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Abstract

With the success of deep neural networks, knowledge dis-
tillation which guides the learning of a small student net-
work from a large teacher network is being actively stud-
ied for model compression and transfer learning. How-
ever, few studies have been performed to resolve the poor
learning issue of the student network when the student and
teacher model sizes significantly differ. In this paper, we
propose a densely guided knowledge distillation using mul-
tiple teacher assistants that gradually decreases the model
size to efficiently bridge the large gap between the teacher
and student networks. To stimulate more efficient learning
of the student network, we guide each teacher assistant to
every other smaller teacher assistants iteratively. Specifi-
cally, when teaching a smaller teacher assistant at the next
step, the existing larger teacher assistants from the previ-
ous step are used as well as the teacher network. Moreover,
we design stochastic teaching where, for each mini-batch, a
teacher or teacher assistants are randomly dropped. This
acts as a regularizer to improve the efficiency of teach-
ing of the student network. Thus, the student can always
learn salient distilled knowledge from the multiple sources.
We verified the effectiveness of the proposed method for a
classification task using CIFAR-10, CIFAR-100, and Ima-
geNet. We also achieved significant performance improve-
ments with various backbone architectures such as ResNet,
WideResNet, and VGG. 1

1. Introduction

While deep learning-based methods [11, 16, 10, 2], e.g.,
convolutional neural networks (CNNs), have achieved very
impressive results in terms of accuracy, there have been
many trials [9, 15, 34, 14] to apply them to many ap-
plications such as classification, detection, and segmenta-
tion. Among these attempts, Knowledge Distillation (KD)
[14, 28] transfers the knowledge of a teacher model (e.g.,
a deeper or wider network) in the form of soft prob-

1Our code is available at https://github.com/wonchulSon/DGKD.

Figure 1. Problem definition of the large gap between a teacher
and a student network. (a) In general, the difference between
layers at KD is approximately 1.8 times, but (b) we are interested
in the challenging problem of layer differences of more than 5
times. For solving this problem, TAKD [23] has been proposed.
However, (c) TAKD has a fundamental limitation such as the er-
ror avalanche problem. Assuming that a unique error occurs one
by one when a higher-level teacher assistant (TA) teaches a lower-
level TA. The error case continues to increase whenever teaching
more TAs. Meanwhile, in (d), the proposed densely guided knowl-
edge distillation can be relatively free from this error avalanche
problem because it does not teach TAs at each level alone.

ability (e.g., logits) to improve the accuracy of a less-
parameterized student model (e.g., a shallower network)
during a learning procedure. Specifically, the soft logits of
the teacher network can train the student network more effi-
ciently than the softmax based on the class label of the stu-
dent network itself. Many studies [14, 28, 40, 36, 42, 33, 3]
on the KD method have been proposed, most of which fo-
cused on effectively guiding a teacher’s soft probability or
outputs to a student. Recently, there have been ensemble-
based attempts [4, 41, 38, 22] to train a student network
based on many peers or students without considering the
single teacher network, which is a slight lack of consider-
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ation for the diversity of ensemble classifiers teaching the
student, especially when the gap between a teacher and a
student is large like Figure 1 (a) and (b).

In [5, 18], it was shown that a teacher does not always
have to be smart for a student to learn effectively. The
KD can not succeed when the student’s capacity is too low
to successfully mimic the teacher’s knowledge. Recently,
to overcome this problem, TA-based knowledge distillation
(TAKD) [23] using intermediate-sized assistant models was
introduced to alleviate the poor learning of a student net-
work when the size gap between a student and a teacher is
large. It achieved an effective performance improvement in
the case of a large gap in teacher and student sizes. How-
ever, further studies are required to determine whether us-
ing middle-sized assistant models in series is the most ef-
ficient KD method for bridging the gap between a teacher
and a student. For example, TAKD tends to cause the error
avalanche problem, as shown in Figure 1 (c). It sequentially
trains the multiple TA models by decreasing the capacity of
their own assistant models for efficient student learning. If
an error occurred during a specific TA model learning, this
TA model will teach the next level assistant models includ-
ing the same error. From then on, each time a TA is trained,
the error snowballs gradually, as illustrated in Figure 1 (c).
This error avalanche problem becomes an obstacle to im-
proving the student model’s performance as the total num-
ber of TAs increases.

