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Abstract

Multi-objective multi-task learning aims to boost the
performance of all tasks by leveraging their correlation and
conflict appropriately. Nevertheless, in real practice, users
may have preference for certain tasks, and other tasks sim-
ply serve as privileged or auxiliary tasks to assist the train-
ing of target tasks. The privileged tasks thus possess less
or even no priority in the final task assessment by users.
Motivated by this, we propose a privileged multiple descent
algorithm to arbitrate the learning of target tasks and priv-
ileged tasks. Concretely, we introduce a privileged param-
eter so that the optimization direction does not necessarily
follow the gradient from the privileged tasks, but concen-
trates more on the target tasks. Besides, we also encourage
a priority parameter for the target tasks to control the po-
tential distraction of optimization direction from the privi-
leged tasks. In this way, the optimization direction can be
more aggressively determined by weighting the gradients
among target and privileged tasks, and thus highlight more
the performance of target tasks under the unified multi-task
learning context. Extensive experiments on synthetic and
real-world datasets indicate that our method can achieve
versatile Pareto solutions under varying preference for the
target tasks.

1. Introduction

Besides designing strong model structures [32, 46, 35,
13, 34] and informative task losses [19, 48, 5, 44, 52], multi-
task learning (MTL) [50, 38] is apt to enhance performance

*Corresponding authors.

and efficiency by seeking more appropriate ways to com-
bine multiple tasks, and increasingly gains much research
interest. The paradigm of MTL has been shown to out-
perform single-task learning (STL) on numerous computer
vision problems, such as attribute recognition [51], scene
understanding [24] and autonomous driving [9]. To exploit
the task correlations, current MTL approaches mainly fol-
low a soft-parameter or hard-parameter sharing principle.
In soft-parameter sharing, tasks are aggregated separately
and cross-talks [28] among these tasks are usually used to
encourage shared knowledge. Nevertheless, the intricacy
of designing the cross-talks is specific to particular prob-
lem sets, and does not scale well to many tasks. In con-
trast, hard-parameter sharing leverages a unique backbone
to pursue direct shared representation of tasks [1, 2], along
with task-specific sub-networks. Therefore, hard-parameter
sharing is able to reduce parameter size in proportion to the
task number, and to promote inference speed during testing.

Though parameters among tasks are shared in a hard
manner, how to balance all tasks still matters for MTL. Task
balancing to circumvent this difficulty goes beyond naive
uniform weighting of tasks [51]. Existing heuristics to find
appropriate weighting of multiple tasks include grid search-
ing, exploring task uncertainties [10], and gradient normal-
ization [6]. Recent avant-garde method is to treat the MTL
as multi-objective optimization (MOO-MTL) [33]. It pro-
poses to find the Pareto front that only allows the common
improvement of tasks rather than sacrificing any individual.
Task weights are evaluated dynamically during learning.

Current MTL methods treat all tasks equally, and fo-
cus on the average performance of all tasks during infer-
ence. In practice, however, users may only need to scruti-
nize the performance of some target tasks rather than that of
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Figure 1: Learning with Privileged Tasks (PTL) endows
some tasks with adjustable privilege to assist the target
tasks. When the privileged parameter is low or zero, the
trade-off is less or not biased towards the target tasks. When
the privileged parameter is high, the target task performance
is prioritized during training.

all tasks. One natural solution for such scenario is to learn
only the target tasks solely. However, this practice neglects
the potential benefits from other tasks. In contrast, our aim
is to include all tasks under MTL context, but non-target
tasks only serve as privileged tasks1 to assist the training of
target tasks, and are irrelevant for the performance evalua-
tion by users. Some literature also refers auxiliary tasks as
the privileged tasks. However, they either focus on design
auxiliary tasks for target tasks [29], or does not consider
the intrinsic conflicts and competitions among tasks [45].
Conflicts may exist naturally between target and privileged
tasks, or even within the target tasks themselves. Existing
variants of MOOMTL also model this problem with prefer-
ence [22, 27, 26]. Nevertheless, the preference vectors are
usually defined in the loss space. Designing these vectors
requires a priori information of the individual loss magni-
tudes on the Pareto front. In practice, users often fail to
provide an approximation of the Pareto front.

