
Always Be Dreaming: A New Approach for
Data-Free Class-Incremental Learning

James Smith1*, Yen-Chang Hsu2, Jonathan Balloch1, Yilin Shen2, Hongxia Jin2, Zsolt Kira1

1Georgia Institute of Technology, 2Samsung Research America

Abstract

Modern computer vision applications suffer from catas-
trophic forgetting when incrementally learning new con-
cepts over time. The most successful approaches to al-
leviate this forgetting require extensive replay of previ-
ously seen data, which is problematic when memory con-
straints or data legality concerns exist. In this work,
we consider the high-impact problem of Data-Free Class-
Incremental Learning (DFCIL), where an incremental
learning agent must learn new concepts over time with-
out storing generators or training data from past tasks.
One approach for DFCIL is to replay synthetic images
produced by inverting a frozen copy of the learner’s clas-
sification model, but we show this approach fails for
common class-incremental benchmarks when using stan-
dard distillation strategies. We diagnose the cause of
this failure and propose a novel incremental distilla-
tion strategy for DFCIL, contributing a modified cross-
entropy training and importance-weighted feature distilla-
tion, and show that our method results in up to a 25.1% in-
crease in final task accuracy (absolute difference) compared
to SOTA DFCIL methods for common class-incremental
benchmarks. Our method even outperforms several stan-
dard replay based methods which store a coreset of im-
ages. Our code is available at https://github.com/
GT-RIPL/AlwaysBeDreaming-DFCIL

1. Introduction
A shortcoming of modern computer vision settings is

that they often assume offline training with a large dataset
encompassing all objects to be encountered during deploy-
ment. In practice, many applications require a model
be continuously updated after new environments/situations
are encountered. This is the class-incremental learning
paradigm (also known as a subset of continual or lifelong
learning), with the loss of knowledge over sequences of
learning tasks referred to as catastrophic forgetting. Suc-

*Correspondence to: James Smith jamessealesmith@gatech.edu

cessful incremental learning approaches have an unfor-
tunate commonality: they require extensive memory for
replay of previously seen or modeled data to avoid the
catastrophic forgetting problem. This is concerning for
many computer vision applications because 1) Many com-
puter vision applications are on-device and therefore mem-
ory constrained [15, 35, 52], and 2) Many computer vi-
sion applications learn from data which cannot be legally
stored [5, 10, 62]. This leads us to ask: How can computer
vision systems incrementally incorporate new information
without storing data? We refer to this setting as Data-Free
Class-Incremental Learning (DFCIL) (also known as Data-
Free Continual Learning [60]).

An intuitive approach for DFCIL is to simultaneously
train a generative model to be sampled for replay [25,
26, 49, 58]. Unfortunately, training a generative model is
much more computationally and memory intensive com-
pared to a classification model. Additionally, it is not clear
whether generating images from the data distribution will
violate data legality concerns because using a generative
model increases the chance of memorizing potentially sen-
sitive data [42]. Instead, we explore the concept of model-
inversion image synthesis, where we can invert the already
provided inference network to obtain images with similar
activations in the network to the training data. This idea
is inviting because it requires no additional networks to be
trained (it only requires the existing inference network) and
is less susceptible to data privacy concerns.

The closest existing work for the DFCIL problem is
DeepInversion [60], which optimizes random noise into
images for knowledge distillation using a frozen teacher
network. DeepInversion is designed for standard student-
teacher knowledge distillation and achieves state-of-the-art
performance for this task. Unfortunately, the authors report
that when trying class-incremental learning for tasks where
the old images and new images are similar (such as tasks
from the same dataset, a standard benchmarking practice
for class-incremental learning), their method performs “sta-
tistically equivalent or slightly worse compared to Learning
without Forgetting (LwF)”, with LwF [34] being their most
competitive existing baseline.

9374

(a) (b) (c)

Figure 1: The distribution of feature embeddings when using synthetic replay data for class-incremental learning. (a) A straight application
of synthetic data makes the model learn features more distinguishable between real and fake instead of task 1 and 2. This is the main
problem analyzed and addressed in this work. (b) Modifying classification loss and adding regularization mitigates the feature drifting
between real and fake. (c) This is the desired feature distributions. Our method makes task 1 and 2 more separable.

The goal of this paper (summarized in Figure 1) is to
dissect the cause of this failure and propose a solution for
DFCIL. Specifically, we reason that when training a model
with real images from the current task and synthetic images
representing the past tasks, the feature extraction model
causes the feature distributions of real images from the
past tasks (which are not available during training) to be
close in the feature space to the real images from the cur-
rent task and far in the feature space from the synthetic
images. This causes a bias for the model to falsely predict
real images from the previous tasks with current task labels.
This phenomena indicates that when training a network
with two distributions of data, containing both a semantic
shift (past tasks versus current task) and a distribution shift
(synthetic data versus real data), the distribution shift has
a higher effect on the feature embeddings. Thus, valida-
tion/test images from the previous classes will be identified
as new classes due to the model fixating on their domain
(i.e., realistic versus synthetic pixel distribution) rather than
their semantic content (i.e., past versus current task).

To address this issue, we propose a novel class-
incremental learning method which learns features for the
new task with a local classification loss which excludes the
synthetic data and past-task linear heads, instead relying
on importance-weighted feature distillation and linear head
fine-tuning to separate feature embeddings of the new and
past tasks. We show that our method represents the new
state of the art for the DFCIL setting, resulting in up to a
25.1% increase in final task accuracy (absolute difference)
compared to DeepInversion for common class-incremental
benchmarks, and even outperforms popular replay baselines
Naive Rehearsal and LwF with a coreset. In summary, we
make the following contributions:
1. We use a classic class-incremental learning benchmark

to diagnose and analyze why standard distillation ap-
proaches for class-incremental learning (such as Deep-

Inversion) fail when using synthetic replay data.

