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Figure 1. An application of our work: matching speaker audio to expected reverberation of a video conference virtual background.
Project page with examples is available at https://web.media.mit.edu/~nsingh1/image2reverb.

Abstract

Measuring the acoustic characteristics of a space is of-
ten done by capturing its impulse response (IR), a represen-
tation of how a full-range stimulus sound excites it. This
work generates an IR from a single image, which can then
be applied to other signals using convolution, simulating
the reverberant characteristics of the space shown in the im-
age. Recording these IRs is both time-intensive and expen-
sive, and often infeasible for inaccessible locations. We use
an end-to-end neural network architecture to generate plau-
sible audio impulse responses from single images of acous-
tic environments. We evaluate our method both by compar-
isons to ground truth data and by human expert evaluation.
We demonstrate our approach by generating plausible im-
pulse responses from diverse settings and formats including
well known places, musical halls, rooms in paintings, im-
ages from animations and computer games, synthetic envi-
ronments generated from text, panoramic images, and video
conference backgrounds.

1. Introduction

An effective and widely used method of simulating
acoustic spaces relies on audio impulse responses (IRs) and

convolution [38, 31]. Audio IRs are recorded measurements
of how an environment responds to an acoustic stimulus.
IRs can be measured by recording a space during a burst of
white noise like a clap, a balloon pop, or a sinusoid swept
across the range of human hearing [28]. Accurately captur-
ing these room impulse responses requires time, specialized
equipment, knowledge, and planning. Directly recording
these measurements may be entirely infeasible in continu-
ously inhabited or inaccessible spaces of interest. End-to-
end IR estimation has far ranging applications relevant to
fields including music production, speech processing, and
generating immersive extended reality environments. Our
Image2Reverb system directly synthesizes IRs from images
of acoustic environments. This approach removes the bar-
riers to entry, namely cost and time, opening the door for a
broad range of applications.

In this work we model IR generation as a cross-modal
paired-example domain adaptation problem and apply a
conditional GAN [10, 12, 23] to synthesize plausible audio
impulse responses conditioned on images of spaces. Next,
we will describe related work that informs our approach.

2. Related Work

Artificial reverberation. Historically, recording studios
built reverberant chambers with speakers and microphones
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Figure 2. Generating audio impulse responses from images. Left: given an image of an acoustic environment as input, our model generates
the corresponding audio impulse response as output. Right: generated impulse responses are convolved with an anechoic (free from echo)
audio recording making that recording sound as if it were in the corresponding space. Waveforms and spectrograms are shown of the
source anechoic signal and the same signal after convolution with the corresponding synthesized IR. All spectrograms are presented on a
mel scale. Image2Reverb is the first system demonstrating end-to-end synthesis of realistic IRs from single images.

Figure 3. Impulse response overview. (A) Sound waves propa-
gate across multiple paths as they interact with and reflect off their
environment. These paths include the direct path from source to
listener, early reflections including 1st and higher order reflections
(after reflecting off 1 or more surfaces) and a more diffuse tail as
they trail off and become more densely packed in time. These
reflections make up the impulse response of the environment illus-
trated (B) schematically and (C) as a waveform.

to apply reverb to pre-recorded audio directly within a phys-
ical space [30]. Reverberation circuits, first proposed in the

1960s, use a network of filters and delay lines to mimic a re-
verberant space [34]. Later, Digital algorithmic approaches
applied numerical methods to simulate similar effects. Con-
versely, convolution reverb relies on audio recordings of a
space’s response to a broadband stimulus, typically a noise
burst or sine sweep. This results in a digital replica of a
space’s reverberant characteristics, which can then be ap-
plied to any audio signal [1].

Convolutional neural networks have been used for es-
timating late-reverberation statistics from images [16, 17],
though not to model the full audio impulse response from an
image. This work is based on the finding that experienced
acoustic engineers readily estimate a space’s IR or reverber-
ant characteristics from an image [15]. Room geometry has
also been estimated from 360-degree images of four specific
rooms [29], and used to create virtual acoustic environments
which are compared with ground-truth recordings, though
again IRs are not directly synthesized from the images. A
related line of work synthesizes spatial audio based on vi-
sual information [19, 8, 14]. Prior work exists on synthesis
of IRs using RNNs [32], autoencoders [36], and GANs: IR-
GAN [27] uses parameters from real world IRs to generate
new synthetic IRs; whereas our work synthesizes an audio
impulse response directly from an image.

