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Abstract

This paper proposes a novel deep learning approach for
single image defocus deblurring based on inverse kernels.
In a defocused image, the blur shapes are similar among
pixels although the blur sizes can spatially vary. To utilize
the property with inverse kernels, we exploit the observa-
tion that when only the size of a defocus blur changes while
keeping the shape, the shape of the corresponding inverse
kernel remains the same and only the scale changes. Based
on the observation, we propose a kernel-sharing parallel
atrous convolutional (KPAC) block specifically designed by
incorporating the property of inverse kernels for single im-
age defocus deblurring. To effectively simulate the invariant
shapes of inverse kernels with different scales, KPAC shares
the same convolutional weights among multiple atrous con-
volution layers. To efficiently simulate the varying scales of
inverse kernels, KPAC consists of only a few atrous convolu-
tion layers with different dilations and learns per-pixel scale
attentions to aggregate the outputs of the layers. KPAC also
utilizes the shape attention to combine the outputs of mul-
tiple convolution filters in each atrous convolution layer,
to deal with defocus blur with a slightly varying shape.
We demonstrate that our approach achieves state-of-the-art
performance with a much smaller number of parameters
than previous methods.

1. Introduction
Defocus blur of an image occurs when the light ray from

a point in the scene forms a circle of confusion (COC) on
the camera sensor. The aperture shape and lens design of the
camera determine the blur shape, and the blur size varies
upon the depth of a scene point and intrinsic camera pa-
rameters. In a defocused image, the spatial variance of the
blur size is large, while that of the blur shape is relatively
small. Single image defocus deblurring remains a challeng-
ing problem as it is hard to accurately estimate and remove
defocus blur spatially varying in both size and shape.

The conventional two-step approach [2, 23, 5, 18, 4, 11,
14] reduces the complexity of defocus deblurring by assum-
ing an isotropic kernel for the blur shape, such as disc [2, 5]
or Gaussian [23, 18, 11, 14]. Based on the assumption, the
approach first estimates a defocus map containing the per-
pixel blur size of a defocused image, then uses the defo-
cus map to perform non-blind deconvolution [8, 15, 12] on
the image. However, real-world defocused images may have
more complex kernel shapes than disc or Gaussian, and the
discrepancy often hinders accurate defocus map estimation
and successful defocus deblurring.

Recently, Abuolaim and Brown [1] proposed DPDNet,
the first end-to-end defocus deblurring network, that learns
to directly deblur a defocused image without relying on a
restrictive blur model. They also presented a defocus de-
blurring dataset that includes stereo images attainable from
a dual-pixel sensor camera. Thanks to the end-to-end learn-
ing and the strong supervision provided by the dual-pixel
dataset, DPDNet outperforms two-step approaches on de-
blurring of real-world defocused images. Still, the deblurred
results tend to include ringing artifacts or remaining blur, as
the conventional encoder-decoder architecture of DPDNet
confines its capability in handling spatially variant blur [34].

In this paper, we propose a novel deep learning approach
for single image defocus deblurring based on inverse ker-
nels. It was shown that deconvolution of an image with a
given blur kernel can be performed by convolving the im-
age with an inverse kernel [30], where the inverse kernel
could be computed from the given blur kernel using Fourier
transform. Xu et al. [29] trained a deep network to learn uni-
form deconvolution by introducing the property of pseudo
inverse kernel into the network. Similarly, we train our net-
work to learn the deconvolution operation by capitalizing
the specific characteristics of inverse kernels needed for de-
focus deblurring. However, due to the spatially varying na-
ture of defocus blur, the inverse kernel required for defocus
deblurring also changes per pixel. Training a deep network
to learn deconvolution operations of varying inverse kernels
would be challenging even with the guidance of defocused
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and sharp image pairs.
To reduce the complexity, we use the property of defo-

cus blur that the blur shape is similar in a defocused im-
age although the blur size can drastically change. However,
instead of assuming any specific blur shape as in the two-
step approach, we exploit our observation on inverse ker-
nels; When only the size of a blur changes while keeping
the shape, the shape of the corresponding inverse kernel re-
mains the same and the size changes in the same way as the
blur (Sec. 3.1). Then, we may constrain our network to sim-
ulate inverse kernels with a single shape but with different
sizes to cover spatially varying defocus blur. However, it is
hard to directly simulate inverse kernels with all possible
sizes in practice. Instead, we design our network to carry
a few convolutional layers to cover inverse kernels with a
discrete set of sizes, and aggregate the outputs of the lay-
ers for handling blur with arbitrary size. As a result, com-
pared to the conventional two-step approach and the recent
deep learning approach [1], our method can perform defo-
cus deblurring more accurately by exploiting the properties
of defocus blur in the form of inverse kernel.