In this paper, we cast the learning of target and privileged
tasks (PTL) in a unified multi-objective optimization prob-
lem [33] to manage the correlation and conflict between
target and privileged tasks simultaneously. Instead of con-
sidering the loss space, we examine the task priority in the
gradient space, and proposes a privileged multiple gradient
descent algorithm (P-MGDA) to amplify the performance
of target tasks. Concretely, for each mini-batch we intro-
duce a privileged parameter so that the descent direction
does not necessarily follow the gradients of privileged tasks,
but concentrates more on the target tasks. In this way, we
can flexibly moderate the conflict or competition between
target and privileged tasks. Moreover, we also encourage
a priority term to regulate direction correction towards the
target tasks. In this way, when the target task and privileged
tasks only cooperate, we can still ensure the consistent ex-

1We name our method privileged tasks motivated by the prior work [40,
25, 39] which investigates Learning Using Privileged Information (LUPI)
to boost the training and is not involved during inference as well.

ploitation of the privileged tasks.
Our approach, privileged task learning (PTL), introduces

parameters working on the gradient space, so that we can
control them to achieve versatile Pareto critical points to
cater user preference as shown in Figure 1. We optimize
our proposed P-MGDA by an efficient hybrid-block coor-
dinate descent (CD) algorithm. Extensive experiments on
both synthetic and real datasets validate the effectiveness of
our PTL. Results show that PTL is able to find the solution
that not only has overall satisfactory performance across all
tasks but especially good for the target task.

2. Related work
Auxiliary learning in multi-task learning Recent re-

view such as [37] offers an extensive and detailed survey of
the auxiliary tasks in the MTL setting. There are diverse
ways to form the auxiliary tasks. In PAD-Net [43], interme-
diate auxiliary outputs from the network are trained to help
the main tasks. The feature space of the main task is directly
built upon that of the auxiliary tasks. Du et al. proposed that
there should be a similarity between the main tasks and the
constructed auxiliary tasks for the MTL to be effective [15].
Their proposed method measures the similarities between
the main and auxiliary tasks using cosine similarity, based
on task gradients. Weight balancing for auxiliary tasks pro-
posed by [45] drives positive transfer and suppresses nega-
tive transfer by leveraging class-wise weights in the learn-
ing process, and exploits the helpful information from the
auxiliary tasks. Whereas in our setting, privileged tasks and
auxiliary tasks have identical placements.

Multi-objective optimization with preference. Fol-
lowing the pivotal framework brought by [33], extensions
of the MOOMTL mostly try to expand the Pareto front. In
Pareto-MTL [22], reference vectors are used to guide the
MOO searching, which leads to a set of solutions with dif-
ferent trade-off among all tasks. [27] improves Pareto-MTL
and strictly solves the preference-specific Pareto solutions,
which sit exactly along the reference vectors. In [26], con-
tinuous solutions are found in the vicinity of a Pareto so-
lution. Our framework can also cater user preference by
tuning the priority and privileged parameters.

Learning using privileged information (LUPI). LUPI
[40, 25, 39] assumes each example corresponds to a regu-
lar feature and an additional privileged feature, so the priv-
ileged features can be used to boost the performance of
trained models [47, 36, 49, 41]. However, privileged fea-
tures are not involved or even available during inference.
We name our method privileged tasks inspired by this anal-
ogy, but there are significant differences in the problem set-
ting. In LUPI, both regular and privileged features are sub-
ject to the same single task; in our PTL, examples corre-
spond to multiple and maybe different tasks, and privileged
tasks are to boost the target tasks.
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3. Revisiting MGDA in Multi-objective MTL
We formalize the multi-objective optimization problem

of MTL as follows [33]. Assume there are M tasks with
the index set as I. Denote the shared parameters of the net-
work as θ, and the updated θ at training step τ as θ(τ).
But we will dismiss τ for short in the following. Each
task, t, has its own task-specific network, with parameters
θt, t ∈ I. And the whole parameter set for the MTL net-
work is {θ,θt, t ∈ I}. The input space is X , and the out-
put space of the task t is Yt, t ∈ I. The dataset is there-
fore {xi, y

1
i , y

2
i , . . . , y

T
i }i∈[N ], where N is the size of the

dataset. Each task has its loss function as lt(θt,θ). When
working with the shared parameter θ, the task-specific pa-
rameter θt will be dismissed in notation for short.

