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2. Related Work

Most works on knowledge distillation focus on classifi-

cation tasks [10, 11, 15, 26, 35, 37, 43]. Our work here

aims to study efficient and effective distillation methods for

dense prediction, beyond naively applying pixel-wise distil-

lation as done in classification.

Knowledge distillation for semantic segmentation. In

[34], a local similarity map is constructed to minimize the

discrepancy of segmented boundary information between

the teacher and student network, where the Euclidean dis-

tance between the center pixel and the 8-neighborhood pix-

els is used as knowledge for transferring. Liu et al. [23, 24]

propose two approaches to capture the structured informa-

tion among pixels, including pair-wise similarity between

pixels and holistic correlations captured by a discriminator.

The work in [33] focuses on the intra-class feature varia-

tion among the pixels with the same label, where the set of

cosine distance between each pixel’s feature and its corre-

sponding class-wise prototype is constructed to transfer the

structural knowledge. He et al. [13] use a feature adaptor is

employed to mitigate the feature mismatching between the

teacher and student networks.

Knowledge distillation for object detection. Many meth-

ods find that it is important to distinguish the foreground

and the background regions in the distillation for object de-

tection. MIMIC [19] forces the feature map inside the RPN

of the student network to be similar to that of the teacher

network via the L2 loss, and finds that directly applying

pixel-wise loss may harm the performance of object detec-

tion. Wang et al. [31] propose to distill the fine-grained fea-

ture near object anchor locations. Zhang and Ma [41] gen-

erate the mask with attention to distinguish the foreground

and the background, achieving promising results. Instead,

we softly align the channel-wise activations to distinguish

the foreground and the background regions.

Channel-wise knowledge. Several recent works [47] also

pay attention to the knowledge contained in each channel.

Zhou et al. calculate the mean of the activation in each

channel and align a weighted difference for each channel in

classification. CSC [25] calculates the pair-wise relations

among all spatial locations and all channels for transferring

the knowledge. Channel exchanging [32] proposes that the

information contained in each channel is general and can be

shared across different modalities.

3. Our Method

We first review relevant spatial knowledge distillation

methods in the literature.

3.1. Spatial Distillation

Existing KD methods often employ a point-wise align-

ment or align structured information among spatial loca-

tions, which can be formulated as:

ℓ(y, yS) + α · ϕ(φ(yT ),φ(yS)). (1)

Here the task loss ℓ(·) is still applied with y being the

ground-truth labels. For example, the cross-entropy loss

is usually employed in semantic segmentation. By slightly

abusing the notation, here yS and yT represent either the

logits or inner activations of the student and teacher net-

work, respectively. Here α is a hyper-parameter to balance

the loss terms. Subscripts ·T and ·S denote teacher and

student networks. We list representative spatial distillation

methods in Table 1.

A brief overview of these methods is as follows. Atten-

tion Transfer (AT) [40] uses an attention mask to squeeze

the feature maps into a single channel for distillation. The

pixel-wise loss [16] directly aligns the point-wise class

probabilities. The local affinity [34] is computed by the

distance between the center pixel and its 8 neighborhood

pixels. The pairwise affinity [24, 13, 23] is employed to

transfer the similarity between pixel pairs. The similarity

between each pixel’s feature and its corresponding class-

wise prototype is computed to transfer the structural knowl-

edge [33]. The holistic loss in [24, 23] uses the adversar-

ial scheme to align the high-order relations between feature

maps from the two networks. Note that, the last four terms

consider the correlation among pixels. Existing KD meth-

ods as shown in Table 1 are all spatial distillation methods.

All these methods consider the N channel activation values

of a spatial location as the feature vectors to operate on.

3.2. Channel-wise Distillation

To better exploit the knowledge in each channel, we pro-

pose to softly align activations of corresponding channels

between the teacher and student networks. To do so, we

first convert activations of a channel into a probability dis-

tribution such that we can measure the discrepancy using

a probability distance metric such as the KL divergence.

As demonstrated in Figure 2(c), the activations of differ-

ent channels tend to encode the saliency of scene categories

of an input image. Besides, a well-trained teacher net-

work for semantic segmentation shows activation maps of

clear category-specific masks for each channel—which is

expected—as displayed on the right part of Figure 1. Here,

we propose a novel channel-wise distillation paradigm to

guide the student to learn the knowledge from a well-trained

teacher.