To implement the network design, we propose a novel
kernel-sharing parallel atrous convolutional (KPAC) block.
The KPAC block consists of multiple atrous convolution
layers [9, 3] with different dilation rates and additional lay-
ers for the scale and shape attentions. The multiple atrous
convolution layers share the same convolution kernels rep-
resenting the invariant shape of an inverse kernel, and differ-
ent dilation rates of the layers correspond to inverse kernels
with a discrete set of sizes. To simulate deconvolution us-
ing inverse kernels of other sizes, the KPAC block equips
a spatial attention mechanism [28], which we call the scale
attention, to aggregate the outputs of the atrous convolution
layers. By combining the per-pixel scale attention with mul-
tiple atrous convolution layers, the KPAC block can han-
dle the spatially varying size of defocus blur. In addition,
the shape of defocus blur may slightly change in a defo-
cused image due to the non-linearity of a camera image
pipeline. To handle the variance, we include a channel at-
tention mechanism [33], which we call the shape attention,
in a KPAC block to support the slight shape change of the
inverse kernel.

An important benefit of our KPAC block is its small
number of parameters, enabled by kernel sharing of the
multiple atrous convolution layers. As a result, our defo-
cus deblurring network is lighter-weighted than the previ-
ous work [1], showing the better performance (Sec. 5.2).

To summarize, our contributions include:

• Novel deep learning approach for single image defocus
deblurring based on inverse kernels,

• Novel Kernel-Sharing Parallel Atrous Convolutional
(KPAC) block designed upon the properties of spa-
tially varying inverse kernels for defocus deblurring,

• Light-weight single image defocus deblurring net-
work, which shows state-of-the-art performance.

2. Related Work

2.1. Defocus deblurring

Conventional approaches [2, 23, 5, 18, 4, 11, 14] per-
form defocus deblurring in two steps of defocus map esti-
mation and non-blind deconvolution. As they use existing
non-blind deconvolution methods [15, 12] for deblurring,
they focus on improving the accuracy of defocus map es-
timation based on parametric blur models such as disc and
Gaussian blur. Various methods were proposed for defocus
map estimation using hand-crafted features such as edge
gradients [11], sparse coded features [23], machine learning
features [5], combination of hand-crafted and deep learning
features [18], and an end-to-end deep learning model [14].
These two-step approaches often fail to produce faithful de-
blurring results due to the restricted blur model as well as
the errors of defocus map estimation.

Recently, Abuolaim and Brown [1] proposed the first
end-to-end model for deep learning-based defocus deblur-
ring and a dataset for supervised training. The model out-
performs conventional two-step approaches, and shows that
a dual-pixel image input significantly improves defocus
deblurring performance. However, their network structure
does not explicitly consider the spatially varying nature of
defocus blur with large variance in size but small variance
in shape, and the performance has rooms for improvements.

2.2. Inverse kernel

Convolution of an inverse kernel can be used to perform
deblurring on an image [27, 31, 30]. However, a naı̈ve in-
verse kernel that could be obtained from Wiener deconvo-
lution [27] usually introduces unwanted artifacts such as
ringing and amplified noise. To suppress artifacts, previous
works took a progressive approach using an image pyra-
mid [31], regularization using sparse priors [15, 30], a neu-
ral network for postprocessing [25], and feature space pro-
cessing [6]. Xu et al. [29] and Ren et al. [20] directly used
a CNN to perform non-blind deconvoluton by adapting a
separable property of a large inverse kernel, and showed
that their approaches are effective for suppressing artifacts.
Distinct from [29, 20] that simulate a single inverse kernel
for uniform deconvolution, our approach simulates spatially
varying inverse kernels needed for defocus deblurring.

