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Figure 1: We propose a framework for training GANs in a disentangled manner which allows for explicit control over
generation attributes. Our method is applicable to diverse controls in various domains. First row (left to right) demonstrates
our control over facial expression, age and illumination of human portraits. Second row (left to right) demonstrates our
control over artistic style, age and pose of paintings. Third row demonstrates our pose control over faces of dogs.

Abstract

We present a framework for training GANs with explicit
control over generated facial images. We are able to control
the generated image by settings exact attributes such as age,
pose, expression, etc. Most approaches for manipulating
GAN-generated images achieve partial control by leverag-
ing the latent space disentanglement properties, obtained
implicitly after standard GAN training. Such methods are
able to change the relative intensity of certain attributes,
but not explicitly set their values. Recently proposed meth-
ods, designed for explicit control over human faces, harness
morphable 3D face models (3DMM) to allow fine-grained
control capabilities in GANs. Unlike these methods, our
control is not constrained to 3DMM parameters and is ex-
tendable beyond the domain of human faces. Using con-
trastive learning, we obtain GANs with an explicitly dis-
entangled latent space. This disentanglement is utilized to
train control-encoders mapping human-interpretable inputs
to suitable latent vectors, thus allowing explicit control. In
the domain of human faces we demonstrate control over
identity, age, pose, expression, hair color and illumination.
We also demonstrate control capabilities of our framework
in the domains of painted portraits and dog image genera-

tion. We demonstrate that our approach achieves state-of-
the-art performance both qualitatively and quantitatively.

1. Introduction

Generating controllable photorealistic images has appli-
cations spanning a variety of fields such as cinematogra-
phy, graphic design, video games, medical imaging, virtual
communication and ML research. For faces in particular,
impressive breakthroughs were made. As an example, in
the film industry, computer generated characters are replac-
ing live actor footage. Earlier work on controlled face gen-
eration primarily relied on 3D face rig modeling [32, 43],
controlled by 3D morphable face model parameters, such
as 3DMM [9, 19]. While easily controllable, such methods
tend to suffer from low photorealism. Other methods that
rely on 3D face scanning techniques may provide highly
photorealistic images, but at a significant cost and limited
variability. Recent works on high resolution images synthe-
sis using generative adversarial networks (GANs) [21] have
demonstrated the ability to generate photorealistic faces of
novel identities, indistinguishable from those of real hu-
mans [27, 29, 30]. However, these methods alone lack in-
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terpretability and control over the generative process, com-
pared to the 3D graphic alternatives.

These results have inspired the community to explore
ways to benefit from both worlds – generating highly pho-
torealistic faces using GANs while controlling their fine-
grained attributes, such as pose, illumination and expression
with 3DMM-like parameters. Deng et al. [15], Kowalski et
al. [31] and Tewari et al. [50] introduce explicit control over
GAN-generated faces, relying on guidance from 3D face
generation pipelines. Along with the clear benefits, such
as the precise control and perfect ground truth, reliance on
such 3D face models introduces new challenges. For ex-
ample, the need to overcome the synthetic-to-real domain
gap [31, 15]. Finally, all these methods’ expressive power
is bounded by the capabilities of the model they rely on. In
particular, it is not possible to control human age if the 3D
modeling framework does not support it. It is also impos-
sible to apply the same framework to different but similar
domains, such as paintings or animal faces, if these assets
are not supported by the modeling framework. All of these
stand in the way of creating a simple, generic and extend-
able solution for explicitly controllable GANs.