Our goal is to find appropriate weighting vector, ct, to
formulate the scalar loss,

∑
t∈I ctℓt, such that all of its

components, task-specific losses, are jointly optimized to
the most during learning. Towards a moderation of the task
conflicts, we take a worthy detour by considering the vec-
torized loss, (ℓ1, ℓ2, . . . , ℓT ), leveraging the existing frame-
work of multi-objective optimization. The essential convic-
tion is to find the Pareto optimal solution of all the objec-
tives [12], defined below.

Definition 1 (Pareto optimality for MTL). (a). A solu-
tion θ dominates a solution θ̄ if ℓt(θ,θt) ≤ ℓt(θ̄,θt)
for all tasks t and

(
ℓ1(θ,θt), ℓ2(θ,θt), . . . , ℓT (θ,θt)

)
̸=(

ℓ1(θ̄,θt), ℓ2(θ̄,θt), . . . , ℓT (θ̄,θt)
)
. (b). A solution θ⋆ is

called Pareto optimal if there exists no solution θ that dom-
inates θ⋆.

Instead of solving the Pareto optimal point, the multi-
ple gradient descent algorithm (MGDA) [12, 17] turns to
a necessary Pareto critical point by leveraging the Karush-
Kuhn-Tucker (KKT) condition. As in [17, 33, 22], the min-
imization problem

min
v,d

(
v +

1

2
∥d∥2

)
, s.t.⟨∇ℓmθ ,d⟩ ≤ v,m ∈ I. (1)

satisfy the following Lemma 1.

Lemma 1. [17, 33, 22] Let (d, v) be the solution of problem
(1),

1. If θ is Pareto critical, then d = 0 and v = 0.

2. If θ is not Pareto critical, then

v ≤ −(1/2)∥d∥2 < 0

∇ℓmθ ≤ v,∀m ∈ I
(2)

In other words, either the solution of problem (1) is 0
thus there is no direction to improve all tasks at the same
time, or the solution leads to a descent direction that im-
proves all tasks. Then recent multi-objective MTL methods

(e.g., MOO-MTL [33] and Pareto-MTL [22]) adopt MGDA
to solve the MTL problem by considering its dual problem

min
α

1

2
∥
∑
m∈I

αm∇θℓ
m∥2, s.t.

∑
m∈I

αm = 1, αm ≥ 0. (3)

with the optimal solution d∗ of Eq.(1) and optimal solution
α∗ of Eq.(3) satisfying

d∗ =
∑
m∈I

α∗
m∇θℓ

m, s.t.
∑
m∈I

α∗
m = 1, α∗

m ≥ 0. (4)

To elude the time-consuming operation of calculating the
gradient over parameter ∇θℓ, [33, 22, 14] found an upper
bound (MGDA-UB) of ∥

∑
m∈I αm∇θℓ

m∥, by computing
∥
∑

m∈I αm∇Zℓ
m∥. ∇Zℓ

m is the gradient over the shared
intermediate representations.

4. Privileged MGDA with Task Priority
We expand the MGDA based on the following consid-

eration. Despite the effectiveness of finding Pareto solu-
tions, the MTL problem can have numerous optimal trade-
offs among the tasks, but the single solution obtained by
MOOMTL might not serve or even contravene the specific
preference from the user. To alleviate this scenario, we fur-
ther consider the existence of privileged tasks, which serves
to assist the training of the target task and are of less con-
cern at inference stage. Therefore the privileged tasks are
allowed to recess moderately during learning. These poten-
tially deteriorated privileged tasks are denoted by index set
Ip. And the target task is denoted by index set It. Assume
there are Mt target tasks and Mp privileged tasks. The to-
tal number of both target and privileged tasks is Mt +Mp,
which will be interchangeably written as M . Consider the
inequality constraint in Problem (1),

⟨∇θℓj(θ),d⟩ ≤ v. (5)

It guarantees that the amount of descent is no less than
|v|. This applies to both target tasks and privileged tasks.
But when task conflict or competition arises, this constraint
can be relaxed for the privileged tasks, which will give pri-
ority to the target tasks. We solidify and justify this idea as
follows.