In this paper, we propose a novel densely guided knowl-
edge distillation (DGKD) using multiple TAs for efficient
learning of the student model despite the large size gap be-
tween a teacher and a student model. As shown in Figure 1
(d), unlike TAKD, when learning a TA whose model size
gradually decreases for the target student, the knowledge
is not distilled only from the higher-level TA but guided
from all previously learned higher-level TAs including the
teacher. Thus, a trainee had distilled knowledge by con-
sidering the relationship between the multiple trainers (e.g.,
teacher and TAs) with complementary characteristics. The
error avalanche problem could be alleviated successfully. It
is largely because the distilled knowledge previously used
for the teaching of models disappears in TAKD, but the pro-
posed method densely guides the whole distilled knowledge
to the target network. In the end, the closer we are to stu-
dent learning, the more educators we have, e.g., TAs and
the teacher. Therefore, the final student model can get more
opportunities to achieve better results.

For stochastic learning of a student model, we randomly
remove a fraction of the guided knowledge from trainers
during the student training, which is inspired from [31, 17].
Eventually, the student network is taught from trainers en-
sembled slightly different for each iteration; this acts as a
kind of regularization to solve the problem of overfitting
which can often occur when a simple student learns from a

complex teacher groups.
The major contributions of this paper are summarized as

follows:

• We propose a DGKD that densely guides each TA net-
work with the higher-level TAs as well as the teacher
and it helps to alleviate the error avalanche problem
whose probability of occurrence increases as the num-
ber of TAs increases.

• We revise a stochastic DGKD learning algorithm to
train the student network from the teacher and multiple
TAs efficiently.

• We demonstrate the significant accuracy improvement
gained by the proposed method over well-known KD
methods through extensive experiments on various
datasets and network architectures.

2. Related Work
Knowledge Distillation: Knowledge distillation is a

popular research topic in the field of model compression
[9, 37]. We can extract distilled knowledge from a teacher
network and transfer it to a student network to mimic the
teacher network. The basic concept of knowledge distil-
lation [14] is to compress the knowledge of a deeper or
larger model to a single computational efficient neural net-
work. After this study, extensive research was conducted
on knowledge distillation. Remero et al. [28] introduced
the transfer of a hidden activation output and Zagoruyko
et al. [40] proposed transferring attention information as
knowledge. Yim et al. [36] defined distilled knowledge
from the teacher network as the flow of the solution process
(FSP), which is calculated as the inner product between fea-
ture maps from two selected layers.

Recently, Tung et al. [33] introduced similarity-
preserving knowledge distillation guided training of a stu-
dent network such that input pairs that produce similar ac-
tivations in the teacher network produce similar activations
in the student network. Zhang et al. [41] proposed self-
distillation in which student networks train the knowledge
by themselves from deeper to shallower layers so that a
teacher network is not required. Because the training of
the pre-trained teacher model is not required, the time for
training the student model can be reduced. Contrarily, Shen
et al. [29] believed that a student network can learn knowl-
edge efficiently from an ensemble of teacher networks; they
proposed the use of an adversarial-based learning strategy
with a block-wise training loss. For an online distillation
framework, Zhang et al. [42] suggested that peer students
learn from each other through the cross-entropy loss be-
tween each pair of students. Chen et al. [4] also suggested
using peers where multiple student models train each stu-
dent model based on auxiliary peers and one group leader.
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Guo et al. [8] proposed collaborative learning-based on-
line knowledge distillation that trained students without a
teacher where knowledge is transferred among arbitrary stu-
dents during collaborative training.

There have also been recent attempts to break away from
the traditional method. Xu et al. [35] showed that con-
trastive learning as a self-supervision task helps to gain
more rounded knowledge from a teacher network. Yuan et
al. [38] addressed the time-consuming training procedure
of the traditional knowledge distillation methods using the
few-sample where the teacher model was compressed and
the student-teacher model was aligned and merged with ad-
ditional layers.