Let us denote the teacher and student networks as T and

S, and the activation maps from T and S are yT and yS ,

respectively. The channel-wise distillation loss can be for-

mulated as in a general form:

ϕ(φ(yT ),φ(yS )) = ϕ(φ(yT

c ),φ(yS

c )). (2)
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Loss *******ϕ(u, v)*******
φ(x)

*******Formulation******* *****Dimensionality*****

Point-wise alignment

Attention transfer [40] L1 or L2
∑C

c=1 ‖xic‖p 1×W ×H

Pixelwise [24, 6, 23, 33] KL softmax(xi/τ) C ×W ×H

Pairwise or higher order alignment

Local similarity [34] L1 or L2
∑

j∈N(i) ‖xj − xi‖ 1×W ×H

Pairwise affinity [24, 13, 23] L2
xT
i xj

‖xi‖2·‖xj‖2
1×W ×H

IFVD [33] L2 cos(xi,
∑

j∈Si
xj/|Si|) 1×W ×H

Holistic [24, 23, 33] Wasserstein Distance D(xi) 1

Table 1 – Current spatial distillation methods. i and j indicate the pixel index. D(·) is a discriminator, and N(i) indicates 8-

neighborhood of pixel i. Si is the pixel set having the same label as pixel i and |Si| stands for the size of the set Si.

In our case, φ(·) is used to convert the activation values into

a probability distribution as below:

φ(yc) =
exp(

yc,i

T
)

∑W ·H

i=1
exp(

yc,i

T
)
, (3)

where c = 1, 2, ..., C indexes the channel; and i indexes

the spatial location of a channel. T is a hyper-parameter

(the temperature). The probability becomes softer if we use

a larger T , meaning that we focus on a wider spatial re-

gion for each channel. By applying the softmax normal-

ization, we remove the influences of magnitude scales be-

tween the large networks and the compact networks. This

normalization is helpful in KD as observed in [30]. A 1× 1
convolution layer is employed to upsample the number of

channels for the student network if the number of channels

mismatches between the teacher and the student. ϕ(·) eval-

uates the discrepancy between the channel distribution from

the teacher network and the student network. We use the KL

divergence:

ϕ
(

yT , yS
)

=
T 2

C

C
∑

c=1

W ·H
∑

i=1

φ(yTc,i) · log
[φ(yTc,i)

φ(ySc,i)

]

. (4)

The KL divergence is an asymmetric metric. From Equa-

tion (4), we can see that, if φ(yTc,i) is large, φ(ySc,i) should

be as large as φ(yTc,i) to minimize the KL divergence. Oth-

erwise, if φ(yTc,i) is very small, the KL divergence pays less

attention to minimize the φ(ySc,i). Thus, the student network

tends to produce similar activation distribution in the fore-

ground saliency, while the activations corresponding to the

background region of the teacher network would have less

impact on the learning. We hypothesize that this asymmetry

property of KL benefits the KD learning for dense predic-

tion tasks.

4. Experiments

In this section, we first describe the implementation de-

tails and the experiment settings. Then, we compare our

channel-wise distillation method with other state-of-the-art

distillation methods and conduct ablation studies on seman-

tic segmentation. Finally, we show consistent improve-

ments in semantic segmentation and object detection with

various benchmarks and student network structures.

4.1. Experimental Settings

Datasets. Three public semantic segmentation benchmarks,

namely, Cityscapes [7], ADE20K [46] and Pascal VOC [9]

are used here. We also apply the proposed distillation

method to object detection on MS-COCO 2017 [22], which

is a large-scale dataset that contains over 120k images of 80

categories.

The Cityscapes dataset is used for semantic urban scene

understanding. It contains 5,000 finely annotated images

with 2,975/500/1,525 images for training/validation/testing

respectively, where 30 common classes are provided and 19

classes are used for evaluation and testing. The size of each

image is 2048 × 1024 pixels. They are gathered from 50

different cities. The coarsely labeled data is not used in our

experiments.

The Pascal VOC dataset contains 1,464/1,449/1,456 im-

ages for training/validation/testing. It contains 20 fore-

ground object classes and an extra background class. In

addition, the dataset is augmented by extra coarse labeling,

which has 10,582 images for training. The training split is

used for training, and the final performance is measured on

the validation set across 21 classes.

The ADE20K dataset covers 150 classes of diverse

scenes. It contains 20K/2K/3K images for training, vali-

dation, and testing. In our experiments, we report the seg-

mentation accuracy on the validation set.