In this work we present a unified approach for training a
GAN to generate high-quality, controllable images. Specifi-
cally, we demonstrate our approach in the domains of facial
portrait photos, painted portraits and dogs (see Fig. 1). We
depart from the use of the highly detailed 3D face mod-
els [15, 31, 50] in favor of supervision signals provided
by a set of pre-trained models, each controlling a different
feature. We show that our approach significantly simpli-
fies the generation framework, does not compromise image
quality or control accuracy, and allows us to control addi-
tional aspects of facial appearances, which cannot be mod-
eled by graphical pipelines. We achieve this by combining
several concepts. We construct the GAN’s latent space as
a composition of sub-spaces, each corresponding to a spe-
cific property. During training, we enforce images gener-
ated by identical latent sub-vectors to have similar prop-
erties, as predicted by some off-the-shelf model. Respec-
tively, images generated by different latent sub-vectors are
enforced to have different predicted properties. As a result,
disentanglement between the latent sub-spaces is achieved.
Finally, to allow for human-interpretable control, for each
attribute we train an encoder converting values from its fea-
sible range to its corresponding sub-latent space. As an ad-
ditional application, we present a novel image projection
approach suitable for disentangled latent spaces.

We summarize our contributions as following:

1. We present a novel state-of-the art approach for train-
ing explicitly controllable, high-resolution GANs.

2. Our approach is extendable to attributes beyond those
supported by 3D modeling and rendering frameworks,

making it applicable to additional domains.

3. We present a disentangled projection method that en-
ables real image editing.

2. Related work
Generative adversarial networks [21] introduced new

possibilities to the field of image generation and synthesis.
Currently, state-of-the-art GANs [10, 27, 29, 30] can pro-
duce high-resolution images that are indistinguishable from
real ones. Next, we provide an overview of different ap-
proaches to control the generated output of GANs.

Relative control over image generation: A widely
studied approach for controlling the generated images of
GANs is by exploiting the inherent disentanglement prop-
erties of their latent space [26, 53, 22, 44, 7]. Härkönen et
al. [22] use principal component analysis (PCA) in latent
space to identify directions that correspond to image at-
tributes. Shen et al. [44] use off-the-shelf binary classi-
fiers to find separation boundaries in the latent space where
each side of the boundary corresponds to an opposite se-
mantic attribute (e.g., young vs. old). Traversing a latent
vector closer to or further from a boundary translates to
increasing or decreasing the corresponding attribute inten-
sity. While simple, these methods may exhibit entangle-
ment, i.e., changing one attribute affects others. In [18, 45]
the above is mitigated by disentangling the GAN’s latent
space during training. While the above methods allow for
relative control over the generation (e.g., turn the face older
or rotate the face towards the left), they do not provide ex-
plicit control (e.g., generate a 40 years old face, rotated 30◦

to the left).
Explicit control over image generation: Conditional

GANs [33, 36, 34, 10] have been widely employed to con-
trol the generation by incorporating a class label inference
loss term. All these works support conditioning on a sin-
gle discrete (categorical) variable and are not suitable for
continues variables, as was broadly discussed in Ding et
al. [17]. Furthermore, none of the above works address the
problem of controlling multiple attributes at once. Recently,
three novel methods were proposed to allow fine-grained
explicit control over de novo face image generation: Sty-
leRig [50], DiscoFaceGAN [15] (DFG), and CONFIG [31].
These methods propose solutions for translating controls of
3D face rendering models to GAN-generating processes.
Both StyleRig and DFG utilize 3DMM [9] parameters as
controls in the generation framework. This restricts both ap-
proaches to provide controls only over the expression, pose
and illumination, while preserving identity (ID). CONFIG
uses a custom 3D image rendering pipeline to generate an
annotated synthetic dataset. This dataset is later used to ac-
quire controls matching the synthetic ground truth, allow-
ing CONFIG to add controls such as hair style and gaze.
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Figure 2: Explicitly controllable GAN: In Phase 1, we construct every batch so that for each attribute, there is a pair of
latent vectors sharing a corresponding sub-vector, zk. In addition to the adversarial loss, each image in the batch is compared
in a contrastive manner, attribute-by-attribute, to all others, taking into account if it has the same or a different sub-vector. In
Phase 2, encoders are trained to map interpretable parameters to suitable latent vectors. Inference: An explicit control over
the attribute k is achieved by setting the Ek’s input to a required value.