3. Key Idea

In this section, we first present our observation on inverse
kernels for deconvolution, and propose inverse kernel-based
deconvolution to deal with spatially varying defocus blur
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Figure 1. Deblurring examples using the two kernels in Eq. (4).
Wiener deconvolution is used for computing the inverse kernels.
The results in (b) and (c) are almost equivalent. Their PSNRs to
the original sharp image are 21.64dB and 21.59dB, respectively,
and the PSNR between them is 51.09dB.

(Sec. 3.1). We then present experiments to verify the obser-
vation and the proposition (Sec. 3.2).

3.1. Inverse kernel-based deconvolution for
spatially varying defocus blur

The inverse kernel-based deconvolution approach is
closely related to convolution neural networks (CNN) by
nature, as they are based on convolutional operations in the
spatial domain. We aim to design a network architecture that
takes the benefits of both CNN and inverse kernels for de-
focus deblurring. To this end, we first introduce the concept
and general derivation of pseudo inverse kernel, as in previ-
ous works [29, 20].

We consider a simple blur model defined with convolu-
tion operation ∗ as

y = k ∗ x, (1)
where k is a blur kernel, and y and x are a blurry image and
a latent sharp image, respectively. The spatial convolution
can be transformed to an element-wise multiplication in the
frequency domain as

F (y) = F (k) · F (x), (2)

where F (·) denotes the discrete Fourier transform. Then,
the latent sharp image can be derived with convolution op-
eration as

x = F−1(1/F (k)) ∗ y = k† ∗ y, (3)

where F−1(·) denotes the inverse discrete Fourier trans-
form, and k† is the spatial pseudo inverse kernel.

We observe that the shape of the corresponding inverse
kernel k† remains the same when the spatial support size of
a blur kernel k changes, i.e.,

(
1

s2
k↑s)

† =
1

s2
(k†↑s), (4)

where ↑s denotes general upsampling operation with a scale
factor s in the spatial domain (refer to the supplementary
material for more details on kernel upsampling). In Eq. (4),
1
s2 k↑s is the kernel k′ with the upsampled resolution, where
1
s2 is used for normalizing the kernel weights. Then, the in-
verse kernel of k′ is the upsampled version of k† with the
same scale factor s.

(a) blurred by (b) deblurred by (c) deblurred by (d) blended using (e) deblurred by
1

3.52
k↑3.5

1
3.02

(k†
↑3.0) 1

4.02
(k†

↑4.0) 0.5*(b)+0.5*(c) 1
3.52

(k†
↑3.5)

Figure 2. Linear combination of deblurring results from different
inverse kernels.

Based on the observation, to handle defocus blur with
varying sizes but with the same shape, we may use inverse
kernels sharing a single shape but with different sizes. How-
ever, as we aim to utilize a CNN for defocus deblurring, it is
not practical to implement a network that carries the inverse
kernels of all possible sizes. To reduce the complexity, we
may approximate deconvolution of an image by combining
the results of applying inverse kernels with a discrete set of
sizes to the image. Similarly to a classical approach [2] that
handles non-uniform blur using a linear combination of dif-
ferently deblurred images, spatially varying deconvolution
for defocus blur can be approximated as

x ≈
∑
i

{αi · (
1

si2
k†↑si ∗ y)}, (5)

where si ∈ {1, · · · , n} is an upsampling factor, and αi is
the per-pixel weight map for the result image obtained using
the inverse kernel with an upsampling factor si.

3.2. Experimental validation of the key idea

In this section, we experimentally validate the observed
property of an inverse kernel for defocus deblurring (Eq.
(4)) and the approach for spatially varying deconvolution
based on the property (Eq. (5)). In the validation, we use
Wiener deconvolution [27] to compute a spatial inverse ker-
nel and Lanczos upsampling [7] to scale inverse kernels.
We use Wiener inverse kernel as it has a finite spatial sup-
port analogous to the finite receptive field of a CNN, due to
the involvement of signal-to-noise ratio (SNR) as regular-
ization [29].

