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Abstract

Salient object detection identifies objects in an image
that grab visual attention. Although contextual features
are considered in recent literature, they often fail in
real-world complex scenarios. We observe that this is
mainly due to two issues: First, most existing datasets
consist of simple foregrounds and backgrounds that hardly
represent real-life scenarios. Second, current methods
only learn contextual features of salient objects, which
are insufficient to model high-level semantics for saliency
reasoning in complex scenes. To address these problems,
we first construct a new large-scale dataset with complex
scenes in this paper. We then propose a context-aware
learning approach to explicitly exploit the semantic scene
contexts. Specifically, two modules are proposed to achieve
the goal: 1) a Semantic Scene Context Refinement mod-
ule to enhance contextual features learned from salient
objects with scene context, and 2) a Contextual Instance
Transformer to learn contextual relations between objects
and scene context. To our knowledge, such high-level
semantic contextual information of image scenes is under-
explored for saliency detection in the literature. Extensive
experiments demonstrate that the proposed approach
outperforms state-of-the-art techniques in complex sce-
narios for saliency detection, and transfers well to other
existing datasets. The code and dataset are available at
https://github.com/SirisAvishek/Scene_
Context_Aware_Saliency .

1. Introduction
Salient object detection explores the problem of identi-

fying objects that “pop-out” and grab visual attention in an
image or video. The task has been widely used as a pre-
processing step for many vision applications such as im-
age/video compression [59, 11], video object segmentation
[50], image captioning [56], and image parsing [21]. All
these vision tasks are proposed for real-world images with

Image GT CPD-R [54] EGNet [68] Ours

Figure 1: Examples of real-world complex scenarios where exist-
ing methods (e.g. [54, 68]) may not capture semantic scene con-
texts well, leading to incorrect detection of distractors. Whereas
our model is able to capture semantic contexts of the scenes.

complex scenes.
Recently, saliency research has grown rapidly through

the success of CNNs, which are able to capture better
feature representations compared to hand-crafted features
[32, 5, 57]. State-of-the-art saliency models mainly extract
and aggregate contextual information from spatial relations,
including multi-scale and local-global features in various
manners [67, 30, 37]. Although good performance has been
demonstrated, these models are mainly trained on binary
saliency labels that are class-agnostic. Training on such la-
bels only can limit the ability of networks to learn semantic
contextual features (higher-level understanding) that would
otherwise help model various relationship of objects within
complex image scenes [29, 65]. Fig. 1 shows two exam-
ples of real-world complex scenarios where existing models
perform poorly. The top row shows a kitchen scene with a
salient person and a distractor (e.g., fridge with similar tex-
ture). Existing models can not capture the semantic knowl-
edge of the distractor and are unable to differentiate it from
the person’s attire, resulting in incorrect saliency for that
distractor. It is a similar case for the bottom row which in-
volves a bedroom scene with a salient person surrounded by
many distractors (e.g., clothes and objects with similar tex-
ture). The above observations motivate us to ask the ques-
tion: Can we learn and use discriminative semantic con-
text to improve saliency modeling in challenging complex
scenes with rich context?

Further to our observations, we find that most of the ex-
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(a) ECSSD [57] (b) PASCAL-S [24] (c) HKU-IS [23] (d) DUT-OMRON [58]

(e) DUTS [45] (f) CapSal [65] (g) Ours

Figure 2: Comparison between existing datasets and the proposed new challenging dataset. Existing popular salient object datasets (a – f)
are not very challenging. In contrast, our proposed dataset (g) contains more complex scenes due to the increase in the number of objects
in the foreground/background as well as non-salient distractors.

isting salient object detection datasets [36, 4, 57, 24, 23,
58, 45] consist of images with few objects and simple back-
grounds. Example images from these datasets are illustrated
in Fig. 2(a-f). These images are relatively simple for salient
object detection in the wild, where images are typically
complex with lots of objects and complex backgrounds, as
shown in Fig. 2(g).