Large Capacity Gap Between Teacher and Student:
There are contrasting views regarding whether a good
teacher always teaches a student well. Cho and Hariha-
ran [5] found that knowledge distillation cannot succeed
when the student model capacity is too low to mimic the
teacher model; they presented an approach to mitigate this
issue by stopping teacher training early to recover a solu-
tion more amenable for the student model. Similar to [7],
Jin et al. [18] also constructed a gradually mimicking se-
quence of learning the teacher, which supervised the stu-
dent with the teacher’s optimization route. From a similar
perspective, Mirzadeh et al. [23] insisted that the student
network performance may decrease when the capacity gap
between the teacher and the student is large and introduced
the multi-step knowledge distillation that employs the in-
termediate TA to bridge the gap between the teacher and
student network. They showed that more distillation steps
make a better student, up to three steps. However, consider-
ing resource constraints, they added that even one step can
be effective.

Our proposed method differs from existing methods as
we densely guide the student network using all assistant
models generated along the way from the teacher to the stu-
dent for overcoming the large gap between them. Note that
our approach does not simply rely on a single model to teach
the student, but uses all models that gradually become simi-
lar to the teacher’s characteristics; it will be helpful to avoid
the error avalanche problem.

3. Densely Guided Knowledge Distillation us-
ing Teacher Assistants

3.1. Background

The key concept of knowledge distillation [14] is train-
ing the student network to mimic the teacher network out-
put. To achieve this goal, the fully connected layer output,
logits, is used as the knowledge of the network. The loss
LKD of the Kullback–Leibler (KL) divergence consists of
the softened output of the teacher and student networks, de-

fined as follows:

LKD = τ2KL(yS , yT ), (1)

where τ is the temperature parameter to control the soft-
ening of signals. zS and zT refer to the teacher and stu-
dent logits, respectively and each network’s output is yS =
softmax(zS/τ) and yT = softmax(zT /τ).

With the distillation loss, from equation (1), to learn
the original supervision signal, the cross-entropy loss LCE

needs to be added with the label y as follows:

LCE = H(softmax(zS), y). (2)

As a result, the final loss function of the conventional
KD is written with the balancing parameter λ as follows:

L = (1− λ)LCE + λLKD. (3)

3.2. Proposed Method

When the teacher’s performance is good, the main pur-
pose of KD is basically a trial to guide the student knowl-
edge at a level close to that of a teacher. However, when
the gap between a student and a teacher is large in terms
of the size of weight parameter or the number of layers,
the best teacher does not always guide the student prop-
erly [5]. To solve this problem, TAKD [23] was proposed
using intermediate-sized networks such as a TA to bridge
the large gap between a teacher and a student. TAKD im-
proved the student learning efficiency by sequentially de-
ploying the TAs from the teacher to the student. However,
TAs are smarter than the student but worse than the teacher;
this eventually becomes an obstacle to further student learn-
ing due to the limited knowledge of TAs. In the end, for
teaching the student well, we need a smart teacher but it is a
contradiction that most of good teacher networks have many
parameters, which creates a network gap with the student at
the same time.

Densely Guided Knowledge Distillation: In this paper,
to overcome this contradiction and achieve better perfor-
mance of a shallow student network, we propose densely
guided knowledge distillation using multiple TAs which
are trained sequentially. As shown in Figure 2, we make
use of the distilled knowledge from intermediate-sized TAs
and the teacher for teaching the student network. More-
over, this densely connected distillation form is also used
when teaching TAs. Note that when designing the proposed
training framework for KD, the underlying idea came from
DenseNet [16] which is a densely connected residual net-
work architecture for a classification task.

We can use several distillation losses between the assis-
tant models and the student. For easy understanding, if there
are two TA models A1 and A2 with the teacher model T , the
loss of each TA can be written as follows:

LA1 = LT→A1 ,

LA2 = LT→A2 + LA1→A2 ,
(4)
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Figure 2. Overview of the proposed method. Our densely guided
knowledge distillation using multiple teacher assistant networks
is able to train a small-sized student network from a large-sized
teacher network efficiently through the multiple teacher assistant
networks.

where the right arrow at the subscript indicates the teach-
ing direction. The student’s loss LS is finally derived as
follows:

LS = LT→S + LA1→S + LA2→S , (5)

where we guide the student network using the distilled
knowledge from two TAs and a teacher. Equation (5) can
be expressed in the same form as equation (3) as follows:

LS =(1− λ1)LCES
+ λ1LKDT→S

+

(1− λ2)LCES
+ λ2LKDA1→S

+

(1− λ3)LCES
+ λ3LKDA2→S

.