Producing such datasets is hard and requires professional
handcrafted 3D assets. We emphasize that these methods
are only applicable in the domain of human faces, and only
to the controls parametrized by 3D face models. In contrast
to the above methods, our approach does not rely on 3D
face rendering frameworks. Rather, it relies on our ability
to estimate such properties.

Image editing: Rather than generating images de novo,
these methods receive an image as input and manipulate its
attributes either by using image-to-image translation tech-
niques [58, 52, 39, 37, 11, 12, 25], by incorporating pre-
trained models to supervise GAN’s training [46, 8, 23, 54],
or by projecting the image to the GAN’s latent space and
manipulating it [57, 6, 51, 38, 49, 59, 56]. Our work fo-
cuses on controllable de novo image generation, but also
allows editing real images via projection to latent space.

3. Proposed approach
In this section we present our framework for training ex-

plicitly controllable GANs. Our approach is simple yet ef-
fective and is comprised of two phases (see Fig. 2):

• Disentanglement by contrastive learning: training
a GAN with explicitly disentangled properties. As a
result, the latent space is divided into sub-spaces, each
encoding a different image property.

• Interpretable explicit control: for each property, an

MLP encoder is trained to map control parameter val-
ues to a corresponding latent sub-space. This enables
explicit control over each one of the properties.

3.1. Disentanglement by contrastive learning

The approach builds on the StyleGAN2 [30] architec-
ture. Initially, we divide both latent spaces, Z and W
to N + 1 separate sub-spaces, {Zk}N+1

k=1 , and {Wk}N+1
k=1 ,

where N is the number of control properties. Each sub-
space is associated with an attribute (e.g., ID, age etc.) ex-
cept for the last one. Similarly to Deng et al. [15] the last
sub-space encodes the rest of the image properties that are
not controllable. We modify the StyleGAN2 architecture
so that each control has its own 8-layered MLP. We de-
note z = (z1z2 . . . zN+1) and w = (w1w2 . . .wN+1) the
concatenation of the sub-vectors in both latent spaces. The
combined latent vector, w, is then fed into the generator.

Next, we describe how we enforce disentanglement dur-
ing training. Let Ii = G(zi) denote an image generated
from a latent vector zi and let B = {zi}NB

i=1 denote a la-
tent vector batch of size NB . We define our factorized-
contrastive loss as:

Lc =
∑

zi,zj∈B
i6=j

N∑
k=1

lk(zi, zj), (1)

where lk is a contrastive loss component for attribute k. We
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define the per-attribute contrastive loss as,

lk(zi, zj)=


1

C+
k

max (dk(Ii, Ij)− τ+k , 0), zki =zkj
1

C-
k
max (τ−k − dk(Ii, Ij), 0), otherwise

(2)

where zki denotes the k-th sub-vector of zi, dk is the
distance function for attribute k, τ±k are the per-attribute
thresholds associated with same and different sub-vectors
and C±k are constants that normalize the loss according
to the number of same and different loss components, i.e.
C+

k =
∑

i,j 1{zki = zkj } and C-
k =

∑
i,j 1{zki 6= zkj }.

We construct each training batch to contain pairs of la-
tent vectors that share one sub-vector, i.e., for each attribute,
k ∈ {1, . . . , N}, we create a pair of latent vectors, zi and
zj , where zki = zkj and zri 6= zrj for r ∈ {1, . . . , N+1}, r 6=
k. For example, let us assume that the generator has pro-
duced a batch of size Nb>2, where images I0 and I1 share
the same zID (see the pair of images with the blue frame in
Fig. 2). The ID component of the contrastive loss, lID, will
penalizes the dissimilarities between the I0’s and I1’s IDs
and the similarities between I0’s or I1’s ID to the IDs of all
other images in the batch. The other loss components (age,
pose, etc.) will penalize for similarity between I0 and any
other image in the batch. The losses for all other images in
the batch are constructed in the same manner.