Regarding Eq. (4), Fig. 1 shows an example that two ker-
nels on both sides of Eq. (4) produce equivalent deblurring
results. We also include the proof of Eq. (4) in the supple-
mentary material. Regarding Eq. (5), Fig. 2 shows that a
linear combination of resulting images from the inverse ker-
nels with a discrete set of sizes can approximate deconvolu-
tion with an inverse kernel of a different size. Figs. 2b and
2c are the deblurred results obtained by convolving inverse
kernels of different sizes. While neither kernel fits the actual
blur size, we can still obtain a visually decent result (Fig.
2d) with an approximation accuracy1 of 87.4%, by simply
applying Eq. (5) with αi = 0.5. When we optimize αi us-
ing the method of non-negative least squares, the accuracy

1The accuracy is computed by 1−MAE(1, x̂/xs), where MAE is
the mean absolute error, / is pixel-wise division, xs is the deconvolution
result using an inverse kernel of a target scale (e.g., Fig. 2e), and x̂ is the
approximated deconvolution result computed using Eq. (5) (e.g., Fig. 2d).
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Figure 3. Architecture of Kernel-sharing Parallel Atrous Convolu-
tional (KPAC) block. GP and FC denote global average pooling
and a fully connected layer, respectively.

further increases up to 92.5%. These experiments confirm
the validity of expanding Eqs. (4) and (5) to a CNN archi-
tecture, where the remaining errors could be compensated
through deep learning process (Sec. 4). Refer to the supple-
mentary material for more examples.

4. Network Design
Based on the key idea, we design a network reflecting

the property of inverse kernels for defocus deblurring. In-
stead of directly adopting the linear combination in Eq. (5),
we extend the concept of combination with a convolution
layer that aggregates the results of multiple inverse kernels,
to fully exploit the non-linear nature of deep learning.

Let h1∈Rh×w×c and h2∈Rh×w×c be the input and out-
put feature maps that correspond to images y and x in Eq.
(3), respectively. We modify Eq. (5) to represent defocus
deblurring using multiple convolution layers as

h2 = Kf ∗
nn

i=1

{αi · (Ksi ∗ h1)}, (6)

where Ksi ∈ Rsik×sik×c× c
2 are the convolutional kernels

representing an inverse kernel with an upsampling factor
si. Kf ∈R3×3×nc

2 ×c is for non-linear aggregation of mul-
tiple scales of the outputs of {Ksi}. αi ∈Rh×w×1 is a per-
pixel weight map for scale si, and

f
denotes concatenation

operation. Based on this modification, we propose a kernel-
sharing parallel atrous convolutional (KPAC) block.

4.1. Kernel-sharing Parallel Atrous Convolutional
(KPAC) block

Our KPAC block consists of multiple kernel-sharing
atrous convolution layers, and modules for the scale and
shape attentions (Fig. 3).
Multiple kernel-sharing atrous convolutions In Eq. (6),
convolutional kernels {Ksi} should represent inverse ker-
nels of the same shape but with different sizes as observed
in Eq. (4). We may share the weights of {Ksi} to enforce

(a) deblurred by k†
↑/5 (b) 1

52
(k†

↑5) (c) k†
↑/5

Figure 4. All settings are the same as in Fig. 1. (a) deblurring result
using a dilated inverse kernel. (a) is almost same as (b) and (c) in
Fig. 1, and the PSNR between (a) and Fig. 1(c) is 53.74dB. (b) &
(c) shapes of the scaled and dilated inverse kernels.

the constraint of the same inverse kernel shape. However, in
practice, the weight sharing is not straightforward because
of the different sizes of {Ksi}.

We resolve this problem with a simple but effective solu-
tion based on another important observation; For a blurred
region, which is spatially smooth, filtering operations on
sparsely sampled pixels (with a dilated kernel) and on
densely sampled pixels (with a rescaled kernel) produce
similar results. Thus, the upsampling operation for 1

s2 (k
†
↑s)

in Eq. (4) can be replaced by a dilation operation, yield-
ing an inverse kernel applied to sparsely sampled pixels.
The dilation operation does not change the number of fil-
ter weights but only scales the spatial support of the kernel
without resampling, enabling direct weight sharing for the
convolutional kernels {Ksi}.

Fig. 4 shows an example that 1
s2 (k

†
↑s) and k†↑/s produce

almost equivalent deblurring results, where ↑/s denotes the
dilation operation. We also experimentally verified that a
modified version of Eq. (5) using k†↑/s produces results al-
most equivalent to Fig. 2. Refer to the supplementary mate-
rial for the experiment on dilated inverse kernels.