(6)

If there are n assistant models and assuming that λ re-
tains the same value for simplicity, the general form of the
total loss is derived as the follows:

LS = (n+1)(1−λ)LCES
+λ(LKDT→S

+

n∑
i=1

LKDAi→S
).

(7)
We distill complementary knowledge from each assis-

tant network that has been previously learned and teach the
student network with combined knowledge from all teacher
assistant models. Consequently, the student network tries to
mimic the various logit distributions ranging from the larger
teacher network to the smaller TA network, resulting in im-
provement of the learning efficiency of the student network
even with a large gap.

Stochastic DGKD: For efficient learning with the pro-
posed DGKD, we adopt a stochastic learning strategy [31,

Figure 3. Concept of the stochastic DGKD method. When hav-
ing n TAs and the teacher network, the student network is distilled
by them. Depending on the survival probability, some of them
could be randomly dropped out from a group of teachers at every
training iteration.

17] that randomly cuts the knowledge connections between
many TAs and a student for each sample or mini-batch; we
named our method as stochastic DGKD. Learning with a
stochastic strategy is based on a simple intuition. We have
multiple assistant models for teaching the shallow student
network with a large gap, which would cause an overfit-
ting problem due to the complex logit distribution of the
TA ensemble as well as the teacher. It is necessary that the
knowledge connection from the teachers is irregularly al-
tered during the training, thus we randomly select the com-
bination of distilled knowledge from the complex teacher
and teacher assistant models. This process acts as a regu-
larization function and it alleviates the overfitting problem.
If the number of teacher and teacher assistants increases, it
can relatively make the learning procedure simple.

For this purpose, we set bi ∈ {0, 1} as a Bernoulli ran-
dom variable and bi = 1 is active and bi = 0 is inactive
during KD learning. The survival probability for Bernoulli
random variable is noted by pi = Pr(bi = 1). Eventually,
Equation (7) is updated by replacing LKD with bi·LKDi

. In
this paper, we use a simple dropping rule as shown in Fig-
ure 3. The possibility of dropping knowledge is equal from
the teacher to the last TA and it is only applied when teach-
ing the student because the last student has the most enough
candidates to teach the distilled knowledge to the target. In
the experiment section, we perform a more detailed empiri-
cal comparison of the different survival probabilities.

4. Experimental Setting
Datasets: For fair comparisons, we evaluate the KD

methods using CIFAR [20] and ImageNet [6] datasets,
which are widely used as benchmarks for image classi-
fication. The CIFAR datasets comprise RGB images of
size 32×32 with 50,000 training images and 10,000 test-
ing images. There are two kinds of datasets, CIFAR-10
and CIFAR-100, which have 10 and 100 classes, respec-
tively. The ImageNet dataset contains 1,281,167 images
from 1,000 classes for training and 50,000 images for vali-
dation.

Networks: We performed experiments using various
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Table 1. Accuracy comparison with all distillation steps using
plain CNNs (e.g., teacher T10, teacher assistants A8, A6, A4, stu-
dent S2) on CIFAR-100. The numbers denoted by * method came
from the corresponding paper.

Step TAKD∗ DGKD
Teacher (10 layer) 56.19 56.15
Student (2 layer) 41.09 41.06

T10 → A8 56.75 56.72
T10 → A8 → A6 57.53 60.15

T10 → A8 → A6 → A4 52.87 57.63
T10 → A8 → A6 → A4 → S2 45.14 48.92

networks: plain CNN and ResNet [11], WideResNet
(WRN) [39], and VGG [30]. In this paper, the baseline ar-
chitecture is a plain CNN, which is a VGG-like network.
Following the experimental protocols of TAKD, we use
a plain CNN architecture with a 10 layer-based teacher
model, TA models with 8, 6, 4 layers, and a 2 layer-based
student model. For a detailed comparison, we use 9, 7,
5, and 3 layer-based assistant models by removing the last
convolution layer of layers 10, 8, 6, and 4.