2. We directly address this failure with a modified cross-
entropy minimization, importance-weighted feature dis-
tillation, and linear head fine-tuning.

3. We achieve a new state of the art performance for the
DFCIL setting.

2. Background and Related Work
Catastrophic Forgetting: Approaches to mitigate catas-
trophic forgetting can be organized into a few broad cat-
egories and are all useful depending on which constraints
are present. For example, methods which expand a model’s
architecture as new tasks are encountered are highly effec-
tive for applications where a model growing with tasks is
practical [12, 32, 36, 40, 48, 51]. We do not consider
these methods because the model parameters grow linearly
with the number of tasks. Experience replay with stored
data [2, 3, 7, 8, 13, 17, 22, 27, 38, 44, 45, 46, 57] or samples
from a generative model [25, 26, 43, 49, 54] is highly effec-
tive when storing training data or training/saving a genera-
tive model is possible, unlike the DFCIL setting.

Another approach is to regularize the model with respect
to past task knowledge while training the new task. This
can either be done by regularizing the model in the weight
space (i.e., penalize changes to model parameters) [1, 11,
28, 53, 61] or the prediction space (i.e., penalize changes
to model predictions) [6, 21, 31, 34, 50]. Prediction space
regularization (accomplished using knowledge distillation)
has been found to perform better than model regularization
based methods for class-incremental learning [33, 55].
Knowledge Distillation in Class-Incremental Learning:
Based on the original work proposing knowledge distilla-
tion from a large model to a smaller model [20], methods
such as Learning Without Forgetting [34], Distillation and
Retrospection [21], End-To-End Incremental Learning [6],

9375

Global Distillation [31], and Bias Correction [59] have ef-
fectively leveraged knowledge distillation as a prediction
regularization technique for incremental learning. The high
level idea of knowledge distillation is to periodically save
a frozen copy of the model (here we use a ConvNet) and
to ensure the new model makes similar predictions to the
frozen model over a set of distillation images (while si-
multaneously learning the new task). Knowledge distil-
lation does not require that the frozen model be replaced
at the task sequence boundaries, but this is typically done
when evaluating competing methods. This regularization
can also take place in the feature space rather than the pre-
diction space [4, 22], which we refer to as feature distilla-
tion. These knowledge distillation methods require stored
data over which to enforce similar predictions, but the next
section describes a form of knowledge distillation which
does not require training data.

Data-Free Knowledge Distillation: Knowledge from a
neural network can be transferred in the absence of train-
ing data. We refer to the line of work which synthesizes
distillation images using the trained inference network it-
self and resulting activation statistics as data-free knowl-
edge distillation. This approach is very important for ap-
plications where training data is sensitive and not easily
available for legality issues. The first such work we are
aware of, DeepDream [41], optimizes randomly generated
noise into images which minimize classification loss and
an image prior. Another early method [37] matches stored
layer statistics from a trained “teacher” model while leav-
ing a small memory footprint using frequency-based com-
pression techniques. The Data-Free Learning method [9]
exploits a GAN architecture to synthesize images which
match the trained teacher’s statistics while balancing con-
tent losses which maximize both temperature scaled linear
heads (to drive class-specific content high) and class pre-
diction entropy (to encourage high diversity of classes sam-
pled). Three recent methods leverage layer content stored
in batch-normalization layers to synthesize realistic looking
images for knowledge distillation [16, 39, 60].

To the best of our knowledge, only two class-incremental
learning methods are designed for the data-free perspective.
Automatic-Recall Machines (ARM) [24] perturb training
data from the current task into images which maximize “for-
getting” from the past tasks. However, this method is de-
signed for a “single pass” setting where data is only trained
for one epoch, which is a different setting than ours. Deep-
Inversion [60] also evaluates data-free knowledge distilla-
tion in the class-incremental learning paradigm, but only
found success in small task sequences (max of three) us-
ing tasks which are very distinct in image content. Our pa-
per dissects why the DeepInversion method fails at difficult
class-incremental learning problems and proposes a solu-
tion for successful data-free class-incremental learning.

3. Preliminaries
Class-Incremental Learning: In class-incremental learn-
ing, a model is shown labeled data corresponding to M se-
mantic object classes c1, c2, . . . , cM over a series ofN tasks
corresponding to non-overlapping subsets of classes. We
use the notation Tn to denote the set of classes introduced
in task n, with |Tn| denoting the number of object classes
in task n. Each class appears in only a single task, and the
goal is to incrementally learn to classify new object classes
as they are introduced while retaining performance on pre-
viously learned classes. The class-incremental learning set-
ting is challenging because no task indexes are provided to
the learner during inference and the learner must support
classification across all classes seen up to task n [23]. This
is more difficult than task-incremental learning, where the
task indexes are given during both training and inference.
While our setting does not necessitate known task bound-
aries during training, we follow prior works [34, 23, 60] for
fair comparison and create model copies at the task bound-
aries for each method.

To describe our inference model, we denote θi,n as the
model θ at time i that has been trained with the classes from
task n. For example, θn,1:n refers to the model trained dur-
ing task n and its logits associated with all tasks up to and
including class n. We drop the second index when describ-
ing the model trained during task n with all logits (for ex-
ample, θn).