4.1. Slack descent for privileged tasks

We introduce slack variables ξi ≥ 0 in the Eq. (5) for the
privileged tasks, which can be learned during training and
flexibly moderate the task conflicts. The resulted descent
direction might increase the loss function for the privileged
tasks, as ξj could be large enough and v+ ξj is positive. To
avoid unnecessary sacrifice of the privileged task, we set an
upper bound of ξ with the regularization parameter C1 ≥ 0.
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And the slack descent model is concreted in Eq. (6)

⟨∇θℓj(θ),d⟩ ≤ v + ξj ,∀j ∈ Ip. (6)

In the corresponding dual problem, we have new constraint
for the coefficient of the privileged tasks as

0 ≤ αj ≤ C1,∀j ∈ Ip. (7)

C1 controls the scope of privilege and is decided by the
user. Under the simple case with two task learning, there
is only one target task lt and one privileged task lp.∑M

m=1 αm∇θℓm(θ) is reduced to the summation of only
two scaled gradients, α1∇lt + α2∇lp. C1 sets the upper
bound of α2, i.e. the largest possible consideration for the
privileged task during training. Therefore C1 determines
how close the descent direction locates to the gradient of
the target task, shown by the upper panel of Figure 2. Large
C1 gives space for α2, therefore promotes the proportion
of privileged task during training while small C1 limits the
participation of privileged tasks and prioritizes more the tar-
get tasks accordingly.

4.2. Direction correction with priority

Degeneracy of Eq. (6) happens when there is no con-
flict between target and privileged tasks, as loss ascent for
privileged task will only be redundant. To consistently ex-
ploit the privileged tasks, we further demand larger im-
provement only for the target tasks, disregarding the priv-
ileged tasks. Such request is established by additional
inequality constraints. In other words, ⟨∇θℓi(θ),d⟩ ≤
⟨∇θℓj(θ),d⟩, ∀i ∈ It, j ∈ Ip. This will introduce ad-
ditional term ,

∑
i∈It

∑
j∈Ip

βij(∇θℓi(θ) − ∇θℓj(θ)), in
the dual problem, where βij ≥ 0 stands for the multiplier
for each pair of the inequality constraint in Eq. (8). We
can interpret this term as further correction for the descent
direction, which bends the optimization even towards the
target tasks

⟨∇θℓi(θ),d⟩ ≤ ⟨∇θℓj(θ),d⟩+ ηij ,∀i ∈ It, j ∈ Ip. (8)

However, prioritizing each target task over the privileged
task may shrink the feasible set excessively. To relax this
constraint appropriately, we also introduce learnable slack
variable ηij ≥ 0, which can be regularized by parameter
C2 ≥ 0. Similarly, additional constraints on βij will be
introduced in the dual problem as

βij ≤ C2,∀i ∈ It, j ∈ Ip. (9)

There could be the case that for i ∈ Ip, αi <
∑

j∈Ip
βij .

And the coefficient of ∇θℓi in d is negative. In this case, d
will not be a convex combination of the task gradients. To
avoid the collapse of the MGDA approach, we further exert

α1 ∇lt

α2 ∇lp
α1 ∇lt + α2 ∇lp

C1 = 0.2
C1 = 0.5

C1 = 1

∇lt ∇lp

(a) Slack descent for privileged tasks.

∇lt ∇lp

β12(∇lt − ∇lp)

α1 ∇lt α2 ∇lp

α1 ∇lt + α2 ∇lpd

(b) Direction correction prioritizes the target
tasks.