Implementation Details: We set the implementation
setting with a preprocessing, optimization, training plan,
and learning rate, etc., using PyTorch [25]. We first used
a random crop and random horizontal flip. We normalized
for ResNet, WRN, and VGG except plain CNNs as done
by TAKD. We used an initial learning rate of 0.1, stochas-
tic gradient descent (SGD) optimizer with nesterov momen-
tum 0.9, and weight decay 1e-4 for 160 epochs. For plain
CNN, we maintained the same learning rate for all epochs,
but for ResNet, WRN, and VGG, we divided the learning
rate by 0.1 on epochs 80 and 120. To obtain optimal per-
formance, we use a hyperparameter optimization toolkit2

using the same hyperparameter and seed setting, as done by
TAKD. The survival probability p for the stochastic DGKD
is added to balance parameter λ and temperature parameter
τ . We reported the performance of the classification task
for all experiments.

5. Result and Discussion

5.1. Ablation Study: Comparison with TAKD

In this section, we conduct comprehensive ablation stud-
ies to demonstrate the superiority of the proposed method
by directly comparing it with TAKD. Basically, we retrain
the whole network and follow the experimental protocol
same to [23]. Tables 1 and 2 show that our method DGKD
achieves better results compared with TAKD in all cases.
For example, as shown in Table 1, the student model us-
ing the plain CNN network on CIFAR-100 shows 3.78%
better performance than TAKD for the T10 → A8 →

2Microsoft’s neural network intelligence toolkit

Table 2. Accuracy comparison with all distillation steps using
ResNet (e.g., teacher T26, teacher assistants A20, A14, and stu-
dent S8) on CIFAR-10. The numbers denoted by * method came
from the corresponding paper.

Step TAKD∗ DGKD
Teacher (26 layer) 92.48 92.44
Student (8 layer) 86.61 86.56

T26 → A20 - 92.57
T26 → A20 → A14 91.23 92.15

T26 → A20 → A14 → S8 88.01 89.02

A6 → A4 → S2 path. Likewise, for ResNet on CIFAR-
10, shown in Table 2, over 1% improvement is achieved for
the T26 → A20 → A14 → S8 path. Moreover, we verified
the steady improvements for the other steps. In particular,
when there is just one TA, such as the T10 → A8 → A6

path in Table 1 and the T26 → A20 → A14 path in Table 2,
we confirm the good improvements by our method. Note
that TAKD bridges the large gap between a teacher and a
student through TAs and it is a good choice for this case.
This is largely because it can play a positive role as a bridge
to transfer dark knowledge sequentially. Simultaneously, it
can play a negative role in error accumulation, such as error
avalanche. In the extreme case, if only one TA is present,
there is no way to overcome the TA’s inherent error. Even if
the student can learn from the label, owing to its low capac-
ity, it cannot get through this error by itself.

We conducted another comparison experiment using the
large-scale dataset, ImageNet [6], presented in Table 3. In
this experiment, we used a 34 layer-based teacher, a 18
layer-based student, and a single TA with 26 layers us-
ing the ResNet. Our method achieves over 1% better ac-
curacy than Hinton’s KD and shows the best performance
among CC [27], SP [33], online KD [21], KD [14], AT [40],
CRD [32], SSKD [35], and TAKD [23] when the 34 layer
teacher teaches the 18 layer student. As a result, we can
conclude that our method works efficiently regardless of the
database.

5.2. Ablation Study: Classifier Ensemble

We make experimental results regarding the ensemble
classifiers in Table 4. The first ensemble is made by four dif-
ferent 10 layer-based teachers from scratch independently
and the second ensemble is built by 10 layer-based teacher
T10, 8 layer-based teacher T8, 6 layer-based teacher T6,
and 4 layer-based teacher T4. Note that these teachers are
trained independently. Both these ensembles achieved bet-
ter results than the KD [14] but they fail to overcome the
large gap between the teacher and student models. On the
other hand, TA-based methods including ours solve this
problem successfully. From this result, we can infer that
the simple ensemble method is not a good solution for the
large gap between the teacher and student models in a KD
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Table 3. Top-1 accuracy (%) on ImageNet. The teacher network is 34 layer-based ResNet (T34) and the student network is 18 layer-based
ResNet (S18). We only use a single TA using 26 layer-based ResNet (A26) for simplicity.