Psychological studies suggest that semantic scene con-
text influences eye movements and attention [43], revealing
the relationship between salient objects and the surround-
ing image scenes. To the best of our knowledge, saliency
detection with high-level scene context and spatial context
is under-explored, with only two related works [65, 29] ad-
dressing a similar problem. Zhang et al. [65] propose to
leverage captions as the semantic scene context for improv-
ing salient object prediction. However, reliance on gener-
ated captions can be detrimental to saliency prediction, es-
pecially if they are incorrect. On the other hand, DSCLRCN
[29] derives their scene context features from an image-
level scene classification model, whereas the extracted fea-
tures are too abstract, containing only an overall representa-
tion without capturing object relationships within the scene.

The above-mentioned limitations further motivate us to
explore the use of semantic scene and spatial context for
salient object detection in real-world scenarios with com-
plex scenes. To this end, we first construct a novel dataset
comprising of images with rich context (more details in
Sec. 3). We then propose a context-aware saliency model-
ing framework to leverage semantic scene context features.
Specifically, we introduce Instance Context Segmentation
and Stuff Context Segmentation to semantically segment
Things and Stuff. These two components perform panop-
tic segmentation on the whole scene, providing detailed se-
mantics of a given image. However, we find that not all the
semantic information play an effective role in defining the
semantic scene context of an image. As a result, we pro-
pose a novel Semantic Scene Context Refinement (SSCR)
module to fuse and augment information of salient object

features with surrounding semantic scene context for im-
proving saliency reasoning. To further exploit semantic
scene context, we propose a Contextual Instance Trans-
former (CIT) to capture the relationship between objects
and the scene context.

In summary, our main contributions include:

• We propose a semantic scene context-aware frame-
work for salient object detection, which explores the
semantic relationship between salient objects and the
scene context.

• We propose a Semantic Scene Context Refinement
module to extract and enhance semantic scene con-
text features that are highly related to the image scene.
We further propose a new Contextual Instance Trans-
former to learn the contextual relations between ob-
jects and scene context for saliency reasoning.

• We build (and will make available) a new salient ob-
ject detection dataset with real-world complex scenes
to consider semantic scene contexts.

• Extensive experiments demonstrate that the proposed
approach outperforms the state-of-the-art methods on
our dataset and also generalizes well to existing
datasets.

2. Related work

2.1. Salient Object Detection

Early traditional saliency work were mainly based on
computational methods that combined low-level features
[16]. However, in this paper we focus on deep learning
based methods. Previous deep learning salient object detec-
tion methods used multi-layer perception (MLP) to predict
a saliency score for each pixel in an image [13, 23, 69, 22].
Though these MLP-based models outperform traditional
hand-crafted saliency methods [52, 5], they were unable
to capture spatial information effectively due to the use of
fixed fully connected layers. Later methods tackled this is-
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sue by utilizing fully convolutional networks (FCNs) [34],
building their success on semantic segmentation.

Many of the recent deep learning based saliency models
were built on the FCNs with various strategies to combine
multi-scale contextual information. They mostly embed-
ded modules for extracting and aggregating context features
from different layers in the network [64, 55, 9, 37, 71, 63].
Typically, they employed side outputs from different layers
in their encoders, and aggregated those side outputs with the
layers in their decoders [66, 14, 46, 49, 68, 51, 72, 62]. Su
et al. [41] further extracted multi-scale contextual features
using varying dilated convolutions, while recurrent blocks
were applied in [28] and [48]. Subsequent works proposed
to explicitly combine local and global contextual features
through (a) the use of separate networks [60, 3], (b) ad-
ditional convolutions after the final convolutional layer in
an encoder [35, 33] and (c) adopting a Pyramid Pooling
Module [47, 27]. Attention mechanisms have also been ex-
ploited to enhance multi-scale contextual features by cap-
turing the interaction between pixels in local [20] and global
contexts [30, 39, 70, 15].

Recently, Zeng et al. [61] proposed to unify the task
of salient object detection and weakly-supervised semantic
segmentation. They introduced a saliency aggregation mod-
ule that used saliency scores to weight corresponding se-
mantic segmentation, in order to generate the final saliency
map. Aydemir et al. [1] used object detection to produce
dissimilarity scores based on visual appearance and relative
size, so as to enhance the saliency contrast among objects.
Liu et al. [31] employed Transformers [44] to propagate
context among image patches.