Generative models for audio. Recent work has shown
that GANs are amenable to audio generation and can re-
sult in more globally coherent outputs [6]. GANSynth [7]
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generates an audio sequence in parallel via a progressive
GAN architecture allowing faster than real-time synthesis
and higher efficiency than the autoregressive WaveNet [39]
architecture. Unlike WaveNet which uses a time-distributed
latent coding, GANSynth synthesizes an entire audio seg-
ment from a single latent vector. Given our need for global
structure, we create a fixed-length representation of our in-
put and adapt our generator model from this approach.

Measured IRs have been approximated with shaped
noise [18, 3]. While room IRs exhibit statistical regularities
[37] that can be modeled stochastically, the domain of this
modeling is time and frequency limited [2], and may not
reflect all characteristics of real-world recorded IRs. Sim-
ulating reverb with ray tracing is possible but prohibitively
expensive for typical applications [33]. By directly approx-
imating measured audio IRs at the spectrogram level, our
outputs are immediately applicable to tasks such as convo-
lution reverb, which applies the reverberant characteristics
of the IR to another audio signal.

Cross-modal translation. Between visual and auditory
domains, conditional GANs have been used for translating
between images and audio samples of people playing in-
struments [4]. Our work builds on this by applying state-of-
the-art architectural approaches for scene analysis and high
quality audio synthesis, tuned for our purposes.

3. Methods
Here we describe the dataset, model, and algorithm.

3.1. Dataset

Data aggregation. We curated a dataset of 265 different
spaces totalling 1169 images and 738 IRs. From these, we
produced a total of 11234 paired examples with a train-
validation-test split of 9743-154-1957. These are assembled
from sources including the OpenAIR dataset [24], other li-
braries available online, and web scraping. Many examples
amount to weak supervision, due to the low availability of
data: for example, we may have a “kitchen” impulse re-
sponse without an image of the kitchen in which it was
recorded. In this case, we augmented with plausible kitchen
scenes, judged by the researchers, gathered via web scrap-
ing and manual filtering. Although this dataset contains
high variability in several reverberant parameters, e.g. early
reflections and source-microphone distance, it allows us to
learn characteristics of late-field reverberation.

Data preprocessing. Images needed to be filtered man-
ually to remove duplicates, mismatches such as external
pictures of an indoor space, examples with significant oc-
clusive “clutter” or excessive foreground activity, and intru-
sive watermarks. We then normalized, center-cropped at the

max width or height possible, and downsampled to 224x224
pixels. We converted the audio IR files to monaural signals;
in the case of Ambisonic B-Format sources we extracted
the W (omnidirectional) channel, and for stereo sources we
computed the arithmetic mean of channels. In some cases,
360-degree images were available and in these instances we
extract rectilinear projections, bringing them in line with the
standard 2D images in our dataset.

Audio representation. Our audio representation is a log
magnitude spectrogram. We first resampled the audio files
to 22.050kHz and truncate them to 5.94s in duration. This
is sufficient to capture general structure and estimate rever-
berant characteristics for most examples. We then apply a
short-time Fourier transform with window size (M = 1024)
and hop size (R = 256), before trimming the Nyquist bin,
resulting in square 512x512 spectrograms. Finally, we take
log(|X|) where |X| represents the magnitude spectrogram;
audio IRs typically contain uncorrelated phase, which does
not offer structure we can replicate based on the magnitude.

3.2. Model

Components. Our model employs a conditional GAN
with an image encoder that takes images as input and pro-
duces spectrograms. This overall design, with an encoder,
generator, and conditional discriminator, is similar to that
which Mentzer et al. [22] applied to obtain state-of-the-art
results on image compression, among many other applica-
tions. The generator and discriminator are deep convolu-
tional networks based on the GANSynth [7] model (non-
progressive variant), with modifications to suit our dataset,
dimensions, and training procedure.

The encoder module combines image feature extraction
with depth estimation to produce latent vectors from two-
dimensional images of scenes. For depth estimation, we
use the pretrained Monodepth2 network [9], a monocular
depth-estimation encoder-decoder network which produces
a one-channel depth map corresponding to our input image.
The main feature extractor is a ResNet50 [13] pretrained on
Places365 [41] which takes a four-channel representation of
our scene including the depth channel (4x224x224). We add
randomly initialized weights to accommodate the additional
input channel for the depth map. Since we are fine-tuning
the entire network, albeit at a low learning rate, we expect
it will learn the relevant features during optimization. Our
architecture’s components are shown in Figure 4.