Teacher Student CC SP Online KD KD AT CRD SSKD TAKD DGKD
[27] [33] [21] [14] [40] [32] [35] [23]

Top-1 73.3 69.75 69.96 70.62 70.55 70.66 70.7 71.38 71.62 71.37 71.73
Top-5 91.42 89.07 89.17 89.8 89.59 89.88 90 90.49 90.67 90.27 90.82

Table 4. Comparison results with the ensemble methods using
plain CNNs on CIFAR-100.

Method Accuracy
Teacher (10 layer) 56.15
Student (2 layer) 41.06

KD [14] 42.56
TAKD using three TAs [23] 45.14
Ensemble using four T10s 42.57

Ensemble using T10, T8, T6, and T4 43.25
DGKD 48.92

Figure 4. Error avalanche problem. The error overlap rate indi-
cates the intersection proportion of a higher-level model’s incor-
rect answer and a lower level model’s incorrect answer when we
have the teacher T10, the student S2, and three TAs (e.g., A8, A6,
and A4). Ei ∩ Ej where Ei is the ith plain CNN model’s error
examples on CIFAR-100.

task.

5.3. Error Avalanche Problem of TAKD

An example of an error avalanche problem is briefly ex-
plained in Figure 1 (c). In the case of TAKD, the student can
learn from only an upper TA independently; the TA also
learns from an upper TA sequentially following the distil-
lation path. Thus, if an upper TA model transfers incorrect
knowledge to the next model, this incorrect knowledge con-
tinuously accumulates following the sequential distillation
path of TAKD.

We conducted an experiment to check the error overlap
rate between two neighboring models using the full distilla-
tion path (e.g., T10 → A8 → A6 → A4 → S2), as shown in
Figure 4, and observe that the error overlap rate of TAKD is
much higher than that of DGKD in all cases. In particular,

Figure 5. t-SNE visualizations of (a) KD for T26 → A20, (b)
TAKD for A20 → S14, and (c) our DGKD for A20 → S14 using
ResNet on CIFAR-10. Looking at the class distribution in the red
box, we can see the different error accumulation rates of (b) TAKD
and (c) our DGKD.

Table 5. Extensive distillation path with plain CNNs on CIFAR-
100 dataset by adding TAs intermediately; n is the number of TAs
used.

Step n TAKD DGKD
Teacher (10 layer) - 56.19
Student (2 layer) - 41.09
T10 → A6 → S2 1 44.57 45.85

T10 → A8 → A6 → A4 → S2 3 45.14 48.92
T10 → A9 → A8 → A7 → A6 7 44.07 49.56→ A5 → A4 → A3 → S2

we can see that the closer to the student, the larger the gap
in error overlap rates between TAKD and DGKD. From this
viewpoint, we conclude that the teacher and TAs can help
the student avoid the error avalanche problem by the pro-
posed method.

We also verify this problem by t-SNE visualization at
Figure 5, where it could be seen that the error accumulation
increased more when going from TA to student networks
than when going from teacher to TA networks. In this case,
the student model deployed at the bottom would suffer from
the accumulated errors due to the error avalanche problem.
The student has a chance to learn from the cross-entropy
supervision loss, but it is not very helpful to resolve the er-
ror avalanche problem because the 2 layer-based student’s
learning capacity for the supervision signal is not enough
to overcome this problem. Therefore, TAs sequentially de-
ployed based on TAKD could be an insufficient solution
when there is a large gap between the teacher and the stu-
dent. Due to the fundamental limitations, it is difficult to
expect the best performance improvement at KD. However,
our DGKD teaches the student from the teacher to the TAs
at the same time and this error avalanche problem could be
alleviated properly.
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Figure 6. Various TAKD distillation paths and the correspond-
ing results. Different distillation paths result in different accu-
racies at CIFAR-100, but the deeper path based on many TAs
does not always guarantee the best performance owing to the error
avalanche problem.

