render with the same
style. When there is an unusual font, even though our recon-
struction is inaccurate, our feedback refinement tries hard to
adjust the choice of font and affine warping parameters to
visually match the result.

We show reconstruction and text editing examples in ad-
vertisement datasets in Fig 5. Compared to book covers,
advertisement images have various aspect ratios. Our ap-
proach successfully reconstructs complex text layouts in
vector format with correct styling.

5.1. Qualitative results

We show in Fig 4 input images, initial reconstructions af-
ter feedforward parsing, reconstructions after feedback re-
finement, and final vectorization results using a 2D graphics
engine from the book cover dataset. We observe that our ap-
proach successfully parses text information in various situa-
tions, including stylized texts with effects. In Fig 4, the first
and second rows show examples of simple texts, and the
third to fourth rows show examples of stylized texts with
thin borderline and small shadow. The results demonstrate
that our model can parse detailed effects parameters such

as the weight of borderline and shadow orientation. The
last two rows show challenging examples; the fifth row is
an example of non-aligned text, and the last row is an ex-
ample of unusual font. Our model parses non-aligned texts,

State of the art comparison We compare the quality of
our editing approach with a state-of-the-art raster editing
method SRNet [43]. SRNet takes a source style image and
a target text mask to render the stylized target, where SR-
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Table 1. Reconstruction performance.

Dataset Method L1} PSNR
Feedforward 0.15 29.22

Book cover w/ refinement 0.08 30.02
External rasterizer | 0.18 29.73
Feedforward 0.16 28.77

Advertisement | w/ refinement 0.09 29.37
External rasterizer | 0.19 29.16

Table 2. Component contribution in the book cover dataset.

Model PSNR?T
Full refinement | 30.02
w/o Color 29.53
w/o Font 29.78
w/o Shadow 29.79
w/o Border 29.99
No refinement 29.22

Net converts the text mask into a skeleton appearance and
generates an image by transferring style from the reference
style source. We use the alpha mask generated by the exter-
nal rendering engine for the target text. Fig 6 shows qual-
itative comparisons between SRNet and our vectorization
approach. We observe that SRNet often fails to draw a
straight line and prone to be small artifacts, while our ap-
proach completely separates text shape from text effects in
the parametric representation and does not suffer from arti-
facts. Note that our result has an additional benefit of easy
and reproducible editing in the rendering parameters.

5.2. Quantitative evaluation

We quantitatively evaluate our model in terms of the re-
construction quality. We set up the following benchmark
conditions.

Book cover We randomly pick 1,000 images from the book
cover dataset, and apply an off-the-shelf OCR model [3] to
extract title text region of the image for evaluation. In the
book cover dataset, we use Telea’s inpainting method [37]
in our feedforward parser, because we find the off-the-shelf
method already works well for book cover images.

Advertisement We randomly pick 508 images from the ad
dataset and evaluate reconstruction performance on all text
regions. We use the learned inpainting model [25].

To measure the reconstruction performance, we use the
average L1 loss and peak signal-to-noise ratio (PSNR) be-
tween the input image and the reconstructed image. We
compare the quality of 1) the differentiable reconstruction
after feedforward parsing, 2) after feedback refinement, and
3) the final reconstruction in the external graphic engine.

We summarize the evaluation results in Table 1. We
find that our two-stage vectorization approach effectively
improves the reconstruction quality, as the refinement con-
sistently improves both L1 and PSNR compared to the feed-

forward parser only. The final reconstruction using the ex-
ternal rasterizer does not necessarily gives the identical re-
sult to our differentiable reconstruction. Our refinement
process includes approximation and also the exporting pro-
cess (Sec 3.3) can introduce errors. Nevertheless, we find
the reconstruction quality reasonably well, and PSNR is
consistently better than the initial feedforward reconstruc-
tion. Filling the gap between the differentiable reconstruc-
tion and the exported result is our future work.

Component analysis We show in Table 2 how PSNR
changes as we skip feedback refinement in rendering pa-
rameters in the book cover dataset. We skip color, font,
shadow, and border effects in this ablation study. As the
result suggest, effect components that has larger area in the
resulting appearance have more performance influence on
the reconstruction quality; incorrect color most negatively
affect the resulting visual quality, while other effects occupy
smaller regions and therefore quantitatively have less minor
impact on PSNR.

5.3. Discussion

One drawback of our approach is that we cannot han-
dle arbitrary styles that are not defined in our basic effect
models or unusual glyph shapes. We also do not consider
detailed rendering parameters such as kerning or geometric
transformation. It is our future work to extend the avail-
able fonts or effects, where we have to address efficient
differentiable rendering for a large combination of non-
differentiable operations (Sec 3.2). However, we note that
our basic effects already cover the majority of real-world
typography in display media.

6. Conclusion

We present a vectorization approach to edit raster text
images. Our approach inpaints the background and accu-
rately parses foreground text information for reconstruction
in an external rendering engine. We show in the experi-
ments our model successfully reproduces the given raster
text in vector graphic format. Our vectorization approach
has a clear advantage in resolution-free editing, especially
for display media. In the future, we wish to expand the
available effects and blending operations. One limitation of
our approach is that effects must be pre-defined by the ren-
dering engine. We wish to expand the available effects and
blending operations in the future.
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