Objectives. We use the least-squares GAN formulation
(LSGAN) [20]. For the discriminator:

min
D

V (D) = Ey∼pdata(y)[(1−D(y | E(x̃))2]

+ Ez∼pz(z)[(D(G(z) | E(x̃))2]
(1)
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Figure 4. System architecture. Our system consists of autoencoder and GAN networks. Left: An input image is converted into 4 channels:
red, green, blue and depth. The depth map is estimated by Monodepth2, a pre-trained encoder-decoder network. Right: Our model employs
a conditional GAN. An image feature encoder is given the RGB and depth images and produces part of the Generator’s latent vector which
is then concatenated with noise. The Discriminator applies the image latent vector label at an intermediate stage via concatenation to make
a conditional real/fake prediction, calculating loss and optimizing the Encoder, Generator, and Discriminator.

Algorithm 1: Forward and backward passes
through the Image2Reverb model. Notation is ex-
plained in Table 1.

Input:
Monodepth2: x ∼ X; Encoder x̃ ∼ X̃; Generator:
z = E(x̃)⊕ u; Discriminator: (G(z), E(x̃)) OR
(y,E(x̃));

Parameters: (weight variables);
Output:
Monodepth2: xd; Encoder: E(x̃); Generator: G(z);
Discriminator: D(G(z), E(x̃)) OR D(y,E(x̃));

for number of epochs do
Sample B training images;
Get depth xd = M(x);
Append depth features to RGB channels

(y ⊕ yd);
Encoder image to feature-vector (E(x̃));
Append noise (z = E(x̃)⊕ u;
Generate spectrogram (G(z));
Forward pass through discriminator with either

fake or real spectrogram (D(G(z)|E(x̃) OR
D(y|E(x̃)));

Backward pass: update parameters for
discriminator (WD), generator (WG), and
encoder (WE);

end

For the generator, we introduce two additional terms
to encourage realistic and high-quality output. First, we
add an ℓ1 reconstruction term, scaled by a hyperparame-
ter (λa = 100 in our case). This is a common approach in

Notation Definition
x input image
xd estimated depth map
⊕ concatenation operator
x̃ image with depth map (x⊕ xd)
y Real spectrogram

E,G,D Encoder, Generator, Discriminator
M Monodepth2 Encoder-Decoder
W∗ weights for a model
u Noise, u ∼ N (0, 1)
z Latent vector, encoder output and noise

(E(x̃)⊕ u)
Table 1. Notation and definitions for variables indicated in differ-
ent parts of this paper.

image and audio settings. Second, we introduce a domain-
specific term that performs an estimation of the T60 values,
the time it takes for the reverberation to decay by 60dB,
for the real and generated samples, and returns the absolute
percent error between the two scaled by a hyperparameter
(λb = 100 again). We term the differentiable T60 proxy
measure T60p . To compute this for log-spectrogram x, we
first get the linear spectrogram ex and then sum along the
time axis to obtain a fullband amplitude envelope. We use
Schroeder’s backward integration method to obtain a decay
curve from the squared signal, and linearly extrapolate from
the −20dB point to get a T60 estimate. In all:

min
G

V (G) = Ez∼pz(z) [ (1−D(G(z) | E(x̃))2

+ λa ∥G(z)− y∥1

+ λb

∣∣∣∣T60p(G(z))− T60p(y)

T60p(y)

∣∣∣∣]
(2)
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Training. We train our model on 8 NVIDIA 1080 Ti
GPUs. Three Adam optimizers for each of the Generator,
Discriminator, and Encoder were used to optimize the net-
works’ parameter weights. Hyperparameters are noted in
Table 2. We make our model and code publicly available 1.

Parameter Value
ηG 4e-4
ηD 2e-4
ηE 1e-5
β (0.0, 0.99)
ϵ 1e-8

Table 2. Hyperparameters for the Generator, Discriminator, and
Encoder initial learning rates, the optimizer beta (β), and epsilon
(ϵ) for the Adam optimizers we use (one each for D,G,E)

4. Results
Using Image2Reverb we are able to generate perceptu-

ally plausible impulse responses for a diverse set of envi-
ronments. In this section, we provide input-output exam-
ples to demonstrate the capabilities and applications of our
model and also review results of a multi-stage evaluation
integrating domain-specific quantitative metrics and expert
ratings. Our goal is to examine output quality and condi-
tional consistency, generally considered important for con-
ditional GANs [5] and most relevant for our application.