Although the above-mentioned saliency methods have
shown significant improvements, they still struggle with
complex scene images that are rich in semantic context.
These methods mainly learn a limited scope of discrimi-
native spatial context features in multiple scales. Networks
are generally trained with binary saliency annotations only,
and fail to effectively learn high-level semantics. We ad-
dress this problem by including a joint task of segmentation
to identify Things and Stuff in the scene explicitly. This
allows our saliency network to explore semantic scene con-
text, and to enhance the saliency reasoning of multiple ob-
jects and their relations in complex scenarios.

2.2. Semantic Scene Context in Saliency

Gist features are considered as an abstract low-level
scene representation. Torralba et al. [42] combined scene
representation from holistic low-dimensional encoding with
low-level saliency in a statistical framework for modelling
attention. Peter et al. [38] proposed a technique to learn the
mapping between low-level gist features and recorded eye
movements during video gameplay. Judd et al. [18] com-
bined low to high level features to model attention. They

use horizontal lines detector trained from mid-level gist fea-
tures as their mid-level features.

High-level semantic scene context is mostly under-
explored for saliency detection. Liu and Han [29] proposed
to use an existing scene classification network for extracting
scene context features. Zhang et al. [65] encoded scene con-
text by using a captioning network to capture the “major”
objects in a scene. In our work, we employ semantic seg-
mentation for capturing high-level semantic scene context
features. While [29] mainly captured an overall represen-
tation of a scene, we obtain much more detailed semantic
information from a scene through our segmentation. Their
target task was for eye fixation points prediction, whereas,
we focus on salient object detection. Additionally, we ex-
plore the semantic relationships between all the objects in
a given scene, while [65] is limited to those objects men-
tioned in the captions only.

Goferman et al. [10] define a new interpretation for
saliency, by introducing GT background regions (context)
with a GT salient object based on image description. Unlike
[10], we consider Things and Stuff context segmentation as
an auxiliary task to obtain our scene context features.

3. Proposed Dataset
As aforementioned, existing salient object datasets

mostly contain images that do not well represent real-world
scenes. The CapSal [65] dataset contains real-world im-
ages, however the ground-truth salient objects are often
heavily biased towards the caption data. The consequence
is that all objects that relate to the caption are often consid-
ered salient, regardless of whether each of those objects are
individually visually salient or not (see Fig. 2(f)).

We propose a new dataset to support the modeling of
saliency in real-world scenes containing rich semantic con-
text. Our dataset is based on MS-COCO [26] and SAL-
ICON [17]. MS-COCO provides images of challenging
scenarios and annotations of semantic segmentation of ob-
ject instances (Things) and regions (Stuff ). SALICON pro-
vides the mouse-based fixation sequence of respective im-
ages. Our dataset is constructed in two phases: 1) auto-
matic ground-truth saliency generation and image filtering,
and (2) manual image filtering.

(1) Automatic phase. We automate the ground-truth
salient objects generation based on the observations in [8],
where Fosco et al. found that humans generally gaze at peo-
ple during [0,0.5] seconds, and then move towards other ob-
jects during [0.5,3] seconds. After the first 3 seconds, there
are more fixations on Stuff regions. Based on these obser-
vations, we collect salient objects if the SALICON fixation
points, in the range [0,3] seconds, fall on the MS-COCO
annotations of an object segmentation in an image. An ob-
ject is further labelled as ground-truth salient if more than
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(a) (b)

(c) (d)

Figure 3: Examples of visual comparison during the manual im-
age filtering (Phase – 2) when we construct the proposed dataset.
In (a) and (b), the generated saliency maps are comparable to the
corresponding SALICON fixation maps, which are kept in our fi-
nal dataset. Whereas those images with larger discrepancies, as
shown in (c) and (d), are removed from the dataset.

half of the observers fixate on this object. Once ground-
truth saliency is generated for all available 15,000 images,
an automated filtering step is applied to ensure the images
are complex and contain rich context. It is a trade-off be-
tween complexity of images and the number of resultant
images. We find that a minimum of 4 objects and at least 2
object categories per image produce a good set of complex
images, whilst retaining a higher number of images in the
constructed dataset.