Figure 7. Stochastic DGKD. Performances of plain CNNs with
T10 → A8 → A6 → A4 → S2 by the different survival probabil-
ity p at CIFAR-100.

5.4. Knowledge Distillation Path

We also investigated the assertion made by [23] that a
full distillation path is optimal for KD. As shown in Fig-
ure 6, the deepest model (e.g., T10 → A8 → A6 → A4 →
S2) path is the best as described by [23]; however, the
models with two TAs (e.g., T10 → A8 → A4 → S2 and
T10 → A8 → A6 → S2) show lower performances than
the model with one TA (e.g., T10 → A6 → S2) indicated
by the red dash line. In this respect, we can infer that TAKD
does not always improve the performance even if there are
multiple TAs.

We attempted to determine whether TAKD can achieve
the best accuracy even when the distillation path is ex-
tended to the maximum. As shown in Table 5, when all TAs
are added intermediately for extending the distillation path
to the maximum possible levels, the full distillation path
model (e.g., n = 7/44.07%) of TAKD shows an even lower
performance than the other models (e.g., n = 3/45.14% and
n = 1/44.57%). In this respect, we could be sure that the

Table 6. Stochastic learning-based DGKD (p = 0.75) comparison
results using a 2 layer-based plain CNN student with path T10 →
A8 → A6 → A4 → S2 on CIFAR-100, and an 8 layer-based
ResNet student with path T26 → A20 → A14 → S8 on CIFAR-
10.

Model Dataset TAKD Ours
DGKD Stochastic

DGKD
PlainCNN CIFAR-100 45.14 48.92 50.15

ResNet CIFAR-10 88.01 89.02 89.66

error avalanche problem would occur in this case. As a re-
sult, when the path is deeper and deeper, the error avalanche
problem can get worse than expected. However, using the
proposed DGKD, the accuracy gradually improves when
the distillation path becomes deeper, ranging from n = 1
to n = 7; a full distillation path (e.g., n = 7) achieves
the best accuracy of 49.56%. Note that as the path length-
ens, the performance of our DGKD method improves unlike
TAKD, and it was over approximately 5% better in accuracy
compared with TAKD.

In summary, by adapting our proposed DGKD method
which uses all higher-path model teacher and TAs together,
a low capacity student can overcome the error avalanche
problem with the proper trainers.

5.5. Stochastic DGKD

We proposed the stochastic learning-based DGKD for
further performance improvements of a student. Specif-
ically, our stochastic DGKD is directly inspired by the
dropout concept. If there are n TAs, the student can learn
from the n + 1 knowledge corpus including a teacher. We
randomly removed the connections between the student and
the trainers (the teacher and TAs) based on the survival
probability p. To figure out the tendency of the survival
probability, we performed the experiments shown in Fig-
ure 7. When the survival probability is p = 0.75, the student
performance shows the best accuracy. Note that the stochas-
tic DGKD with the survival probability p from 0.75 to 0.5
shows the better accuracy than the vanilla DGKD p = 1 but
at p = 0.25, the accuracy is slightly below than the vanilla
DGKD because we only have four knowledge connections
in this experiment and dropping three results in losing the
chance to learn the proper knowledge from the number of
trainers. In this respect, we conclude that the survival prob-
ability p = 0.75 is the optimal hyper-parameter when we
have three TAs and a teacher for the stochastic DGKD.

Table 6 shows a performance comparison among TAKD,
DGKD, and stochastic DGKD. As expected, the stochastic
DGKD shows the best performance on the other networks
and datasets. Specifically, the proposed stochastic DGKD
using the 2 layer-based plain CNN student network achieves
1.23% better result than the original DGKD and 5.01% bet-
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Table 7. Comparison with well-known KD methods using ResNet on CIFAR-10. We used 26 layer-based ResNet as the teacher model
which teaches two different student models, e.g., 8 layer-based ResNet and 14 layer-based ResNet, respectively. For TAKD and our DGKD,
we used knowledge distillation paths, T26 → A20 → A14 → S8 and T26 → A20 → S14, respectively.