4.1. Examples

We present several collections consisting of diverse ex-
amples in our supplementary material, with inputs curated
to illustrate a range of settings of interest including famous
spaces, musical environments, and entirely virtual spaces.
All examples are made available as audiovisual collections2

and were generated with a model trained in around 12 hours,
with 200 epochs on a virtual machine. Figure 5 shows ex-
amples from our test set that were used in our expert eval-
uation (4 of 8, one from each category of: Small, Medium,
Large, and Outdoor). We convolve a spoken word ane-
choic signal with the generated IRs for the reader to hear.
Figure 6 takes images of diverse scenes (art, animation,
historical/recognizable places) as inputs. Figure 7 demon-
strates how sections of 360-degree equirectangular images
are cropped, projected, and passed through our model to
generate IRs of spaces for immersive VR environments.

We strongly encourage the reader to explore these ex-
amples on the accompanying web page. We include ex-
amples of musical performance spaces, artistic depictions
(drawings, paintings), 3D animation scenes, synthetic im-
ages from OpenAI’s DALL•E, as well as real-world settings
that present challenges (e.g. illusions painted on walls, re-
flections, etc.). These are largely created with real-world

1Model and code: https://github.com/nikhilsinghmus/image2reverb
2Audiovisual samples: https://web.media.mit.edu/~nsingh1/image2reverb/

Figure 5. Ground-truth measured IRs vs generated IRs. Columns
show input images, depth maps, measured IRs with correspond-
ing convolved speech, and generated IRs with corresponding con-
volved speech. Larger indoor spaces here tend to exhibit greater
T60 times with longer measured impulse responses. The outdoor
scene has a very short measured IR and corresponding generated
IR. Input images are all examples that were used in the expert sur-
vey and were drawn from the test set.

environments for which we may not have ground truth
IRs, demonstrating how familiar and unusual scenes can be
transformed in this way.

4.2. Ablation Study

To understand the contribution of key architectural com-
ponents and decisions, we perform a study to character-
ize how removing each affects test set T60 estimation af-
ter 50 training epochs. The three components are the depth
maps, the T60p objective term, and the pretrained Places365
weights for the ResNet50 encoder. Figure 8 shows T60 er-
ror distributions over the test set for each of these model
variants, and Table 3 reports descriptive statistics.

Our model reflects better mean error (closer to 0%) and
less dispersion (a lower standard deviation) than the other
variants. The former is well within the just noticeable differ-
ence (JND) bounds for T60, often estimated as being around
25-30% for a musical signal [21]. Additionally, this is an
upper bound on authenticity: a more rigorous goal then
perceptual plausibility [26]. The lower standard deviation
indicates generally more consistent performance from this
model across different examples, even in the presence of
some that cause relatively large estimation errors due to in-
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Figure 6. Generated IR examples. Columns show input images,
depth maps, generated IRs, and a dry anechoic speech signal be-
fore and after the generated IR was applied via convolution. Input
images come from a variety of spaces which illustrate possible ap-
plications of our model. Some images are synthetic, including: an
oil painting, a 3D animation still, and a video game screenshot.
Others come from real-world scenes like a church (where music
is often heard), a famous yet inaccessible space (SpaceX), and an
outdoor desert scene. Larger indoor spaces tend to exhibit longer
impulse responses as seen here.

Figure 7. VR. Impulse responses generated from an equirectan-
gular 360-degree image by sampling points on a sphere, cropping
and applying a rectilinear projection to the resulting image, and
feeding them into our model. This demonstrates how our model
directly generates realistic impulse responses of panoramic virtual
reality compatible images. Future work may allow generation of
impulse responses using an entire 360-degree image, though at
present there is a lack of paired data available for training.

correct interpretation of relevant qualities in the image, or
inaccurate/noisy synthesis or estimation.

4.3. Expert Evaluation

Following the finding that experienced acoustic engi-
neers readily estimate a space’s reverberant characteristics
from an image [15], we designed an experiment to evalu-

Figure 8. T60 estimation error (%) distributions from each model
version. T60 estimates how long it takes the reverberation to de-
cay by 60dB. “Main” is our architecture as described earlier,
“No Depth” omits the depth maps, “No T60P” omits the differen-
tiable T60p objective term, and “No Places” uses randomly initial-
ized encoder weights. “NN” applies a nearest-neighbor approach
with Places365-ResNet50 embeddings for images (errors clipped
to 2000% for clarity). Descriptive statistics are given in Table 3.