Evaluation metrics. To evaluate the performance and ef-

ficiency of our proposed channel distribution distillation

method on semantic segmentation, following the previ-

ous work [17, 23], we test each strategy via the mean

Intersection-over-Union (mIoU) in all experiments under

a single-scale setting. The floating-point operations per

second (FLOPs) are calculated with a fixed input size
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Network Structural **Complexity**
Val mIoU (%)

Feature map Logits map

Teacher − − *****78.56***** *****78.56*****

Student − − 69.10 69.10

Spatial Distillation

AT [40] × hx · wx · (cx)p 72.37(+3.27)⊛ 72.32(+3.22)

PI [6, 33, 24, 23] × hx · wx · cx 70.02(+0.92)⊛ 71.74(+2.64)

LOCAL [34]
√

8hx · wx · cx 69.81(+0.71)⊛ 69.75(+0.65)

PA [24, 13, 23]
√

(hx · wx)2 · cx 71.23(+2.13)⊛ 71.41(+2.31)

IFVD [33]
√

hx · wx · cx · n 71.35(+2.25)⊛ 70.66(+1.56)

HO [24, 23, 33]
√

O(D) −⊛ 72.13(+3.03)

Channel Distillation CD (Ours)
√

hx · wx · cx 74.27(+5.17)⊛ 74.87(+5.77)

Table 2 – Comparison between computation complexity and performance on the validation set among various distillation methods. The

mIoU is calculated on the Cityscapes validation set with PSPNet-R101 as the teacher network and PSPNet-R18 as the student network.

The complexity depends on the shape (hx × wx × cx) of the input. O(D) denotes the discriminator complexity. The superscript ⊛

means that additional channel alignment convolution is needed. All the results are the mean of three runs.

of 512×1024 pixels. Besides, the mean class Accuracy

(mAcc) is listed for Pascal VOC and ADE20K. To evaluate

the performance on object detection, we report the mean

Average Precision (mAP), the inference speed (FPS), and

the model size (parameters) following the work in [41].

Implementation details. For semantic segmentation, the

teacher network is PSPNet with ResNet101 (PSPNet-R101)

as the backbone for all experiments. We employ several dif-

ferent architectures, including PSPNet [45], Deeplab [42]

with the backbones of ResNet18, and MobileNetV2 as stu-

dent networks to verify the effectiveness of our method.

In the ablation study, we analyze the effectiveness of

our method based on PSPNet with the ResNet18 backbone

(PSPNet-R18). Unless otherwise indicated, each training

image for the student network is randomly cropped into

512 × 512 pixels. The batch size is set to 8, and the num-

ber of the training step is 40K. We set the temperature pa-

rameter T = 4, the loss weight α = 3 for the logits map,

and α = 50 for the feature map for all experiments. For

object detection, we employ the same teacher and student

networks and the training settings as in [41].

4.2. Comparison with Recent Knowledge Distilla-
tion Methods

To verify the effectiveness of our proposed channel-wise

distillation, we compare our method with current distillation

methods listed below:

• Attention Transfer (AT) [40]: Sergey et al. calculate

the summation of all channels at each spatial location

to obtain a single channel attention map. L2 is em-

ployed to minimize the difference between the atten-

tion map.

• Local affinity (LOCAL) [34]: For each pixel, a local

similarity map is constructed, which considers the cor-

relations between itself and its 8 neighborhood pixels.

L2 is employed to minimize the difference between the

local affinity map.

• Pixel-wise distillation (PI) [24, 23, 33, 6]: KL diver-

gence is used to align the distribution of each spatial

location from two networks.

• Pair-wise distillation (PA) [24, 13, 23]: The correla-

tions between all pixel pairs are considered.

• Intra-class feature variation distillation (IFVD) [33]:

The set of similarity between the feature of each pixel

and its corresponding class-wise prototype is regarded

as the intra-class feature variation to transfer the struc-

tural knowledge.

• Holistic distillation (HO) [24, 23, 33]: The holistic em-

beddings of feature maps are computed by a discrim-

inator, which is used to minimize the discrepancy be-

tween high-order relations.

We apply all these popular distillation methods to both the

inner feature map and the final logits map. The conven-

tional cross-entropy loss is applied in all experiments. The

computational complexity and performance of spatial dis-

tillation methods are reported in Table 2.

Given the input feature map (logits map) of the size of

hf ×wf × c (hs ×ws × n), where hf (hs)×wf (ws) is the

shape of the feature map (logits map). c is the number of

channels and n is the number of classes.