4. Baseline Approach for Data-Free Class In-
cremental Learning

In this section, we propose a general baseline for data-
free class incremental learning based on efforts in prior
work. We start by summarizing the data synthesis (i.e.
generation of images from the discriminative model itself)
approach we found most successful for class-incremental
learning. We then review pertinent knowledge distillation
losses, ultimately focusing on the loss functions used by
DeepInversion [60] for class-incremental learning.
Model-Inversion Image Synthesis: Most model-inversion
image synthesis approaches seek to synthesize images by
directly optimizing them with respect to a prior discrim-
inative model θn−1. For B synthetic images, a tensor
X̂ ∈ RB×H×W×C = {x̂1 · · · x̂b}, where H , W , and C
correspond to the training data image dimensions, is initial-
ized from Gaussian noise. However, it is computationally
inefficient to optimize one batch of images at a time. Es-
pecially considering that class-incremental learning is ex-
pected to be computationally efficient, we choose to approx-
imate this optimization from noise to synthesized images
using a ConvNet-parameterized function Fφ. This allows
the framework to train Fφ once per task (using only θn−1,
i.e., no data), only store it temporarily during that given

9376

task, sample synthetic images as needed during training for
task Tn, and then discarded it at the end of the task.
Fφ can struggle with synthetic class diversity; rather

than condition Fφ on class labels Y , we follow [9] and op-
timize the diversity of class predictions of synthetic images
to match a uniform distribution. Denoting pθ(x) as the pre-
dicted class distribution produced by model θ for some in-
put x, we want to maximize the entropy of the mean class
prediction vector for synthetic samples X̂ . Formally, we
minimize a label diversity loss:

Ldiv(Ŷ) = −Hinfo

(
1

B

∑
b

pθ(x̂b)

)
(1)

where Hinfo is the information entropy. Notice when the
loss is taken at the minimum, every element in the mean
class prediction vector would equal 1

|T1...Tn−1| , meaning
that classes are generated with at roughly the same rate.

In addition to diversity, to consistently synthesize useful
images in the DFCIL setting, the images must enforce cal-
ibrated class confidences, consistency of feature statistics,
and a locally smooth latent space, described below.

Content loss, Lcon, maximizes class prediction confi-
dence with respect to the image tensor X̂ such that θn−1
should make confident predictions on all inputs. Formally,
Lcon is the cross entropy classification loss between the
class predictions of X̂ and the maximum class predictions
Ŷ :

Lcon(X̂, Ŷ) = LCE
(
p
αtemp
θn−1,1:n−1

(x̂), ŷ
)

(2)

ŷ = argmax
ŷ∈T1...Tn−1

pθn−1,1:n−1(x̂) (3)

where LCE is standard cross entropy loss and the logit out-
put of θ is scaled by a temperature constant αtemp. By com-
bining Lcon with Ldiv , we ensure that the synthesized im-
ages will represent the distribution of all past task classes

Prior work has found that the complexity of model-
inversion can cause the distribution of θn−1 features to de-
viate greatly from distributions over batches of synthetic
images. Intuitively, the batch statistics of synthesized im-
ages should match those of the batch normalization lay-
ers in θn−1. To enforce this, stat alignment loss, Lstat,
penalizes the deviation between intermediate layer batch-
normalization statistics (BNS) stored in θn−1 and features
at those layers for synthetic images [16, 39, 60]:

Lstat(X̂) =
1

L

L∑
l=1

BNS(µ̂X̂,l, σ̂X̂,l, µl, σl) (4)

BNS(µ̂, σ̂, µ, σ) = KL(N (µ, σ2))||N (µ̂, σ̂2)

= log
σ̂

σ
− 1

2

(
1− σ2 + (µ− µ̂)2

σ̂2

) (5)

where KL denotes the Kullback-Leibler (KL) divergence,
µ̂X̂,l, σ̂X̂,l are the mean and standard deviation of the fea-
tures at layer l for a given mini-batch of synthesized image,
and µl, σl are the batch-norm statistics of said layer l. Be-
cause batch statistics of θn−1 are stored in batch normaliza-
tion layers, this loss does not require any additional storage.

Additionally, prior knowledge tells us natural images are
more locally smooth in pixel space than the initial noise. As
such, we can stabilize the optimization by minimizing the
smoothness prior loss Lprior. Formally, Lprior is the L2
distance between each synthesized image (x̂) and a version
blurred with Gaussian kernel (x̂blur):

Lprior(X̂) = ||x̂− x̂blur||22 (6)

All together, assuming the use of Fφ for efficiency, the
final loss for the baseline is therefore:

min
Fφ

αconLcon(X̂, Ŷ) + αdivLdiv(Ŷ)

+ αstatLstat(X̂) + αpriorLprior(X̂)
(7)

Importantly: although we optimize Fφ rather than X̂ as
done in [16, 60], this method can use the latter with a sacri-
fice to computational efficiency.

Distilling Synthetic Data for Class-Incremental Learn-
ing: In the class-incremental learning setting, where the
classes of task Tn are modeled without unlearning the rep-
resentation of classes of tasks T1 · · · Tn−1, knowledge dis-
tillation over the synthesized images is most often used to
regularizes θn, forcing it to learn Tn with minimal degrada-
tion to T1 · · · Tn−1 knowledge. For task Tn, we synthesize
images from a frozen copy of (θn−1) trained during task
Tn−1. These synthetic images then help us distill knowl-
edge learned in tasks T1 · · · Tn−1 into our current model
(θn) as it learns from Tn data.