Figure 2: Geometric interpretation. (a). Privileged pa-
rameter biases the descend direction towards target task to
a controllable extent. (b). Direction correction further push
the descent direction towards the target task. In whole, this
illustrates the theoretical effectiveness of PTL.

the following constraint so that αi, i ∈ Ip is large enough,
as ∑

i∈It

βij ≤ αj ,∀j ∈ Ip. (10)

Again we refer two task learning for illustrative anal-
ysis of the model, shown in Figure 2. In this case∑

i∈It

∑
j∈Ip

βij(∇θℓi(θ) − ∇θℓj(θ)) is as simple as
β12(∇lt − ∇lp). Larger β12 corresponds to greater cor-
rection for the direction towards the target task. Such cor-
rection is bounded by C2, and thus adjustable according to
user preference.

4.3. Theoretical analysis

With the slack descent of the privileged tasks and direc-
tion correction towards the target tasks, the PTL model is
summarized as follows

min
d,v,ξ,η

v + C1 ·
∑
j∈Ia

ξj + C2 ·
∑
i∈Ip

∑
j∈Ia

ηij +
1

2
∥d∥2,

s.t. ⟨∇θℓi(θ),d⟩ ≤ v, ∀i ∈ It,
⟨∇θℓj(θ),d⟩ ≤ v + ξj , ξj ≥ 0, ∀j ∈ Ip,
⟨∇θℓi(θ),d⟩ ≤ ⟨∇θℓj(θ),d⟩+ ηij ,

ηij ≥ 0,∀i ∈ It,∀j ∈ Ip.
(11)
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By means of the Lagrangian multiplier, the dual problem of
the PTL problem is formalized as follows

min
α,β

1

2
∥

M∑
m=1

αm∇θℓm(θ)+∑
i∈It

∑
j∈Ip

βij(∇θℓi(θ)−∇θℓj(θ))∥2,

s.t.
∑
m∈I

αm = 1, 0 ≤ αj ≤ C1, ∀j ∈ Ip,

0 ≤ βij ≤ C2,∀i ∈ It,∀j ∈ Ip,∑
i∈It

βij ≤ αj ,∀j ∈ Ip.

(12)

where α ∈ RM ,β ∈ RMt×Mp . Following Lemma 1, we
can also prove that the direction d can indeed improve the
target tasks while keeping the privileged tasks controllably
improved or declined, as Theorem 1.

Theorem 1. Following Lemma 1, let (d∗, v∗, ξ∗,η∗) be the
solution of Problem (11).

1. If d∗ = 0, then the solution is Pareto critical;

2. If d∗ ̸= 0, then target tasks and the privi-
leged tasks that satisfies −∥d∥2 − C1

∑
j∈Ip

ξ∗j −
C2

∑
i∈It

∑
j∈Ip

η∗ij + ξ∗j < 0 will descend:

∀i ∈ It, ⟨∇θℓi(θ),d
∗⟩ ≤ v∗

= −∥d∥2 − C1

∑
j∈It

ξ∗j − C2

∑
i∈It

∑
j∈Ip

η∗
ij ,

∀j ∈ Ip, ⟨∇θℓj(θ),d
∗⟩ ≤ v∗ + ξ∗j

= −∥d∥2 − C1

∑
j∈Ip

ξ∗j − C2

∑
i∈It

∑
j∈Ip

η∗
ij + ξ∗j .

(13)

Theorem 1 can be proved similarly as Lemma 1. De-
tailed proofs refer to the supplementary materials. Note
that instead of using the gradient over parameters, we also
use gradient over shared intermediate representations in
PTL for efficiency. In the sequel, we proceed to solve the
dual Problem (12) with a novel hybrid coordinate descent
method, or, the “HybridSolver”. Our learning algorithm is
summarized in Algorithm 1.

4.4. Optimization

In this section, we describe our approach for solv-
ing the dual problem (12). For succinct formulation, let
∇t = [,∇θℓm(θ), ] ∈ Rd×Mt , m ∈ It , and ∇p =
[,∇θℓm(θ), ] ∈ Rd×Mp , m ∈ Ip. Then Eq.(11) can be
rewritten as

min
α,β

1

2

∥∥[∇t,∇p]α+∇tβ1p −∇pβ
T1t

∥∥2 ,
s.t. αT1 = 1, βT1t ≤ αp,

0 ≤ αp ≤ C1, 0 ≤ β ≤ C2.