To be able to control a specific attribute of the generated
image, we assume that we are given access to a differen-
tiable function Mk : I → RDk , mapping an image to a Dk-
dimensional space. We assume that the projected images
with similar attribute values fall close to each other, and im-
ages with different attribute values fall far from one another.
Such requirements are met by most neural networks trained
with either a classification or a regression loss – for exam-
ple, a model estimating the head pose or the person’s age.
We define the k’s attribute distance between two images Ii
and Ij as their distance in the corresponding embedding
space:

dk(Ii, Ij) = dist(Mk(Ii),Mk(Ij)), (3)

where dist(·, ·) is a distance metric, e.g., L1, L2, cosine-
distance, etc. For example, to capture the ID property, a
face recognition model, MID, is used to extract embed-
ding vectors from the generated images. Then, the dis-
tances between the embedding vectors are computed using
the cosine-distance.

In Section 4 we demonstrate that as the result of train-
ing with this architecture and batch sampling protocol, we
achieve disentanglement in the GAN’s latent space. While
such disentanglement allows to assign a randomly sampled
value to each individual attribute, independently of the oth-
ers, additional work is required for turning such control ex-
plicit and human-interpretable, e.g., generate a human face
image with a specific user-defined age.

3.2. Interpretable explicit control

We propose a simple procedure to allow explicit control
of specific attributes. We train a mapping Ek : yk → wk,
where yk is a human-interpretable representation of the at-
tribute (e.g., age = 20yo, pose = (20◦, 5◦, 2◦), etc.). Given
a trained disentangled GAN, we trainN encoders {Ek}Nk=1,
one for each attribute (see Training-Phase 2 in Fig. 2). Then,
at inference time we can synthesize images using any com-
bination of sub-vectors {wk}N+1

k=1 , where wk is either con-
trolled explicitly using Ek or sampled from zk and conse-
quently mapped to wk (see Inference in Fig. 2).

To train the control encoders, we randomly sample
Ns latent vectors {zi}Ns

i=1 and map them to the inter-
mediate latent vectors, {wi}Ns

i=1. Then, for each at-
tribute, k, we map zi to a predicted attribute value yki =
Qk(Mk(G(zi))), where Qk(Mk(·)) is equivalent to ap-
plying the attribute predictor. Thus we obtain N distinct
datasets {{wk

i , y
k
i }

Ns
i=1}Nk=1, where for each intermediate

sub-vector wk there is a corresponding attribute predicted
from the image it produced. We then trainN encoders, each
on its corresponding dataset. In our experiments we show
that despite its simplicity, our encoding scheme does not
compromise control accuracy compared to other methods.

4. Experiments
In this section we present experiments on the domain of

faces and paintings that demonstrate the flexibility of the
proposed approach. Additional experiments for images of
dogs are presented in the supplementary. We quantitatively
compare our approach to recent published approaches.

4.1. Face generation

Implementation details: We use the FFHQ dataset [29]
downsampled to 512x512 resolution. The latent spaces Z
andW are divided into the following sub-spaces: ID, pose,
expression, age, illumination, hair color and “other”. Next,
we list the models, Mk, that were used to compute the dis-
tance measures, dk, for each one of the attributes. For the
ID, head-pose, expression, illumination, age and hair color
we used ArcFace [14], Ruiz et al. [42], ESR [48], the γ
output of R-Net [16], Dex [41], average color of hair seg-
mented by PSPNet [55], respectively (additional details in
supplementary material). In the second phase (Section 3.2),
we train five encoders (Epose, Eexp, Eage, Eillum, Ehair),
each composed of a 4-layered MLP. The input to our con-
trol encoder is defined as follows: yage∈ [15, 75] years-old
(yo), ypose ∈ [−90◦, 90◦]

3 is represented by the Euler an-
gles θ = {Pitch,Yaw,Roll}, yillum ∈ IR27 is represented
by the γ Spherical Harmonics (SH) coefficients approxi-
mating scene illumination [40], yexp ∈ IR64 is represented
by the β expression coefficients of the 3DMM [9] model,
yhair∈ [0, 255]3 is represented by the mean RGB values.
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Figure 3: Disentanglement user study: Blue and green
bars show whether users agree that a given attribute is
present or lacking in images (I+, ↑), (I-, ↓) respectively.
The yellow bars measure whether the users agree that the
other attributes are maintained.