Based on the observation, our KPAC block includes mul-
tiple atrous convolution layers with different dilation rates,
placed in parallel (Fig. 3). The atrous convolution kernels
K/si are composed of the same number of kernel weights
regardless of scales and share the same kernel weights, sat-
isfying the constraint of shared inverse kernel shape. That
is, we substitute the standard convolution in Eq. (6) by an
atrous convolution layer, obtaining

h2 = Kf ∗
nn

i=1

{αi · (K/si ∗ h1)}, (7)

where K/si ∈Rk×k×c× c
2 denotes the kernel with a dilation

rate si in the kernel-sharing atrous convolution layer.
Scale attention Our KPAC block represents an inverse
kernel with an arbitrary scale by aggregating resulting fea-
ture maps from multiple scales of atrous convolution layers.
To dynamically determine pixel-wise weights for aggrega-
tion, we use a scale attention αi∈Rh×w×1 based on spatial
attention mechanism [28]. As the scale of defocus deblur-
ring is determined by a combination of atrous convolution
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Figure 5. Overall network architecture. Refer to the supplementary material for the detailed architecture of our network.

layers, a different scale attention map should be applied to
the resulting feature map of each atrous convolution layer.

Shape attention Although we have assumed that inverse
kernels share the same shape, the shape of defocus blur
and then the corresponding shape of the inverse kernel can
change in a defocused image due to the non-linearity in a
camera imaging pipeline. As an atrous convolution layer
consists of multiple convolution filters, different combina-
tions of the filters can represent different inverse kernels.
To support shape variations of inverse kernels, we use a
shape attention module based on channel attention mecha-
nism [33] that determines combination weights for filters on
the resulting feature maps. As the atrous convolution layers
in our KPAC block should share the inverse kernel shape,
they share the channel-wise weight vector β∈R1×1× c

2 from
the shape attention module.

4.2. Defocus deblurring network

For effective multi-scale processing in the feature space,
we adopt an encoder-decoder structure [21] for our de-
focus deblurring network (Fig. 5). The network consists
of three parts: encoder, KPAC blocks, and decoder. Ex-
cept for the final convolution, all convolution layers include
LeakyReLU [16] for the non-linear activation layer.

As our KPAC block is designed upon inverse kernels
defined in the linear space, one question naturally follows
whether it is proper for the KPAC block to run in the non-
linear feature space. We found that the KPAC block still
works with non-linear features as CNNs are locally lin-
ear [17, 13]. It has also been shown in a recent work [6]
that Wiener deconvolution, which is a kind of inverse fil-
ters, can be successfully extended to the feature space due
to the piecewise linearity of the feature space of CNN.

The proposed KPAC block may not operate exactly the
same as conventional inverse kernel-based approaches for
deblurring, as it does not explicitly employ inverse kernels.
However, the architecture is still constrained with atrous
convolutional layers with shared kernels and non-linear ag-
gregation of resulting features, which are designed upon the
property of inverse kernels. As a result, the KPAC block
would learn restoration kernels that are more robust and ef-
fective for defocus deblurring. In addition, while a single
KPAC block is designed to model the entire process of de-
blurring, we can stack multiple KPAC blocks to exploit the
iterative nature for removing residual blurs.

Training For training the defocus deblurring network, we
use the mean absolute error (MAE) between a network out-
put and the corresponding ground-truth sharp image as a
loss function. We also employ the perceptual loss [10] for
restoring more realistic textures. For the perceptual loss,
we use the feature map extracted at the ‘conv4 4’ layer in
the pre-trained VGG-19 network [24]. When the perceptual
loss is used, it is combined with the MAE loss, where the
balancing factor is 7× 10−4 for the perceptual loss.