The above automated step however may run into issues
when the annotations of foreground and background objects
overlap. First, in some of the images in the MS-COCO
dataset (e.g., food on bench / dining table), we observe that
the background object (e.g., bench, dining table) are often
large objects. They are incorrectly considered salient sim-
ply because the fixations fall on both the foreground and
background objects. Second, some objects (e.g., car, train)
are easy to collect fixation as they cover a large portion of
the background in some images (e.g., a person in a car), but
they are clearly not salient (e.g., compared to the foreground
person). In the former cases, since MS-COCO does not pro-
vide depth information, we manually go through the dataset,
identify those background categories and exclude them for
saliency ground-truth generation. In the latter cases, we
also omit all objects where its area is larger than 60% (a
threshold we empirically decided) of the image. These steps
are carried out as a pre-filtering step before the above au-
tomated process. They ensure that large objects (typically
background) are not given saliency scores.
(2) Manual phase. To ensure the quality of the con-
structed dataset, we manually inspect if the generated
salient object map from phase-(1) is consistent with the
corresponding SALICON fixation map, following a simi-
lar procedure in [65]. Specifically, we would like to ensure
that the peak fixations in SALICON also land on objects
that are identified as salient in our generated saliency maps.
For example, Fig. 3(c) and 3(d) show two images that are
removed, because there are large discrepancies between the

Table 1: Comparison of the average number of objects and object
categories per image among existing datasets and our dataset.

Dataset #Avg. Obj. #Avg. Obj. Cat.

ECSSD [57] 1.32 1.28
PASCAL-S [24] 2.08 1.80
HKU-IS [23] 2.12 1.68
DUT-OMRON [58] 1.44 1.24
DUTS [45] 1.56 1.36

Ours 12.79 4.62

peaks of fixation maps and the chosen salient objects in the
generated saliency maps. This step removes inconsistent
annotations that may arise from the automatic process.

After the two phases, our final dataset consists of 5,534
training and 2,554 testing images. Table 1 compares the
average number of objects and categories per image in ex-
isting datasets and our dataset. Existing datasets do not pro-
vide object segmentation or category data. Therefore, we
report the statistics in the table by sampling 25 images ran-
domly from each dataset and manually counting the objects
and categories. It shows that our dataset contains images
with a higher count of objects and categories that is much
closer to real-world scenes. More details of the above-
mentioned dataset creation steps, and further statistics of
our dataset are provided in the supplementary material.

4. Proposed Method
In this section, we first introduce the backbone (Sec. 4.1)

of our network and discuss how contextual features are ex-
tracted and utilized. Then we specify how the proposed
modules (Sec. 4.2 and Sec. 4.3) take advantage of the con-
textual features, in order to refine and augment features
for saliency. Finally, we detail the Salient Instance Net-
work (Sec. 4.4) for the task of salient object detection. An
overview of the proposed framework is illustrated in Fig. 4.

4.1. Backbone

Our network is built on the Mask-RCNN [12] architec-
ture and we extract multi-scale features from the FPN [25].
We utilize the multi-scale features as input for 3 operations,
namely, (1) object proposal, (2) context segmentation and
(3) context feature refinement.

(1) Object proposal. We apply RPN and RoIAlign [12]
on the multi-scale features to generate object instance pro-
posals and corresponding object features.

(2) Context segmentation. We include a Shared Context
Segmentation Decoder for Instance and Stuff Context Seg-
mentation, in order to extract semantic context features for
a given scene. The decoder take the multi-scale features as
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Figure 4: An overview of the proposed network. Our model ex-
tracts semantic features from the Shared Context Segmentation
Decoder. The decoder is trained to reconstruct features for gen-
erating Things and Stuff categories. Our Semantic Scene Con-
text Refinement (SSCR) module (Sec. 4.2) then utilizes the se-
mantic features and multi-scale features to build the augmented
scene context features, correlating the semantics of an image. Our
Contextual Instance Transformer (CIT) module (Sec. 4.3), inside
the Salient Instance Network, learns relationships between objects
and scene context, and enhance saliency reasoning.

input and reconstructs features for segmentation of Things
and Stuff categories. From the decoder we extract seman-
tic features fC ∈ RW

4 ×H
4 ×128, where W × H is the spa-

tial dimensions for image I . The decoder follows similar
design as in [19] to combine the multi-scale features for
segmentation. The output features of the decoder are then
passed through two separate convolution layers for generat-
ing Things and then Stuff context segmentation.

(3) Context feature refinement. Third, we combine the
multi-scale features with the features extracted from con-
text segmentation (2), producing the refined scene context
features for boosting saliency reasoning.