GAN Ours DFG [15] CONFIG [31]
Version 512x512 256x256 256x256
Vanilla 3.32 5.49 33.41
Controlled 5.72 12.9 39.76

Table 1: FID↓ score for different methods on FFHQ: sec-
ond row shows the dataset resolution. Note that the FID
scores cannot be compared between columns since every
method uses different pre-processing for the FFHQ dataset
(e.g., image size, alignment, cropping).

Ours DFG CONFIG
Synthetic comparison 67%67%67% 22% 11%
Synthetic vs. real 47%47%47% 27% 16%

Table 2: Photorealism user studies↑: (First row) users
were asked to vote for the most realistic image from triplets
of synthetic images (Ours, DFG, CONFIG). (Second row)
users were shown pairs of images – one synthetic and one
from the FFHQ dataset – and were asked to choose the real
one from the two.

Photorealism: Table 1 shows FID [24] scores of Disco-
FaceGAN [15], CONFIG [31] (image resolution 256x256)
and our approach (image resolution 512x512). The table
also shows the FID of the corresponding baseline GANs:
StyleGAN [29], HoloGAN [35] and StyleGAN2 [30]. Our
FID score is calculated without the use of the truncation
trick [10, 29]. For DFG and CONFIG the FID score is
taken from the corresponding papers. Similarly to the other
works, we observe a deterioration in FID when control is
introduced. However, due to the different image resolutions
and data pre-processing steps, the numbers are not directly
comparable. To make a clear image quality comparison be-
tween all three methods, we conducted two photorealism

Control Ours DFG CONFIG FFHQ
Pose [◦] 2.29±1.31 3.92±2.1 6.9±4.7 23.8±14.6

Age [yo] 2.02±1.38 N/A N/A 16.95±12.9

Exp. 3.68±0.7 4.07±0.7 N/Aa 4.45±0.9

Illum. 0.32±0.13 0.29±0.1 N/Aa 0.62±0.2

Hair color 0.13±0.18 N/A N/Aa 0.34±0.25

Table 3: Control precision↓: Comparison of average dis-
tance between input controls to resulted image attribute.
Last column shows the average distance between random
samples in the FFHQ dataset.

aCONFIG uses different controls for expression illumination and hair
color.

ID Ours Ours+age DFG CONFIG
Same↓ 0.680.680.68±0.19±0.19±0.19 0.75±0.2 0.83±0.3 1.07±0.29

Not same↑ 1.91.91.9±0.24±0.24±0.24 1.91.91.9±0.24±0.24±0.24 1.73±0.24 1.63±0.25

Table 4: Identity preservation: First row shows the mean
embedding distance between generated images with the
same zID (in Ours+age, zage is also changed). Second
row shows the mean embedding distance between randomly
generated images. For comparison, the mean embedding
distance between 10K FFHQ images is 1.89± 0.21.

user studies, using Amazon Mechanical Turk. In the first,
users were shown 1K triplets of synthetic images, one from
each method in a random order. Users were asked to vote
for the most realistic image of the three. Each triplet was
evaluated by three participants. In the second study, users
were shown 999 pairs of images. Each pair contains one
real image from the FFHQ dataset and an image gener-
ated by one of the three methods. For each method, 333
image pairs were evaluated by three different users. All
the synthetic images in this experiment were generated us-
ing the truncation trick with Ψ = 0.7 (Ours and DFG use
the attribute-preserving truncation trick [15]), and all im-
ages were resized to 256x256 resolution. From Table 2 it
is evident that our method achieves the highest photoreal-
ism. Surprisingly, our method reaches a near perfect result
of 47% when compared to FFHQ, i.e., users were barely
able to distinguish between our images and the ones from
FFHQ in terms of photorealism. We note that differences in
image quality may depend on the base model that was used
(HoloGAN, StyleGAN, StyleGAN2).