5. Experiments
We implemented and evaluated our models using Tensor-

flow 1.10.0 with NVIDIA Titan Xp GPU. Our final model
has two KPAC blocks with a kernel size k = 5 and the
number of atrous convolution layers n = 5, as we empiri-
cally found it to work well in most cases. We use negative
slope coefficient λ = 0.2 for LeakyReLU layers. We use
the Adam optimizer [19] with β1 = 0.9 and β2 = 0.99
to train our models. We train our models for 200k itera-
tions with the fixed learning rate of 1 × 10−4. We tested
a model trained for more iterations with learning rate de-
cay, but its improvement was marginal in PSNR. For eval-
uation in Sec. 5.2, we train our models with the percep-
tual loss [10]. For those models, we initialize them with
pre-trained models trained with the MAE loss for 200k it-
erations. Then, we fine-tune the networks with both MAE
and perceptual losses for additional 100k iterations with the
fixed learning rate of 5× 10−5. We use the batch size of 4.
Each image in a batch is randomly cropped to 512× 512.
Dataset We use the DPDD dataset [1] for evaluation of
our models. The dataset provides 500 image pairs of a real-
world defocused image and the corresponding all-in-focus
ground-truth image captured by a Canon EOS 5D Mark IV.
The dataset consists of training, validation, and testing sets
of 350, 74, and 76 pairs of images, respectively. In our ex-
periments, we train and evaluate our models using the train-
ing and testing sets, respectively. While the dataset also pro-
vides dual-pixel data, we do not use them in our experi-
ments. The dataset provides 16-bit images in the PNG for-
mat. We convert them to 8-bit images for our experiments.

5.1. Analysis

Effect of weight sharing Our KPAC blocks learn spa-
tially varying inverse kernels whose shapes remain the
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(a) blurry input (b) dilation rate = 1 (c) dilation rate = 3 (d) dilation rate = 5 (e) our result

Figure 6. Visualization of scale attention maps for different atrous convolution layers in the first block of our 2-block network.

(a) Input (b) baseline (c) no attention (d) w/ scale (e) w/ scale & shape (f) GT

Figure 7. Qualitative examples of the ablation study. The baseline denotes a network model using conventional residual convolution blocks
without our KPAC blocks. ‘scale’ and ‘shape’ denote scale attention and shape attention, respectively.

PSNR (dB) Parameters (M)

w/o weight sharing 24.78 2.50
w/ weight sharing 25.21 1.58

Table 1. Effect of weight sharing. The weight sharing improves the
deblurring quality while reducing the number of parameters.

same, but their sizes vary. For effective learning of such in-
verse kernels, our network shares the convolution weights
across multiple atrous convolution layers. In this experi-
ment, we verify the effect of the weight sharing between
atrous convolution layers by comparing the performance of
models with and without the weight sharing. Both models
have two KPAC blocks with 5 × 5 kernels. Table 1 shows
the deblurring quality and the number of parameters of each
model. As shown in the table, our model with the weight
sharing not only reduces the number of learning parame-
ters, but also improves the deblurring quality, as its weight
sharing structure properly constrains and guides the learn-
ing process.
Scale attention The atrous convolution layers in our
KPAC block simulate inverse kernels of different sizes to
effectively handle the spatially varying nature of defocus
blur. To analyze how they are activated for defocus blur
with different sizes, we visualize the scale attention maps
of different atrous convolution layers (Fig. 6). The roles of
different attention maps may not be strictly distinguished
because of the nature of the learning process that implicitly
learns the use of different layers. Nevertheless, we can ob-
serve a clear tendency that the attention maps of different
dilation rates are activated for different blur sizes. For ex-
ample, the attention map of the dilation rate 1 is activated
for pixels with blur of almost any size. On the other hand,
the attention map of the dilation rate 5 is activated only for
pixels with large blur. This shows that our scheme properly
works for handling spatially varying size of defocus blur.
Ablation study To quantitatively analyze the effect of
each component in our KPAC block, we conduct an ab-

KPAC components
Baseline PSNR (dB) Parameters (M)

ACs Scale Shape

✓ 24.59 2.26

✓ 24.74 1.33
✓ ✓ 24.98 1.33
✓ ✓ 25.03 1.58
✓ ✓ ✓ 25.21 1.58

Table 2. Ablation study. ACs: atrous convolution layers. Scale:
scale attention. Shape: shape attention.

lation study (Table 2). We first prepare a baseline model,
which uses naı̈ve convolution blocks instead of our KPAC
blocks. For the baseline model, we use a conventional resid-
ual block that consists of two convolution layers with the fil-
ter size of 3 × 3. For a fair comparison, the baseline model
includes multiple convolution blocks so that its model size
is similar to our model without the weight sharing. We also
prepare four variants of the baseline model using two KPAC
blocks with the kernel size of 5 × 5, then measure the de-
blurring performances of the models. Table 2 summarizes
the ablation study result. As shown in the table, every com-
ponent of our proposed approach increases the deblurring
quality significantly. Fig. 7 presents a qualitative compari-
son, which shows that both scale attention and shape atten-
tion help our network better handle spatially varying blur
and restore fine structures while the models with no atten-
tions suffer from spatially varying blurs.