In our baseline, we adopt the distillation approach
used in DeepInversion [60], which generalizes the origi-
nal Learning without Forgetting (LwF) [34] distillation ap-
proach. Formally, given current task data, x, and synthe-
sized distillation data, x̂, we minimize:

min
θn
LCE

(
pθn,1:n(x), y

)
+ LDIKD(x, θn, θn−1)

+ LDIKD(x̂, θn, θn−1)
(8)

where LDIKD is a knowledge distillation regularization as:

LDIKD(x, θn, θn−1) = KL(pθn−1,1:n
(x)||pθn,1:n(x)) (9)

Here, pθn−1,1:n
(x) is simply pθn−1,1:n−1

(x) appended
with zeros to represent zero class-probability for the new
classes (which are not available for θn−1,1:n−1). The key
idea of LDIKD is that, as the logits of the teacher and stu-
dent will always be different in the class incremental learn-
ing setting, appending zeros to the class-probability vectors
aligns the student and teacher logit dimensions for a better
transfer of knowledge.

9377

(a) DeepInversion [60] (b) Our Method
Figure 2: Representational distance scores (MID) between feature embeddings of real task 1 data and synthetic task 1 data (blue), real task
2 data (red). Task 1 corresponds to ten classes of CIFAR-100 while task 2 corresponds to a different ten classes of CIFAR-100; the results
are generated after training on task 2.

5. Diagnosis: Feature Embedding Prioritizes
Domains Over Semantics

To understand why the baseline approach for DFCIL
fails, we analyze representational distance between embed-
ded features with a metric that captures the distance be-
tween mean embedded images of two distribution samples.
Specifically, we assign a Mean Image Distance (MID) score
between a reference sample of images xa and another sam-
ple of images xb, where a high score indicates dissimilar
features and a low score indicates similar features. We cal-
culate this score as:

MID(za, zb) =

∥∥∥∥µa − µbσa

∥∥∥∥
2

(10)

where za, zb is the penultimate feature embedding of xa, xb;
µa, µb are the mean image feature embeddings of xa, xb;
and σ2

a is the feature variance of xa. We normalize the dis-
tance between mean embedded images by the standard de-
viation of the reference distribution sample xa to minimize
the impact of highly deviating features. Additional analysis
using Maximum Mean Discrepancy (MMD) [14] is avail-
able in our Appendix.

For our analysis, we start by training our model for the
first two tasks in the ten-task CIFAR-100 benchmark de-
scribed in Section 7. We calculate MID between feature
embeddings of real task 1 data and real task 2 data, and then
we calculate MID between feature embeddings of real task
1 data and synthetic task 1 data. The results are reported
in Figure 2. For (a) DeepInversion, the MID score between
real task 1 data and synthetic task 1 data is significantly
higher than the MID score between real task 1 data and real
task 2 data. This indicates that the embedding space prior-
itizes domain over semantics, which is detrimental because
the classifier will learn the decision boundary between syn-
thetic task 1 and real task 2, introducing great classification
error with real task 1 images. This diagnosis motivates our
approach, which is proposed in the following section. For
(b) our method, the MID score between real task 1 data and

synthetic task 1 data is much lower, indicating that our fea-
ture embedding prioritizes semantics over domain.

6. A New Distillation Strategy for DFCIL
We take the perspective that continual learning should

balance: (i) learning features for the new task, (ii) mini-
mizing feature drift over the previous task, and (iii) sepa-
rating class overlap between new and previous classes in
the embedding space (this is similarly discussed in another
work [22] under a different setting). Generally, (i) and (iii)
are simultaneously achieved with LCE , but we argue that
by separating this into two different losses, features for the
new task are learned which do not discriminate between real
and synthetic images (i.e. avoid the feature domain bias
problem). Following this idea, we propose a new class-
incremental learning approach designed for DFCIL which
addresses each of these goals independently, as described
in the rest of this section.
Learning current task features: The intuition behind our
method is to learn features for our current task while cir-
cumventing the feature embedding for real data becoming
highly biased towards the most recent task. That is, we form
LCE so that the likelihood of x being real versus synthetic,
pθn,n(x ∈ Xreal), is not helpful in its minimization. We
do this by computing cross entropy classification loss lo-
cally across the new class linear heads without including the
past class linear heads. With this formation, we prevent the
model from learning to separate the new and past class data
via domain (i.e. synthetic vs. real). Formally, we minimize:

LTnCE
(
pθn,n(x), y

)
= LCE

(
pθn,n(x|y ∈ Tn), y

)
(11)

Minimizing feature drift over previous task data: Be-
cause our distillation images are of another domain than the
real current task images (causing the feature domain bias
problem), we seek a loss function which directly alleviates
forgetting in the feature space. An alternative to standard
knowledge distillation over softmax predictions (LDIKD) is
feature distillation, which instead distils the feature content

9378

Figure 3: Our approach combines (i) learning features for the new task with Eq. (11), (ii) minimizing feature drift over the previous task
with Eq. (13), and (iii) separating class overlap between new and previous classes in the embedding space with Eq. (14). We use blue
arrows to designate the compute path of the synthetic previous tasks data, green arrows to designate the compute path of the real current
task data, and yellow arrows to designated the compute path of both real and synthetic data. We separate out the task Tn head to show that
the local CE loss Eq. (11) uses only this head.

from the penultimate layer. This is formally given as:

LfeatKD (·) = ||θL−1n,1:n−1(x)− θL−1n−1,1:n−1(x)||22 (12)

where L − 1 denotes the penultimate layer output of the
model. Our intuition is that there exists a trade-off be-
tween standard knowledge distillation and feature distilla-
tion. LfeatKD reinforces important components of past task
data, but it is a strong regularization which inhibits the plas-
ticity of the model (and its ability to learn the new task). On
the other hand, LDIKD does not inhibit learning the new task
but can be minimized with a solution in which feature drift
has occurred, resulting in the real vs synthetic bias.