Student KD [14] FitNet [28] AT [40] FSP [36] BSS [12] Mutual [42] TAKD [23] Ours
ResNet8 86.02 86.66 86.73 86.86 87.07 87.32 87.71 88.01 89.66

ResNet14 89.11 89.75 89.82 89.84 89.92 90.34 90.54 91.23 92.34

Table 8. Comparison with the previously published KD methods
using WRN, ResNet, and VGG on CIFAR-100. A bold number is
a best accuracy, and an underlined number is a second best one.

Teacher WRN40×2 ResNet56 VGG13
Student WRN16×2 ResNet20 VGG8
Teacher 76.46 73.44 75.38
Student 73.64 69.63 70.68
KD [14] 74.92 70.66 72.98

FitNet [28] 75.75 71.60 73.54
AT [40] 75.28 71.78 73.62
SP [33] 75.34 71.48 73.44
VID [1] 74.79 71.71 73.96

RKD [24] 75.40 71.48 73.72
PKT [26] 76.01 71.44 73.37
AB [13] 68.89 71.49 74.27
FT [19] 75.15 71.52 73.42

CRD [32] 76.04 71.68 74.06
SSKD [35] 76.04 71.49 75.33
TAKD [23] 75.04 70.77 73.67

Ours 76.24 71.92 74.40

ter result than TAKD on the CIFAR-100. This improvement
is the same on 8 layer-based ResNet student on CIFAR-10.
From this, we can conclude that the proposed method works
successfully in the case of a large gap between the teacher
and student network.

5.6. Comparison with The State-of-the-art Methods

To verify the generality of the proposed method, we
compared its performance with the well-known KD meth-
ods [14, 28, 40, 36, 12, 42, 23]. As summarized in Table 7,
the proposed DGKD achieves the best performances com-
pared with the well-known KD methods such as KD [14],
FitNet [28], AT [13], FSP [36], BSS [12], Mutual [42], and
TAKD [23] at both ResNet-based student models with 8
and 14 layers, respectively at CIFAR-10. For comparison
results with various backbone architectures, for example,
WRN [39], ResNet [11], and VGG [30], Table 8 shows that
our proposed method performed favorably against the state-
of-the-art KD methods. Specifically, a 40×2 layer-based
WRN, a 56 layer-based ResNet, and a 13 layer-based VGG
as teachers, and the corresponding students are a 16×2
layer-based WRN, a 20 layer-based ResNet, and an 8 layer-
based VGG, respectively. In this experiment, we also use
different numbers of the teacher assistant models for the

different networks. In detail, we used the following knowl-
edge distillation paths: T40×2 → A34×2 → A28×2 →
A22×2 → S16×2 for WRN, T56 → A44 → A32 → S20 for
ResNet, and T13 → A11 → S8 for VGG. As shown in Ta-
ble 8, when the difference between the teacher and student
networks is large (e.g., from WRN40-2 to WRN16-2 and
from ResNet56 to ResNet20) our method shows the best
accuracy among the state-of-the-art methods, but when the
difference is not large (e.g., from VGG13 to VGG8), our
method shows the second-best accuracy.

From the results of all these experiments, we can con-
clude that the proposed method shows the best performance
not only when the gap between the teacher and the student
is large but also compared with the general KD methods.

6. Conclusion
In this paper, we proposed a densely guided knowledge

distillation using multiple assistants to improve the perfor-
mance of the student with low capacity compared to the
teacher. Empirically, we found that the error avalanche
problem can easily occur as the assistant knowledge distil-
lation paths deepen. When there are multiple assistants, if
the upper assistant transfers the wrong answers to the next
assistant and it continues recursively, it can be difficult for
the student to avoid error avalanche problems because of
its low capacity. Thus, we proposed the novel method us-
ing the knowledge of the teacher and the whole assistants to
provide more opportunities for the student to learn the right
answers during the training. Our experiments demonstrate
that our proposed method can play a key role in resolving
the error avalanche problem. Moreover, for efficient stu-
dent learning, we adapted the stochastic learning role by
randomly abandoning the teacher or assistant knowledge.
Using this strategy, our proposed method achieves the state-
of-the-art among the well-known distillation methods. We
believe that our proposed method can boost planning the
distillation path deeper and deeper using the multiple TAs,
which improving the performances of the low capacity-
based student networks in the real world applications.
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