These context features are used by the proposed SSCR
(Sec. 4.2) and CIT (Sec. 4.3). SSCR builds the final scene
context features by aggregating only useful context infor-
mation. CIT learns the relationships between the scene con-
text features and object features. The final salient object
classification is detailed in Sec. 4.4.

4.2. Semantic Scene Context Refinement (SSCR)

Previous works suggest that not all context information
(e.g., distractors) is relevant and useful to the final predic-
tion task [30, 48, 67]. To address this problem we design
this module to enhance the semantic information that has
strong correlation to the scene context. This allows the net-
work to augment contextual information learned only from
saliency annotations with strong semantic scene context.

We build our semantic scene context features by refining
the context features fC obtained from the context segmen-
tation decoder and multi-scale features (Fig. 5). We only
use feature levels [P3, P4, P5] from the multi-scale features,
as these levels contain higher-level contextual features [70].

Figure 5: Illustration of the Semantic Scene Context Refinement
(SSCR) module.

The three levels of multi-scale features are applied with op-
erations similar to those in context segmentation, resulting
in features p3, p4, p5 ∈ RW

4 ×H
4 ×128. We fuse these features

into fF ∈ RW
4 ×H

4 ×128 by concatenating the multi-scale
features with context features and applying a (1×1) con-
volution layer. The concatenation helps suppress saliency
distractors by utilising the scene context information. Next,
we refine fF in a channel-wise and spatial-wise manner.

Channel-wise refinement. In CNN design, typically dif-
ferent semantic information are activated by distinct chan-
nel features [2, 67]. We include a channel-wise attention
mechanism to weight channel features that are more rele-
vant to semantic information. Given a set of features, we
apply average pooling, max pooling and two convolution
layers with a ReLU and sigmoid activation. We then mul-
tiply the processed features (i.e., Ca, Cm) with the original
feature x as:

CR(x) = x× Sigmoid(Ca(x) + Cm(x))

Ca(x) = conv2(ReLU(conv1(avgpool(x),W1)),W2)

Cm(x) = conv2(ReLU(conv1(maxpool(x),W1)),W2)

(1)

where x = fF . W1 and W2 represent the parameters of the
two convolution layers.

Spatial-wise refinement. Similarly, we include spatial-
wise attention that leverages useful spatial information.
Given a set of features, we employ two sets of double con-
volution layers with alternating kernels, where one set con-
tains kernels {1×k, k×1} and the other contains {k×1,
1×k}. The resulting features from the two sets of convo-
lution layers are added and sigmoid activation is applied to
generate a spatial attention map. We weight the original
feature x with the attention maps (i.e., S1, S2) through mul-
tiplication:

SR(x) = x× Sigmoid(S1(x) + S2(x))

S1(x) = x×ReLU(conv2(ReLU(conv1(s,W1)),W2))

S2(x) = x×ReLU(conv4(ReLU(conv3(s,W3)),W4))

(2)
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where (W1, W2) and (W3, W4) are the parameters of the
two sets of convolution layers, with respect to {1×k, k×1}
and {k×1, 1×k} kernels. After performing channel- and
spatial-wise refinement on the fused features fF , we com-
bine the two outputs with Hadamard Multiplication. The
product is further fused with the original context features
(fC) by addition and a final convolution is applied. This
generates our final semantic scene context features fsc.

fsc = ReLU(conv((CR(fF )× SR(fF )) + fC ,Wsc)) (3)

where Wsc are the parameters of the final convolution
layer. The process enables the enhancement of context
from saliency features and scene context features, which are
learned from salient object detection and context segmenta-
tion, respectively.

4.3. Contextual Instance Transformer (CIT)

It is observed in the literature that scene context influ-
ences eye movements [43]. However, most existing salient
object detection methods do not model such high level
understanding and relationships, not to mention, guiding
saliency prediction in complex real-world scenes. As shown
in Fig. 1, saliency of individual objects requires semantic
information about other objects and scene context to in-
fer the high-level relationships and to differentiate objects
from distractors. This module aims to learn relationships
between objects and scene context for saliency reasoning.