Explicit control analysis: To validate that we indeed
have an explicit control over the output of our model, we
perform a control precision comparison. 10K images are
randomly chosen from FFHQ and their attributes are pre-
dicted to produce a pool of feasible attributes that appear in
real images. For each attribute in the pool, yki , we gener-
ate a corresponding image. Then, we predict the attribute
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Age=15yo 30yo 45yo 60yo 75yo

Yaw=30◦ 15◦ 0◦ −15◦ −30◦

Pitch=20◦ 10◦ 0◦ −10◦ −20◦

Figure 4: Controlling age and pose: Rows 1-2 show gener-
ation results using Eage. Rows 3-4 show generation results
using Epose.

value from the generated image, ŷki , and measure the Eu-
clidean distance between the two. More details are provided
in the supplementary material. Table 3 shows the compar-
ison of the control precision between the methods. The re-
sults demonstrate that we can achieve explicit control of the
attributes that is comparable or better than other methods.

ID preservation analysis: We use ArcFace [14] to ex-
tract embedding vectors of generated images to compare
identity preservation to other methods. This is done by
generating 10K image pairs that share the ID attribute and
have different pose, illumination and expression attributes.
We choose to modify these as they are common to all three
methods. To demonstrate the ability of our method to pre-
serve the ID even at different ages, we report results for
Ours+age where each image in a pair is generated using a
different zage vector. The results in Table 4 demonstrate
that our method achieves the highest identity preservation.

Disentanglement user study: We conducted a user
study similar to the one reported in CONFIG [31]. For each
attribute, k, we generate a pair of images, I+, I-. The at-
tribute for I+ is set to yk+ (e.g., smiling face) and the at-
tribute for I- is set to a semantically opposite value yk- (e.g.,
sad face). Users are then asked to evaluate the presence of
yk+ in I+ and I- on a 5-level scale. In addition, for ev-
ery pair of images the users are asked to evaluate to what
extent all other attributes, apart from k, are preserved. In
total, 50 users have evaluated 1300 pairs of images. Fig. 3
clearly shows that the attributes of the generated images are
perceived as disentangled.

Illum. 1 Illum. 2 Illum. 3 Illum. 4 Illum. 5

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Color 111 Color 222 Color 333 Color 444 Color 555

Figure 5: Controlling illumination, expression and hair
color: Rows 1-2 show generation results using Eillum.
Rows 3-4 show generation results using Eexp. Rows 5-6
show generation results using Ehair. Each column has the
same attribute matching the control input.

Qualitative evaluation: Next we show editing results
of generated images via the control encoders Ek. Fig. 4
shows explicit control over age and pose of faces usingEage

and Epose. Interestingly, as the age is increased the model
tends to generate glasses as well as more formal clothing.
Two other prominent features are graying of the hair and the
addition of wrinkles. Fig. 5 shows control over illumination
and expression using Eillum and Eexp.

4.2. Painting generation

Implementation details: We use MetFaces [28], 1,336
images downsampled to 512x512 resolution. In addition to
the traditional StyleGAN2 and our explicit disentanglement
training schemes, we use the method of non-leaking aug-
mentation by Karras et al. [28] for training GANs with lim-
ited data. We use the same Mk models as in our face gener-
ation scheme with the following modifications: (1) the illu-
mination and hair color controls are removed, (2) a control
for image style is added. The style similarity distance dstyle
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Age=15yo 30yo 45yo 60yo 75yo

Yaw=30◦ 15◦ 0◦ −15◦ −30◦

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Figure 6: Control of paintings: Generation results using
Eage, Epose and Eexp.

zstyle1 zstyle2 zstyle3 zstyle4 zstyle5

Figure 7: Artistic style for paintings: We can change the
zstyle latent to produce same portraits with different style.

is computed similarly to the style loss introduced for style
transfer by Gatys et al. [20] where Mstyle is a VGG16 [47]
network pre-trained on ImageNet [13].