Instead, we desire an importance-weighted feature dis-
tillation which reinforces only the most important compo-
nents of past task data while allowing less important fea-
tures to be adapted for the new task. We simply use the
linear heads of T1 · · · Tn−1 from the frozen model θn−1, or:

LwfeatKD (·) = ||W
(
θL−1n,1:n−1(x)

)
−W

(
θL−1n−1,1:n−1(x)

)
||22

where W = θLn−1,1:n−1 (13)

By using this importance-weight matrix, features associated
with a high magnitude inW are more important to preserve.
In this way, the frozen linear heads from the past tasks in-
dicate approximately how much a change to each feature
affects the class distribution.
Separating Current and Past Decision Boundaries: Fi-
nally, we need to separate the decision boundaries of the
current and past classes without allowing the feature space
to distinguish between the real and synthetic data. We do
this by fine-tuning the linear classification head of θn,1:n
with standard cross-entropy loss. Importantly, this loss does
not update any parameters in θn,1:n besides the final linear
classification head. Formally, we minimize:

LT1:nFT

(
pθn,1:n(x, y)

)
= LCE

(
p∗θn,1:n(x, y)

)
(14)

where p∗ is calculated with θ1:L−1n,1:n (i.e., every layer in the
model except the classification layer) frozen, updating only
θLn,1:n. As done in [31, 49, 59], we add task-balancing loss
weighting to balance the contributions from the current task
with the past tasks.
Final Objective: Visualized in Figure 3, our final opti-
mization objective is given as:

min
θn
LTnCE

(
pθn,n(x), y

)
+ λkdLwfeatKD ({x, x̂}, θn, θn−1)

+ λftLT1:nFT

(
pθn,1:n({x, x̂}), {y, ŷ}

)
(15)

where the λ terms weight the contributions of LwfeatKD and
LFT with respect to LTnCE

7. Experiments
We evaluate our approach with several image datasets

in the class incremental continual learning setting. We im-
plemented baselines which do not store training data for
rehearsal: Deep Generative Replay (DGR) [49], Learning
without Forgetting (LwF) [34], and Deep Inversion (Deep-
Inversion) [60]. Additionally, we report the upper bound
performance (i.e., trained offline) and performance for a
neural network trained only on classification loss using the
new task training data (we refer to this as Base). We note
that a downside of any generative method is that they (1) re-
quire long-term storage of a generative model and (2) may
violate data legality concerns.

For a fair comparison, our implementation of DeepInver-
sion uses the same image synthesis strategy as our method,
with the difference being the distillation method. We do
not tune hyperparameters on the full task set because tuning
hyperparameters with hold out data from all tasks may vio-
late the principal of continual learning that states each task
is visited only once [56]. Importantly, we shuffle the class

9379

Table 1: Results (%) for data-free class-incremental learning on CIFAR-100 for various numbers of tasks (5, 10, 20). Results are reported
as an average of 3 runs.

Tasks 5 10 20
Method Replay Data AN (↑) Ω (↑) AN (↑) Ω (↑) AN (↑) Ω (↑)

Upper Bound None 69.9± 0.2 100.0± 0.0 69.9± 0.2 100.0± 0.0 69.9± 0.2 100.0± 0.0

Base None 16.4± 0.4 48.9± 1.1 8.8± 0.1 32.1± 1.1 4.4± 0.3 19.7± 0.7
DGR [49] Generator 14.4± 0.4 45.5± 0.9 8.1± 0.1 30.5± 0.6 4.1± 0.3 19.0± 0.3
LwF [34] None 17.0± 0.1 49.5± 0.1 9.2± 0.0 33.3± 0.9 4.7± 0.1 20.1± 0.3
LwF [34] Synthetic 16.7± 0.1 49.8± 0.1 8.9± 0.0 32.3± 0.0 4.7± 0.0 19.7± 0.0

DeepInversion [60] Synthetic 18.8± 0.3 53.2± 0.9 10.9± 0.6 37.9± 0.8 5.7± 0.3 23.6± 0.7

Ours Synthetic 43.9± 0.9 78.6± 1.1 33.7± 1.2 69.6± 1.6 20.0± 1.4 52.5± 2.5

Table 2: Results (%) for class-incremental learning with replay data on CIFAR-100 for various numbers of tasks (5, 10, 20). A coreset of
2000 images is leveraged for replay-based methods, and thus these methods do not meet problem the DFCIL constraints (note we report
for our method numbers without any coreset). Results are reported as an average of 3 runs.

Tasks 5 10 20
Method Replay Data AN (↑) Ω (↑) AN (↑) Ω (↑) AN (↑) Ω (↑)

Upper Bound None 69.9± 0.2 100.0± 0.0 69.9± 0.2 100.0± 0.0 69.9± 0.2 100.0± 0.0

Naive Rehearsal Coreset 34.0± 0.2 73.4± 0.8 24.0± 1.0 64.6± 2.1 14.9± 0.7 51.4± 2.9
LwF [34] Coreset 39.4± 0.3 79.0± 0.0 27.4± 0.8 69.4± 0.4 16.6± 0.4 54.2± 2.2
BiC [59] Coreset 53.7± 0.4 87.5± 0.9 45.9± 1.8 81.9± 2.0 37.5± 3.2 71.7± 3.4

Ours Synthetic 43.9± 0.9 78.6± 1.1 33.7± 1.2 69.6± 1.6 20.0± 1.4 52.5± 2.5

order before sampling tasks, and do this with a consistent
seed (different for each trial) so that results can be directly
compared. We include supplementary details and metrics
in our Appendix: additional results, additional experiment
details, and hyperparameter selection.
Evaluation Metrics: Following prior works, we evaluate
methods in the class-incremental learning setting using: (I)
final performance, or the performance with respect to all
past classes after having seen all N tasks (referred to as
AN,1:N); and (II) Ω, or the average (over all tasks) normal-
ized task accuracy with respect to an offline oracle method
[18]. We use index i to index tasks through time and index
n to index tasks with respect to test/validation data (for ex-
ample, Ai,n describes the accuracy of our model after task
i on task n data). Specifically:

Ai,n =
1

|Dtestn |
∑

(x,y)∈Dtestn

1(ŷ(x, θi,n) = y | ŷ ∈ Tn)

(16)

Ω =
1

N

N∑
i=1

i∑
n=1

|Tn|
|T1:i|

Ai,1:n
Aoffline,1:n

(17)

where Aoffine is the task accuracy trained in the offline
setting (i.e., the upper-bound performance). Ω is designed
to evaluate the global task and is therefore computed with
respect to all previous classes. For the final task accuracy in
our results, we will denote AN,1:N as simply AN .
Data-Free Class-Incremental Learning - CIFAR-100
Benchmark: Our first benchmark is ten-task class-
incremental learning on the CIFAR-100 dataset [29] which
contains 100 classes of 32x32x3 images. Following prior
work [59], we train with a 32-layer ResNet [19] for 250
epochs. The learning rate is set to 0.1 and is reduced

by 10 after 100, 150, and 200 epochs. We use a weight
decay of 0.0002 and batch size of 128. Using a simple
grid search to find hyperparameters for Eq (7), we found
{αcon, αdiv, αstat, αprior, αtemp} as {1 , 1, 5e1, 1e-3, 1e3}
(these hyperparameters are not introduced by our method).
For Eq. (15) in our method, we found {λkd, λft} as {1e-1
,1}, and we use prior reported loss-weighting hyperparam-
eters for our implementations of other methods. We use a
temperature scaling of 2 for all softmax knowledge distil-
lation instances. We model F with the same parameters
as [39] and train Eq. (7) after starting each task using 5,000
training steps of Adam optimization (learning rate 0.001).

The results are given in Table 1. We see that our
method outperforms not only the DFCIL methods (includ-
ing a 25.1% increase in final task accuracy over DeepIn-
version), but even the generative approach (despite their
use of significant additional memory between tasks). To
our surprise, we found DGR [49] to perform poorly for
class-incremental learning on this dataset (and in fact ev-
ery dataset we experiment with); this finding is repeated in
another recent work [54] which also found DGR to perform
worse1 than Base. We are not surprised to see that LwF [34]
performs worse than naive rehearsal, as this is also common
for class-incremental learning [55, 54]. Finally, we observe
that synthetic data does not improve LwF’s performance.
This is consistent with our finding that the feature embed-
ding prioritizes domains over semantics when using stan-
dard distillation strategies.

1We did not implement additional generative-replay results because
that is not the focus of our paper. Instead, we compare to 1) other DFCIL
methods to show our method performs best in our setting, and 2) SOTA
replay-based methods to show our method performs close to SOTA despite
not storing replay data.

9380

Table 3: Ablation Study Results (%) for ten-task class-incremental learning on CIFAR-100. Results are reported as an average of 3 runs.
Metric (↑) AN Ω

Full Method 33.7± 1.2 69.6± 1.6

Ablate Task Balancing Loss Weighting [31, 49, 59] 23.4± 1.5 62.2± 2.4
Replace Modified CE Loss, Eq. (11), w/ Standard CE Loss 16.5± 0.5 46.6± 0.9

Ablate Real Data Distillation: Eq. (13) w/ X 15.9± 2.1 58.9± 3.2

Ablate Synthetic Data Distillation: Eq. (13) w/ X̂ 12.7± 7.4 55.3± 8.1
Ablate FT-CE Loss: Eq. (14) 9.8± 0.6 35.9± 1.3

Table 4: Results (%) for class-incremental learning on five task
ImageNet-50. A coreset of 2000 images is leveraged for replay-
based methods, and thus these methods do not meet problem the
DFCIL constraints. Results are reported as a single run.

Method Replay Data AN (↑)
Upper Bound None 89.8

LwF [34] None 19.4
Naive Rehearsal Coreset 78.9

LwF [34] Coreset 84.8

Ours Synthetic 71.5

Class-Incremental Learning with Replay Data - CIFAR-
100 Benchmark: In Table 2, we compare our method
(which does not store replay data) to other methods which
do store replay data. We use the same number of core-
set images as the [6, 59]. We found that our method
can perform significantly greater than LwF and Rehearsal,
which store replay data. We also compare our method with
a SOTA replay-based class-incremental learning method:
Bias Correction (BiC) [59]. Despite not storing any re-
play data, our method performs roughly in between BiC
and LwF, though there is still a considerable (and expected)
gap between our data-free approach and BiC. In summary,
these results indicate that our method achieves State-of-the-
Art performance for Data-Free Class-Incremental Learn-
ing, and our method closes much of the performance gap
between Data-Free Class-Incremental Learning and State-
of-the-Art replay-based methods.
Ablation Study - CIFAR-100 Benchmark: We separate
the components of our method to independently evaluate
their effect on final performance, shown in Tables 3. We
first look at the effect of removing task balancing loss
weighting. As previously reported [31, 49, 59], this loss
weighting has a significant effect on our performance. Next,
we show that replacing the modified cross-entropy loss with
standard cross-entropy loss cuts performance in half. Sim-
ilarly, we show that ablating real and synthetic data distil-
lation have the same effect. This indicates that 1) all three
of these losses are crucial for our approach, and 2) we still
establish SOTA performance despite removing any of these
three losses. Finally, we see that removing the fine-tuning
cross-entropy loss has the largest effect on performance.
Conceptually, this makes sense because without this loss
there is no way to distinguish new task classes from previ-
ous task classes.
Class-Incremental Learning with Replay Data - Im-