We adapt transformers [44] to learn the dependencies be-
tween individual object features and scene context features
in object-to-object and object-to-context relationships. We
divide the module into two parts (see Fig. 6). The first part
is designed to learn relationships among the objects only,
whereas, the second part learns relationships between in-
dividual objects and scene context. We use a scaled dot
product attention layer with a single head on both types of
relationship:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (4)

where
√
d refers to normalization based on the feature size.

Q, K and V are matrices corresponding to Queries, Keys
and Values. Specifically, Q is projected from object fea-
tures, while K and V are generated from either object fea-
tures or scene context features. Multiplication of Q and K,
followed by a softmax, produces an output that represents
the degree of correlation between the feature vectors in Q
and K. This is then used to weight the information of ob-
jects represented by the latent features V :

TOO = Attention(Wq1F
o′ ,Wk1F

o′ ,Wv1F
o′)

TOC = Attention(Wq2F
o′ ,Wk2fsc,Wv2fsc)

(5)

Figure 6: Illustration of the Contextual Instance Transformer
(CIT) module.

where TOO and TOC are attention features modeling object-
to-object and object-to-context relationships. W{q1,q2},
W{k1,k2} and W{v1,v2} are parameters of fully connected
and convolution layers for linear projection. F o′ refers to
object features from RoIAlign and one fully connected layer
(Sec. 4.4). During the attention in TOC , K and V are
flattened to become 1-D vectors (same as the object fea-
tures). We then apply a fully connected layer and resid-
ual connection to both attention features (TOO and TOC).
For the residual connection applied to TOC , we first aver-
age pool the scene context features (fsc) to transform the
features into a 1-D vector. Finally, the two object-to-object
and object-to-context relationship features are concatenated
for our subsequent saliency classification (Sec. 4.4).

4.4. Salient Instance Network

Salient Instance Network performs the main salient ob-
ject classification task from input object features, allowing
our method to perform saliency reasoning on the object-
level. It adapts from the second stage of Mask-RCNN,
which consists of networks for predicting object class,
bounding box and mask segmentation. We modify the net-
work for salient object detection and enhance saliency pre-
diction with scene context, visualized in Fig. 7.

Our backbone (Sec. 4.1) generates candidate object fea-
tures and predict their saliency. RPN and RoIAlign generate
2D features of individual object candidates. It is followed
by a flatten and a fully connected layer. A feature vector,
fo
i ∈ R1024, is produced for each object, leading to a set

of object features F o = {fo
1 , f

o
2 , . . . , f

o
N}, where N=512

is the maximum number of object proposals. We obtain
our final object features by fusing with object-to-object and
object-to-context relationship information after employing
CIT and two fully connected layers. A modified classifica-
tion layer then determines the saliency of each object.
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Figure 7: Illustration of the Salient Instance Network.

5. Experiments and Results

5.1. Dataset and Evaluation Metrics

Dataset. Our evaluation is mainly carried out on the pro-
posed dataset. We use a training set of 5,534 images for
training and 2,554 images for testing. Popular salient ob-
ject datasets are not suitable for training our model (e.g., no
object instance and semantic segmentation annotations), we
do not report evaluation on those datasets here. Instead, we
refer readers to the supplementary materials, where we pro-
vide comparison results of our model with state-of-the-arts
on existing datasets.

Evaluation metrics. We use three metrics namely, F-
measure, Mean Absolute Error (MAE) and E-measure [6],
to evaluate the performance of our model and state-of-the-
arts. The F-measure provides a score of the overall per-
formance in regards to the quality of the predicted saliency
map. It is formulated by a weighted combination of Preci-
sion and Recall:

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall
(6)

where β2=0.3. MAE calculates the average per-pixel dis-
parity between predicted and ground-truth saliency maps.
E-measure computes the pixel-level and image-level errors
simultaneously to measure binary foreground similarities.

5.2. Implementation Details

We use ResNet-101 pre-trained on MS-COCO [26] as
part of our backbone. Our network share similar archi-
tecture and parameters with Mask-RCNN [12] and use the
same loss functions for saliency prediction. We use cross
entropy loss for both instance and stuff context segmenta-
tion networks. Our model is based on the detectron2 frame-
work [53] and is trained on a single NVIDIA GTX 1080 Ti
GPU, for 30 epochs. A SGD optimizer with initial learn-
ing rate 0.001 is used, along with weight decay (10−4) and
momentum (0.9). We apply random cropping, flipping and
multi-scale image training for data augmentation.