Photorealism: The FID scores are 28.58 and 26.6 for
our controlled and for the baseline models, respectively.

Qualitative evaluation: Fig. 6 shows our control over
age, pose and expression usingEage, Epose andEexp. Note
that the expression control for this task is rather limited. We
suspect this is due to the low variety of expressions in the
dataset. The control over these attributes demonstrates that
the control networks do not necessarily need to be trained
on the same domain on which the GAN is being trained,
and that some domain gap is tolerable. Fig. 7 shows that
our method can also disentangle artistic style allowing to
change the style without affecting the rest of the attributes.

4.3. Ablation study

In this section we explore two alternative approaches to
our framework. (1) Training the GAN end-to-end in a single
training phase. In every iteration, the inputs to the model are
control attribute values, (yk), rather than latent vectors. We

Ours E2E E2E-10x NoDis
Control precision ↓

Pose [◦] 2.292.292.29±1.31±1.31±1.31 10.35±7.8 4.36±0.82 5.44±3.4

Age [yo] 2.022.022.02±1.38±1.38±1.38 14.63±8.4 14.38±8.5 7.11±6.1

Exp. 3.68±0.7 4.41±0.8 4.36±0.8 2.942.942.94±0.6±0.6±0.6

Illum. 0.320.320.32±0.13±0.13±0.13 0.62±0.21 0.61±0.21 0.320.320.32±0.14±0.14±0.14

Hair c. 0.130.130.13±0.18±0.18±0.18 0.33±0.24 0.24±0.18 0.15±0.14

ID preservation
Same↓ 0.680.680.68±0.19±0.19±0.19 0.82±0.3 0.97±0.35 1.16±0.34

Not same↑ 1.91.91.9±0.24±0.24±0.24 1.78±0.23 1.79±0.25 1.7±0.26

FID ↓
FID 5.72 6.48 9.1 3.323.323.32

Table 5: Ablation study: Comparison of our method vs.
training end-to-end (single phase) and vs. using a non-
disentangled StyleGAN2.

Initial
controls

+Smile +Age=
65yo

+Brown
hair

+Right
Illum.

+Yaw=0◦

Pitch=0◦
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oD

is
O

ur
s

ID 1 ID 2 ID 3 ID 4 ID 5 ID 6

N
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Figure 8: Ours vs. NoDis: In row 1 (NoDis) and row 2
(ours), from left to right, each column changes one control.
The ID input is not changed. In row 3 (NoDis), each column
has a different ID input and same control inputs.

use the pre-trained models (the same ones as in our two-
phase approach) to penalize for disagreement between the
attribute values, predicted for each generated image, and the
input controls (attribute matching loss). For a fair compar-
ison to our approach, we avoid the harder task of mapping
an ID embedding to an image, by maintaining the ID con-
trastive terms as in Sec. 3.1. We use two configurations of
matching loss coefficients where for the first model (E2E)
the coefficients are 10 times smaller in magnitude than for
the second one (E2E-10x). (2) Instead of training a dis-
entangled GAN in Phase 1, we train attribute encoders for
a pre-trained StyleGAN2 (NoDis). Since StyleGAN2’s W
space is not divided into disentangled sub-spaces, we train a
single encoder mapping all inputs (together) toW . Further
implementation details of alternatives 1 and 2 are provided
in the supplementary.