Atrous convolutions with different dilation rates We
analyze the effect of dilation rates of atrous convolution lay-
ers in handling defocus blur with varying scales. In the test,
we manually modulated the attention weight maps [α1∼5]
to make our pretrained network use only the feature maps
produced by atrous convolution layers of specified scales.
With the similar tendency to Fig. 6, we observed that atrous
convolutions with dilation rates of 1, 3 and 5 help remove
blur of any, medium, and large sizes, respectively (Fig. 8).
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Figure 8. Deblurring results with modulated scale attention maps
[α1, α2, α3, α4, α5].

Blurry Number of KPAC blocks
input 1 2 3 4

PSNR (dB) 23.92 24.82 25.21 25.25 25.14
SSIM (dB) 0.812 0.836 0.842 0.842 0.841
Params (M) - 1.05 1.58 2.11 2.64

Table 3. Comparison on the effect of different numbers of KPAC
blocks with 5× 5 kernels.

Number of KPAC blocks Our KPAC block can be
stacked together so that the network can iteratively remove
defocus blur to achieve higher-quality deblurring results.
We investigate the performance of different numbers of
KPAC blocks. Table 3 shows that even a single KPAC block
can effectively remove defocus blur and increase the PNSR
by 0.90 dB. As we adopt more KPAC blocks, the PSNR
increases although the improvement becomes smaller. Af-
ter three KPAC blocks, the PSNR starts to decrease pos-
sibly due to the increased training complexity. Based on
this experiment, we design our final model to have two
KPAC blocks as two blocks provide relatively high deblur-
ring quality with small model size.

5.2. Evaluation

Deblurring quality comparison with state-of-the-art
We compare our method with state-of-the-art defocus de-
blurring methods, including both conventional two-step
approaches [23, 11, 14] and the recent end-to-end deep
learning-based approach [1]. For all the methods, we pro-
duced result images using the source code provided by the
authors. For JNB [23], EBDB [11] and DMENet [14], we
used the non-blind deconvolution method [12] for gener-
ating deblurred images using estimated defocus maps. For
DPDNet [1], we used the source code and pre-trained mod-
els provided by the author. DPDNet provides two versions
of models, each of which takes a single input image and
dual-pixel data, which is a pair of sub-aperture images, re-
spectively. We include both of them in our comparison. For
evaluation, we measure PSNR and SSIM [26]. We also mea-
sure LPIPS [32] for evaluating the perceptual quality as
done in [1].

We include two variants of our model, each of which has
a different number of encoding levels, or a different number
of downsampling layers in the encoder. By increasing the

(a) Input (b) 2-level (c) 3-level (d) GT
Figure 9. Visual comparison between our 2- and 3-level models.

Model PSNR↑ SSIM↑ LPIPS↓ Parameters (M)

JNB [23] 23.70 0.799 0.442 -
EBDB [11] 23.96 0.819 0.402 -

DMENet [14] 23.92 0.808 0.410 26.94

DPDNet (single) [1] 24.42 0.827 0.277 32.25
DPDNet (dual) [1] 25.12 0.850 0.223 32.25

Ours (2-level) 25.24 0.845 0.229 1.58
Ours (3-level) 25.24 0.842 0.225 2.06

Table 4. Quantitative comparison. The numbers of parameters of
JNB and EBDB are not available as they are not deep learning-
based methods. Note that DPDNet (dual) uses dual-pixel images.