Table 2: Quantitative comparison with state-of-the-art methods on
our dataset. avgF refers to the average F-measure taken and Em

refers to E-measure. Red and blue indicate best and second best
performances, respectively.

Method avgF ↑ Em ↑ MAE ↓

BASNet [40] 0.706 0.823 0.087
CapSal [65] 0.797 0.853 0.082
CPD-R [54] 0.803 0.854 0.074
PFANet [70] 0.676 0.772 0.131
S4Net [7] 0.625 0.720 0.149
EGNet [68] 0.815 0.863 0.067
SCRN [55] 0.786 0.842 0.076
ITSD [72] 0.776 0.854 0.070
LDF [37] 0.808 0.852 0.070
MINet [51] 0.810 0.861 0.067

Ours 0.849 0.872 0.062

5.3. Comparison with State-of-the-Arts

We compare against 9 state-of-the-art methods in salient
objects detection, including BASNet [40], CapSal [65],
CPD-R [54], PFANet [70], EGNet [68], SCRN [55], ITSD
[72], LDF [51] and MINet [37]. Furthermore, we compare
with S4Net [7] (salient instance segmentation), which also
builds on the Mask-RCNN architecture like CapSal and our
model. Note that in the comparison, CapSal is the only
method not trained on our dataset (direct testing only with
their pre-trained weights). CapSal requires GT captions
data corresponding to GT saliency annotations. We also run
into issues running their provided source code1.

Quantitative evaluation. We report the experimental re-
sults comparing the proposed model with state-of-the-arts
in Table 2. It shows that our model quite significantly out-
performs existing state-of-the-arts across all metrics. In
particular, our model show substantial improvement in the
average F-measure, with a performance increase of 4.17%
over the second best method.

Qualitative evaluation. We further showcase the perfor-
mance of our model in Fig. 8, which displays visual com-
parisons between our model and 10 state-of-the-art meth-
ods. Our model is able to correctly pick out unique and
interesting salient objects among multiple distractors by uti-
lizing the context of image scenes. This is often not the case
for the other methods as they are unable to effectively dis-
tinguish between salient objects and distractors. The bottom
row images further illustrate our model exploiting seman-

1We tried the CapSal source code for pre-processing captions data
(https://github.com/zhangludl/code-and-dataset-
for-CapSal), but were unable to adapt their code for our dataset.
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Figure 8: Qualitative comparison of the proposed method with ten other state-of-the-art saliency methods.

Table 3: Ablation study of the proposed model on our dataset.
Base: Mask-RCNN architecture, ISCG: Instance/Stuff Context
Segmentation, SSCR: Semantic Scene Context Refinement, CIT:
Contextual Instance Transformer.

Method avgF ↑ Em ↑ MAE ↓
Base 0.826 0.851 0.069
Base+ISCG 0.841 0.866 0.063
Base+ISCG+SSCR 0.845 0.869 0.062
Base+ISCG+CIT 0.849 0.871 0.062
Base+ISCG+SSCR+CIT 0.849 0.872 0.062

tic information in order to fully segment the salient person
from the bench. The other methods do not capture such
semantic information. They suffer from additional false
saliency on part of the bench or unable to segment salient
object correctly.

5.4. Ablation Study

We perform additional experiments to evaluate the effec-
tiveness of our proposed modules. These results are shown
in Table 3. It shows that the proposed modules produce
improvements to the baseline saliency network. Our full
model achieves the best overall performance and state-of-
the-art results. This suggests that the proposed modules are
able to effectively extract and enhance scene context infor-

mation, then integrate them for saliency reasoning.

6. Conclusion

In this paper, we observe that existing salient object de-
tection methods do not fully capture the semantic context
of complex image scenes, leading them to produce false
saliency of distractors and missing prediction of salient ob-
jects with relations to the scene context. We have also
found that popular saliency benchmark datasets mostly con-
tain images of simple scene structure, and do not provide
real-world scenarios involving complex scenes with rich
context. We have tackled these problems by proposing a
new challenging dataset with complex scenes and a saliency
model that exploits semantic scene context for improving
saliency reasoning. Experimental results show that the pro-
posed model outperforms state-of-the-art methods on the
proposed dataset.
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