Main -Depth -T60p -P365 NN

T60 Err
(%)

µ -6.03 -9.17 -7.1 43.15 149
σ 78.8 83.1 85.97 144.3 491.02

Table 3. T60 estimation error (%) statistics from each model ver-
sion. “Main” is our architecture as described earlier, “-Depth”
omits depth maps,“-T60p” omits the differentiable T60p objective
term, and “-P365” does not use the pretrained Places365 weights
for the ResNet50 encoder. “NN” indicates a nearest-neighbor ap-
proach with Places365-ResNet50 embeddings for images. For
mean and median, values closer to 0 reflect better performance.
For the standard deviation, lower values reflect better performance.
Distributions are visualized in Figure 8.

ate our results. We note that this experiment is designed
to estimate comparative perceptual plausibility, rather than
(physical) authenticity (e.g. by side-by-side comparison to
assess whether any difference can be heard). These goals
have been differentiated in prior work [26]. We selected
two arbitrary examples from each of the four scene cate-
gories and recruited a panel of 31 experts, defined as those
with significant audio experience, to participate in a within-
subjects study. For each of these examples, we convolved
an arbitrary anechoic signal with the output IR, as well as
the ground truth IR. These 16 samples were presented in
randomized order and participants were instructed to rate
each on a scale from 1 to 5 based on 1) reverberation qual-
ity, and 2) realism or “match” between their expected reverb
based on the image and the presented signal with reverb ap-
plied. Participants answered one reverb-related screening
question to demonstrate eligibility, and two attention check
questions at the end of the survey. The four scene categories
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Rating Scene DoF p

Quality Large 56 < .001
Quality Medium 56 .28
Quality Outdoor 56 .62
Quality Small 56 < .001
Match Large 56 < .001
Match Medium 56 .006
Match Outdoor 56 .29
Match Small 56 < .05

Table 4. Simple main effect tests for equivalence between real and
generated IRs across different categories of scenes. We use paired
two one-sided tests with bounds (ϵ) of 1 and Bonferroni-adjusted
p-values. These results suggest that real vs. fake ratings are statis-
tically equivalent within one rating unit (the resolution of the rat-
ing scale) for large and small quality ratings, and large, medium,
and small match ratings. Notably, outdoor scenes contribute to
the difference between real and fake IRs and medium-sized scenes
contribute to differences in quality.

are: Large, Medium, Outdoor, and Small. These demon-
strate diversity in visual-reverb relationships. The depen-
dent variables are quality and match ratings, and the inde-
pendent variables are IR source (real vs. fake) and scene
category (the four options listed previously). We first test
our data for normality with D’Agostino and Pearson’s om-
nibus test [25], which indicates that our data is statistically
normal (p > .05).

A two-way repeated-measures ANOVA revealed a statis-
tically significant interaction between IR source and scene
category for both quality ratings, F (3, 90) = 7.04, p ≤
.001, and match ratings, F (3, 90) = 3.73, p = .02 (re-
ported p-values are adjusted with the Greenhouse-Geisser
correction [11]). This indicates that statistically significant
differences between ratings for real and fake IR reverbs de-
pend on the scene category. Per-participant ratings and rat-
ing changes, overall and by scene, are shown in Figure 9.

Subsequent tests for simple main effects with paired two
one-sided tests indicate that real vs. fake ratings are sta-
tistically equivalent (p < .05) for large and small quality
ratings, and large, medium, and small match ratings. These
tests are carried out with an ϵ of 1 (testing for whether the
means of the two populations differ by at least 1). Results
are shown in Table 4. Notably, outdoor scenes appear to
contribute to the rating differences between real and fake
IRs. We conjecture this is due to outdoor scenes being too
different a regime from the vast majority of our data, which
are indoor, to model effectively. Additionally, medium-
sized scenes appear to contribute to differences in quality.

4.4. Model Behavior and Interpretation

Effect of varying depth. We compare the full estimated
depth map with constant depth maps filled with either 0
or 0.5 (chosen based on the approximate lower and upper
bounds of our data). We survey the distributions of gener-

Figure 9. Expert evaluation results. Paired plots showing per-
participant quality and match differences in rating for each scene
category. Green lines indicate higher rating for real IRs, red lines
for generated IRs, and grey lines equivalent ratings for both.