Model FLOPs (B) running time (s) Parameters (M)

DPDNet (single) [1] 1980 0.17 32.25
DPDNet (dual) [1] 1983 0.17 32.25

Ours (2-level) 358 0.09 1.58
Ours (3-level) 197 0.07 2.06

Table 5. Computational cost comparison. The average FLOPs and
running times are measured on images of size 1280× 720.

encoding levels, we can more easily handle large blur with
small filters and with a small amount of computations. On
the other hand, with fewer encoding levels, it is easier to
restore fine-scale details. To inspect the difference between
models with different numbers of encoding levels, we in-
clude two variants of our model, which have two and three
levels, respectively. Both models are trained with both MAE
and perceptual loss functions.

Table 4 reports the quantitative comparison. As shown in
the table, the classical two-step approaches [23, 11, 14] per-
form worse than the recent deep-learning based approach
[1]. While the DPDNet model with a single input image
performs better than the classical approaches, our models
outperform both the classical approaches and the DPDNet
model with a single input image by a large margin. More-
over, our models outperform the dual-pixel-based DPDNet
model even without the strong cue to defocus blur provided
by dual-pixel data and with a much small number of param-
eters. This result clearly proves the effectiveness of our ap-
proach. In the supplementary material, we report the perfor-
mance of the dual-pixel-based variant of our model, which
outperforms the dual-pixel-based DPDNet model. Table 4
also shows that our 2- and 3-level models perform simi-
larly. However, we found that the 3-level model tends to
better handle extremely large blur as shown in Fig. 9 due to
its larger receptive fields.

Fig. 10 shows a qualitative comparison. Our result is
produced by the 3-level model. As the figure shows, our
method produces sharper results with more details. Even
compared to the result of the dual-pixel-based DPDNet [1],
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(a) Input (b) JNB [23] (c) EBDB [11] (d) DMENet [14]

(e) DPDNet (single) [1] (f) DPDNet (dual) [1] (g) Ours (h) GT

Figure 10. Qualitative comparison on the test set of the DPDD dataset [1]. Note that DPDNet (dual) uses dual-pixel stereo images.

(a) Input (b) DPDNet [1] (c) Ours
Figure 11. Defocus deblurring results on the defocused images in
the CUHK blur detection dataset [22].

our result has comparably clear details.

Computational cost We compare the computational cost
of our models and DPDNet [1]. Classical two-step ap-
proaches rely on computationally heavy non-blind decon-
volution algorithms, so we do not include them in this com-
parison. For the comparison, we measure FLOPs and the
average running time per image of size 1280× 720. Table 5
shows that our 3-level model requires small computational
cost in FLOPs, which is 10 times smaller than [1]. The ta-
ble also shows that our 3-level model is slightly faster than
the 2-level model as features are more downsampled, even
though it has more parameters.

Generalization to other images Our models are trained
using the DPDD dataset [1], which was generated using one
camera. Thus, lastly, we inspect how well our model gener-
alizes to images from other cameras. To this end, we use
the CUHK blur detection dataset [22], which provides 704
defocused images without ground-truth all-in-focus images.
The defocused images in the dataset are collected from var-
ious sources on the internet. As there are no ground-truth
images, we qualitatively inspect the generalization ability.
Fig. 11 shows that our method can successfully restore

fine details with less visual artifacts compared to the sin-
gle image-based model of DPDNet [1]. Additional results
can be found in the supplementary material.

6. Conclusion

This paper proposed a single image defocus deblurring
framework based on inverse kernels. To effectively simulate
spatially varying inverse kernels, we proposed the Kernel-
Sharing Parallel Atrous Convolutions (KPAC) block. KPAC
provides an effective way to handle spatially varying defo-
cus blur with a small number of atrous convolution layers
that share the same convolutional kernel weights but with
different dilation rates. KPAC is also equipped with the per-
pixel scale attention to further facilitate the handling of spa-
tially varying blur. Thanks to the effective and light-weight
structure of KPAC, we can simply stack multiple blocks of
KPAC and achieve state-of-the-art deblurring performance.
We experimentally validated the effectiveness of KPAC and
showed that our method clearly outperforms previous meth-
ods with much fewer parameters.

Limitations and future work While our method outper-
forms previous state-of-the-art methods, it may still fail in
challenging cases such as large-scale blur, blur with irreg-
ular shapes, and bokeh with sharp boundaries (refer to the
supplementary material for our deblurring results on images
containing such cases). Handling these challenging cases
would be an interesting future direction.
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