ageNet Benchmark: Finally, we use the ImageNet
dataset [47] to demonstrate how our method performs on
large scale 224x224x3 images. Following prior work [59],
we train with a 18-layer ResNet [19] for 100 epochs. The
learning rate is set to 0.1 and is reduced by 10 after 30, 60,
80, and 90 epochs. We use a weight decay of 0.0001 and
batch size of 128. We use the same class-shuffling seed as
prior work [44, 59] and report top-5 accuracy on ten tasks
of 100 classes. We scale down to 20k coreset images used
in the full ImageNet experiments to 2k, consistent with the
relative number of classes. We also double the number of
training steps used to trainF . Every other experiment detail
is the same as the CIFAR-100 experiments.

The results are given in Table 4. Importantly, this ex-
periment is significant because the number of parameters
stored for replay (2000*224*224*3 = 3e8) far exceeds the
number of parameters temporarily stored for synthesizing
images (3.3e6). Despite requiring only 100 times fewer pa-
rameters to store, our method performs reasonably close
to replay on this large-scale image experiment. We also
far outperform LwF, which is the only DFCIL method to
have been previously tried on large-scale ImageNet exper-
iments. Additional experiments on the challenging Tiny-
ImageNet dataset [30], which demonstrate the scalability of
our method, are available in the Appendix.

8. Conclusions

We show that existing class-incremental learning meth-
ods perform poorly when learning a new task with real
training data and preserving past knowledge with synthetic
distillation data. We then contribute a new method which
achieves SOTA performance for data-free class-incremental
learning, and is comparable to SOTA replay-based ap-
proaches. Our research vision is to eliminate the need for
storing replay data in class-incremental learning, enabling
broad and practical applications of computer vision. An in-
cremental learning solution which does not store data will
provide immediate impact to computer vision applications
such as reducing memory requirements for autonomous ve-
hicles (which generate an inordinate amount of data), elim-
inating the need to transfer private medical data for medical
imaging research collaboration (which is limited by strict
legal protections), or removing the need to track private data
for personal device user recommendation systems.

9381

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, 2018.
2

[2] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-
rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-
Caccia. Online continual learning with maximal interfered
retrieval. In Advances in Neural Information Processing Sys-
tems, pages 11849–11860, 2019. 2

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. In Advances in Neural Information Processing Sys-
tems, pages 11816–11825, 2019. 2

[4] Yogesh Balaji, Mehrdad Farajtabar, Dong Yin, Alex Mott,
and Ang Li. The effectiveness of memory replay in large
scale continual learning. arXiv preprint arXiv:2010.02418,
2020. 3

[5] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams,
Ran Lee, Sanjeev P Bhavnani, James Brian Byrd, and
Casey S Greene. Privacy-preserving generative deep neural
networks support clinical data sharing. Circulation: Cardio-
vascular Quality and Outcomes, 12(7):e005122, 2019. 1

[6] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incre-
mental learning. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 233–248, 2018. 2, 8

[7] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
GEM. In International Conference on Learning Representa-
tions, 2019. 2

[8] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and Marc’Aurelio Ranzato. Continual learning with
tiny episodic memories. arXiv preprint arXiv:1902.10486,
2019. 2

[9] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang,
Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi
Tian. Data-free learning of student networks. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 3514–3522, 2019. 3, 4

[10] Anupam Das, Martin Degeling, Xiaoyou Wang, Junjue
Wang, Norman Sadeh, and Mahadev Satyanarayanan. As-
sisting users in a world full of cameras: A privacy-aware
infrastructure for computer vision applications. In 2017
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pages 1387–1396. IEEE, 2017.
1

[11] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and
Marcus Rohrbach. Uncertainty-guided continual learn-
ing with bayesian neural networks. arXiv preprint
arXiv:1906.02425, 2019. 2

[12] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor
Darrell, and Marcus Rohrbach. Adversarial continual learn-
ing. arXiv preprint arXiv:2003.09553, 2020. 2

[13] Alexander Gepperth and Cem Karaoguz. Incremental learn-
ing with self-organizing maps. 2017 12th International
Workshop on Self-Organizing Maps and Learning Vector

Quantization, Clustering and Data Visualization (WSOM),
pages 1–8, 2017. 2

[14] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723–
773, 2012. 5

[15] Tian Guo. Cloud-based or on-device: An empirical study of
mobile deep inference. In 2018 IEEE International Confer-
ence on Cloud Engineering (IC2E), pages 184–190. IEEE,
2018. 1

[16] Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel
Soudry. The knowledge within: Methods for data-free model
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8494–
8502, 2020. 3, 4

[17] Tyler L Hayes, Nathan D Cahill, and Christopher Kanan.
Memory efficient experience replay for streaming learning.
In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 9769–9776. IEEE, 2019. 2

[18] Tyler L Hayes and Christopher Kanan. Lifelong machine
learning with deep streaming linear discriminant analysis.
arXiv preprint arXiv:1909.01520, 2019. 7

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 7, 8

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[21] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Lifelong learning via progressive distillation and
retrospection. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 437–452, 2018. 2

[22] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via re-
balancing. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 831–839, 2019.
2, 3, 5

[23] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and
Zsolt Kira. Re-evaluating continual learning scenarios: A
categorization and case for strong baselines. arXiv preprint
arXiv:1810.12488, 2018. 3