As reported in Table 2, all distillation methods can im-

prove the performance of the student network. Our channel

distillation method outperforms all spatial distillation meth-

ods. Ours outperforms the best spatial distillation method

(AT) by 2.5%. Moreover, our method is more efficient as it

requires less computational cost than other methods during

the training phase.

Furthermore, we list the detailed class IoU of our

method and two recent state-of-the-art methods, PA [24]

and IFVD [17] in Table 3. These methods propose to trans-

fer structure information in semantic segmentation. Our

methods significantly improve the class accuracy of several

objects, such as traffic light, terrain, wall, truck, bus, and
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Model Backbone AP (%) AP50 AP75 APS APM APL FPS Params.

Two-stage detector

Faster RCNN

R50

38.4 59.0 42.0 21.5 42.1 50.3 18.1 43.57

+Chen et al. [4] 38.7 59.0 42.1 22.0 41.9 51.0 18.1 43.57

+Wang et al. [31] 39.1 59.8 42.8 22.2 42.9 51.1 18.1 43.57

+Heo et al. [14] 38.9 60.1 42.6 21.8 42.7 50.7 18.1 43.57

+Zhang et al. [41] 41.5 62.2 45.1 23.5 45.0 55.3 18.1 43.57

+Our Method 41.7 62.0 45.5 23.3 45.5 55.5 18.1 43.57

One-stage detector

RetinaNet

R50

37.4 56.7 39.6 20.0 40.7 49.7 20.0 36.19

+Heo et al. [14] 37.8 58.3 41.1 21.6 41.2 48.3 20.0 36.19

+Zhang et al. [41] 39.6 58.8 42.1 22.7 43.3 52.5 20.0 36.19

+Our Method 40.8 60.4 43.4 22.7 44.5 55.3 20.0 36.19

Anchor-free detector

RepPoints

R50

38.6 59.6 41.6 22.5 42.2 50.4 18.2 36.62

+Zhang et al. [41] 40.6 61.7 43.8 23.4 44.6 53.0 18.2 36.62

+Our Method 42.0 63.0 45.3 24.1 46.1 55.0 18.2 36.62

Table 6 – Comparison between our methods and other distillation methods on object detection.

pared with the teacher network and can not sufficiently ab-

sorb the knowledge of the current task. For PSPNet-R18,

the student initialized by the weights trained on ImageNet

obtains the best distillation performance (improved from

70.09% to 75.90%), further demonstrating that the well-

initialized parameters help the distillation. Thus, the better

student lead to better distillation performance, but the im-

provement is less significant as the gap between the teacher

and student network is smaller.

4.5. Object Detection

We also apply our channel-wise distillation method on

the object detection task. The experiments are conducted

on MS COCO2017 [22].

Various student networks under different paradigms, i.e.,

a two-stage anchor-based method (Faster RCNN [27]),

a one-stage anchor-based method (RetinaNet [20]) and

anchor-free method (RepPoints [36]), are used to validate

the effectiveness of our method. To make a fair comparison,

we experiment on the same teacher with the same hyper-

parameters as in [41].

The only modification is that the feature alignment is

changed to our channel-wise distillation. The results are re-

ported in Table 6. From the table, we can see that our meth-

ods achieve consistent improvements (about 3.4% mAP)

on strong baseline student networks. Compared with pre-

vious state-of-the-art distillation methods [41], our simple

channel-wise distillation performs better, especially with

anchor-free methods. We improve the RepPoint by 3.4%
while Zhang et al. improve the RepPoint by 2%. Besides,

we can see that the proposed distillation method can im-

prove AP75 more significantly.

5. Conclusion

In this paper, we have proposed a novel channel-wise

distillation for dense prediction tasks. Different from pre-

vious spatial distillation methods, we normalize the activa-

tions of each channel to a probability map. Then, the asym-

metry KL divergence is applied to minimize the discrepancy

between the teacher and the student network. Experimental

results show that the proposed distillation method consis-

tently outperforms state-of-the-art distillation methods on

four public benchmark datasets with various network back-

bones, for both semantic segmentation and object detection.

Additionally, our ablation experiments demonstrate the

efficiency and effectiveness of our channel-wise distillation,

and it can further complement the spatial distillation meth-

ods. We hope that the proposed simple and effective dis-

tillation method can serve as a strong baseline for effec-

tively training compact networks for many other dense pre-

diction tasks, including instance segmentation, depth esti-

mation and panoptic segmentation.
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