In Table 5 we compare our two-phased approach to both
alternatives using the control precision, ID preservation and
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FID metrics. As expected, the E2E-10x model achieves
better control precision than the E2E model at the expense
of reduced photorealism (FID score) and ID preservation.
Nonetheless, at both ends of the spectrum the results are
inferior to those achieved by our two-phased model. We
present qualitative comparisons in the supplementary. Ta-
ble 5 indicates that NoDis does not preserve ID. This is
backed up by the first row of Fig. 8. In the third row of
Fig. 8 we show images generated for different ID vectors
but with the same set of controls. The mild variation in
perceived ID demonstrates that the entanglement limits the
possible IDs, given a set of controls. Moreover, for NoDis
the control precision is inferior except for the expression.
We hypothesize that in order to reach a desired control, the
model partially “adjusts the ID”. This is most prominent for
expression where the geometry of the face changes. Thus
with limited ID preservation, it is “easier” to achieve a de-
sired expression.

4.4. Disentangled projection of real images

We leverage the explicit control of our model for real
image editing. To this end, we use latent space optimiza-
tion to find a latent vector that corresponds to an input im-
age. By naı̈vely following the projection method described
in StyleGAN2 (Appendix D), the reconstructed image visu-
ally looks different from the input image. A remedy to this
phenomenon proposed in [5] is to project the image to an
extended latent space, w+, such that each resolution level
has its own latent vector. We find this approach is indeed
useful for accurate reconstruction. However, when we mod-
ified the different sub-vectors, we observed a strong deterio-
ration in the image quality and a change in other unmodified
attributes. In absence of explicit constraints on the feasible
solutions’ space, two different issues arise: (1) part of the
sub-vectors end-up encoding a semantically different infor-
mation from the one they were intended for, e.g., the pose
latent vector may encode some information of the ID or the
expression, and (2) the reconstructed latent vector may not
lie in the semantically meaningful manifold. A similar phe-
nomenon was reported in Zhu et al. [56]. As a mitigation
to the above, we introduce two changes. First, rather than
extending the entireW space, we only extend theWID and
Wother sub-spaces. Second, we constrain the remaining
sub-vectors to reside on approximated linear subspaces of
their corresponding manifolds. We achieve this using the
following approach: we perform PCA for each latent sub-
space of 10K randomly sampled sub-vectors w, where the
number of components are selected so as to preserve 50%
of the variance. During the optimization process, we project
the latent sub-vectors to the truncated PCA spaces and re-
project them back to the corresponding spaces. Once we
find the corresponding latent vector, we can edit the image
by modifying attribute k latent sub-vector, using Ek. We

Input [1] Projected Yaw=30◦

Pitch=0◦
Yaw=25◦

Pitch=−15◦
Yaw=−25◦

Pitch=15◦

Input [2] Projected Right Front Left

Input [3] Projected Age=15yo 45yo 70yo

Input [4] Projected Exp. 1 Exp. 2 Exp. 3

Figure 9: Disentangled Projection: The two leftmost
columns refer to the input and projected images, respec-
tively. The remaining columns demonstrate editing results
of pose, illumination, age and expression.

provide an ablation study of the proposed changes in the
supplementary material.

In Fig. 9 we show real images, their projections and the
result of editing their attributes. While the projected image
does not achieve a perfect reconstruction, the disentangl-
ment of the latent space is preserved, allowing for an ex-
plicit control of the desired attributes without affecting oth-
ers. In the second row of Fig. 9 we can see that the GAN
can accurately model the shadows on the face’s curvature
and skin folds as well as model the reflection of the light
source in the person’s eyes. This implies the GAN learns a
latent 3D representation of the faces.

5. Conclusions
We proposed a novel framework for training GANs in a

disentangled manner, that allows explicit control over gen-
eration attributes. For a variety of attributes, a predictor
of that attribute is enough to achieve explicit control over
it. Our method extends the applicability of explicitly con-
trollable GANs to additional domains other than human
faces. The GAN is complemented by a real image projec-
tion method that projects images to a disentangled latent
space, maintaining explicit control. We believe this work
opens up a path for improving the ability to control general-
purpose GAN generation. Additional details can be found
at alonshoshan10.github.io/gan_control/.
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