[24] Xu Ji, Joao Henriques, Tinne Tuytelaars, and Andrea
Vedaldi. Automatic recall machines: Internal replay, contin-
ual learning and the brain. arXiv preprint arXiv:2006.12323,
2020. 3

[25] Nitin Kamra, Umang Gupta, and Yan Liu. Deep generative
dual memory network for continual learning. arXiv preprint
arXiv:1710.10368, 2017. 1, 2

[26] Ronald Kemker and Christopher Kanan. Fearnet: Brain-
inspired model for incremental learning. International Con-
ference on Learning Representations (ICLR), 2018. 1, 2

[27] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler
Hayes, and Christopher Kanan. Measuring catastrophic for-
getting in neural networks. AAAI Conference on Artificial
Intelligence, 2018. 2

[28] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

9382

Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 2017. 2

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Tech Report, 2009. 7

[30] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7, 2015. 8

[31] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee.
Overcoming catastrophic forgetting with unlabeled data in
the wild. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 312–321, 2019. 2, 3, 6, 8

[32] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim.
A neural dirichlet process mixture model for task-free con-
tinual learning. arXiv preprint arXiv:2001.00689, 2020. 2

[33] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-
Ortiz, Andrei Stoian, and David Filliat. Generative models
from the perspective of continual learning. In 2019 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2019. 2

[34] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12):2935–2947, 2017. 1, 2, 3, 4, 6, 7, 8

[35] Bo Liu, Xuesu Xiao, and Peter Stone. Lifelong navigation.
arXiv preprint arXiv:2007.14486, 2020. 1

[36] Vincenzo Lomonaco and Davide Maltoni. Core50: a new
dataset and benchmark for continuous object recognition.
arXiv preprint arXiv:1705.03550, 2017. 2

[37] Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner.
Data-free knowledge distillation for deep neural networks.
arXiv preprint arXiv:1710.07535, 2017. 3

[38] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pages 6470–6479, USA,
2017. Curran Associates Inc. 2

[39] Liangchen Luo, Mark Sandler, Zi Lin, Andrey Zhmoginov,
and Andrew Howard. Large-scale generative data-free distil-
lation. arXiv preprint arXiv:2012.05578, 2020. 3, 4, 7

[40] Davide Maltoni and Vincenzo Lomonaco. Continuous learn-
ing in single-incremental-task scenarios. Neural Networks,
116:56–73, 2019. 2

[41] Alexander Mordvintsev, Christopher Olah, and Mike Tyka.
Inceptionism: Going deeper into neural networks, 2015. 3

[42] Vaishnavh Nagarajan, Colin Raffel, and Ian J Goodfellow.
Theoretical insights into memorization in gans. In Neural
Information Processing Systems Workshop, 2018. 1

[43] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jah-
nichen, and Moin Nabi. Learning to remember: A synaptic
plasticity driven framework for continual learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 11321–11329, 2019. 2

[44] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. icarl: Incremental classi-
fier and representation learning. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR’17, pages
5533–5542, 2017. 2, 8

[45] Anthony Robins. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 7(2):123–146, 1995.
2

[46] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-

licrap, and Gregory Wayne. Experience replay for continual
learning. In Advances in Neural Information Processing Sys-
tems, pages 348–358, 2019. 2

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 8

[48] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2

[49] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 30, pages 2990–2999. Curran
Associates, Inc., 2017. 1, 2, 6, 7, 8

[50] James Smith, Jonathan Balloch, Yen-Chang Hsu, and Zsolt
Kira. Memory-efficient semi-supervised continual learn-
ing: The world is its own replay buffer. arXiv preprint
arXiv:2101.09536, 2021. 2

[51] James Smith, Cameron Taylor, Seth Baer, and Constantine
Dovrolis. Unsupervised progressive learning and the STAM
architecture. arXiv preprint arXiv:1904.02021, 2021. 2

[52] Prathap Soma, Ravi Kumar Jatoth, and Hathiram Nenavath.
Fast and memory efficient de-hazing technique for real-time
computer vision applications. SN Applied Sciences, 2(3):1–
10, 2020. 1

[53] Michalis K Titsias, Jonathan Schwarz, Alexander G de G
Matthews, Razvan Pascanu, and Yee Whye Teh. Functional
regularisation for continual learning with gaussian processes.
In International Conference on Learning Representations,
2019. 2

[54] Gido M van de Ven, Hava T Siegelmann, and Andreas S To-
lias. Brain-inspired replay for continual learning with arti-
ficial neural networks. Nature communications, 11(1):1–14,
2020. 2, 7

[55] Gido M van de Ven and Andreas S Tolias. Generative replay
with feedback connections as a general strategy for continual
learning. arXiv preprint arXiv:1809.10635, 2018. 2, 7

[56] Gido M van de Ven and Andreas S Tolias. Three scenar-
ios for continual learning. arXiv preprint arXiv:1904.07734,
2019. 6

[57] Johannes von Oswald, Christian Henning, João Sacramento,
and Benjamin F Grewe. Continual learning with hypernet-
works. arXiv preprint arXiv:1906.00695, 2019. 2

[58] Liyuan Wang, Bo Lei, Qian Li, Hang Su, Jun Zhu, and Yi
Zhong. Triple memory networks: a brain-inspired method
for continual learning. arXiv preprint arXiv:2003.03143,
2020. 1

[59] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
374–382, 2019. 3, 6, 7, 8

[60] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz.
Dreaming to distill: Data-free knowledge transfer via deep-

9383

inversion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8715–
8724, 2020. 1, 3, 4, 5, 6, 7

[61] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In International
Conference on Machine Learning, 2017. 2

[62] Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-
Xiang Wang. Private-knn: Practical differential privacy for
computer vision. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 1

9384