Figure 10. Effect of Depth on T60. Distributions of estimated T60

values for the model with estimated depth maps, plus constant
depth maps set to either 0 (low) or 0.5 (high). Manipulating the
depth value allows us to “suggest” smaller or larger scenes, i.e.
bias the output of the model. Table 5 shows corresponding de-
scriptive statistics. These results indicate a level of “steerability”
for the model’s behavior in human-in-the-loop settings.

ated IRs’ T60 values over our test set, the results of which
are shown in Figure 10. Table 5 reports descriptive statistics
for these distributions, showing that the main model’s out-
put IRs’ decay times are biased lower by the 0-depth input
and higher by the 0.5-depth input respectively. These may
indicate some potential for steering the model in interac-
tive settings. We do note, however, that behavior with con-
stant depth values greater than 0.5 is less predictable. This
may be due to the presence of outdoor scenes, for which the
scene’s depth may not be correlated with IR duration.

Effect of transfer learning. To understand which visual
features are important to our encoder, we use Gradient-
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Main Depth 0 Depth 0.5

T60 (s)

µ 2.07 2.01 3.62
σ 1.54 0.87 2.36

Mdn. 2.69 2.00 3.07
Table 5. Descriptive statistics for the model with estimated depth
maps, as well as constant depth maps set to either 0 or 0.5. The
full depth map’s results are between that of the 0 and 0.5 depth
maps. Figure 10 visulizes the corresponding distributions.

weighted Class Activation Mapping (Grad-CAM) [35].
Grad-CAM is a popularly applied strategy for visually inter-
preting convolutional neural networks by localizing impor-
tant regions contributing to a given target feature (or class in
a classification setting). We produce such maps for our test
images with both the ResNet50 pre-trained on Places365
dataset, as well as the final encoder model. All resulting
pairs exhibit noticeable differences; we check for this with
the structural similarity index (SSIM) metric [40], which is
below 0.98 for all examples.

Figure 11. Grad-CAMs for images passed through the pre-trained
Places365 ResNet50 encoder vs. our fine-tuned encoder, show-
ing movement towards significant reflective areas for (A) a small,
and (B) a large environment. The fine-tuned model’s activations
highlight larger reflective surfaces: depth of staircase for (A) vs.
railing that may be more optimal for scene identification, and wall-
to-ceiling corner plus surrounding areas for (B).

We qualitatively survey these and identify two broad
change regimes, which are illustrated with particular ex-
amples. First, we observe that the greatest-valued feature
is often associated with activations of visual regions corre-
sponding to large reflective surfaces. Examples are shown
in Figure 11. Often, these are walls ceilings, windows, and
other surfaces in reflective environments. Second, we find
that textured areas are highlighted in less reflective environ-
ments. Examples of these are shown in Figure 12. These
may correspond to sparser reflections and diffusion.

Limitations and future work. Many images of spaces
may offer inaccurate portrayals of the relevant properties
(size, shape, materials, etc.), or may be misleading (exam-

Figure 12. Grad-CAMs for images passed through both the pre-
trained Places365 ResNet50 encoder and our fine-tuned encoder,
showing movement towards more textured areas for (A) an indoor,
and (B) an outdoor environment. The former seems to contain sig-
nificant absorption and the latte has few reflective surfaces. In both
cases, textured areas are highlighted. These may be associated
with absorption, diffusion, and more sparse reflections depending
on the scene.

ples in supplementary material), leading to erroneous esti-
mations. Our dataset also contains much variation in other
relevant parameters (e.g. DRR and EDT ) in a way we
cannot semantically connect to paired images, given the
sources of our data. New audio IR datasets collected with
strongly corresponding photos may allow us to effectively
model these characteristics precisely.

5. Conclusion
We introduced Image2Reverb, a system that is able to di-

rectly synthesize audio impulse responses from single im-
ages. These are directly applied in downstream convo-
lution reverb settings to simulate depicted environments,
with applications to XR, music production, television and
film post-production, video games, videoconferencing, and
other media. Our quantitative and human-expert evaluation
shows significant strengths, and we discuss the method’s
limitations. We demonstrate that end-to-end image-based
synthesis of plausible audio impulse responses is feasible,
given such diverse applications. We hope our results pro-
vide a helpful benchmark for the community and future
work and inspire creative applications.
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