(14)

Algorithm 1: Learning under privileged tasks

Initialization;
for m← 1 to M do

Compute task specific gradients:
∇θm lm(θm,θ)

Update task specific parameters:
θm = θm −∇θm lm(θm,θ)

end
Compute shared gradients: [∇t,∇p]
Solve Eq. (14): α,β = HYBRIDSOLVER(θ)
Update shared parameters:
θ = θ − r · ([∇t,∇p]α+∇tβ1p −∇pβ

T1t)

where α ∈ RM ,β ∈ RMt×Mp . We use x = [α, β̂]. β̂
is the vectorization of β that satisfies β1p = Aβ̂, 1T

t β =

β̂P . Q is the positive semi-definite matrix calculated from
the inner products of the task gradients and their subtrac-
tions. Refer to the supplementary materials for the explicit
expression of Q.

This problem can relate with one class support vector
machine’s (OC-SVM) dual problem in their formats. One
efficient method for this kind of optimization is the coordi-
nate descent (CD) method (or decomposition method [7]).
It iteratively optimizes along a few coordinates in a work-
ing set B each time. Each iteration solves one sub-problem
of optimization. Due to the constraint αT1 = 1 on α, we
apply the selection method of B in [8]. For β, random se-
lection of the coordinates has been shown to be effective
[3]. In our case, the sub-problems can be formulated in (15)
and (16) below.

min
αi,αj

Qiiα
2
i +Qjjα

2
j + 2Qijαiαj

+ 2
∑

xk ̸∈{αi,αj}

(Qikαi +Qjkαj)xk

s.t. αi + αj = 1−
∑

xk ̸∈{αi,αj}

αk,

0 ≤ αj ≤ C1,∀i ∈ It,∑
j

βij ≤ αj ≤ C1,∀i ∈ Ip.

(15)

min
β̂i

Qiiβ̂
2
i + 2

∑
xk ̸∈{βi}

Qikβ̂ixk

s.t. 0 ≤ β̂i ≤ min(C2, αk −
∑
j

βjk), β̂i ∈ {βjk}.
(16)

Selecting working set B influences the speed of conver-
gence. Some heuristics have been proposed for linear SVM.
As has been discussed in [8], the inherent linear constraint
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in the OC-SVM’s dual problem will slow down the conver-
gence in the CD procedure. Since a linear constraint may
cause a sub-problem to be already optimal and thus the vari-
ables cannot be updated [3]. To alleviate this, the authors
proposed two-level CD methods for OC-SVM. But in our
case, the linear constraint only applies partially to α. We
introduce the following hybrid CD algorithm to tackle the
problem. The gist is that when optimizing along α, we ap-
ply the two-level CD in [8] to accelerate the optimization,
and when optimizing along β, we use the dual CD in [3]
to exploit its success. The details of selecting method is in
supplementary material. Solving the dual problem Eq. (14)
is summarized in Algorithm 2 in supplementary materials.

5. Experimental Results

In this section, we evaluate our algorithm’s performance
on synthetic as well as real-world tasks, including Multi-
MNIST and its variants [31, 42], CelebA [23] and CI-
FAR100 [21]. We compare with the following algorithms:

• STL: single task learning where tasks are trained once
at a time;

• t-MOOMTL: only learning the target tasks with
MOOMTL;

• MOOMTL: finding one Pareto optimal solution for
multi-objective optimization problem [33];

• GradNorm: using the normalization proposed by [6];

• Uncertainty: using the uncertainty weighting [10];

• Uniform Scaling: linear scalarization of tasks with
equal weights;

• Pareto-MTL : decomposing the multi-objective op-
timization problem into a set of constrained sub-
problems with different trade-off preferences [22].

5.1. Synthetic Data

We analyze our model with synthetic data from [22].
There are two non-convex objectives to be minimized,
shown in Eq. (17), where x ∈ Rn. Our algorithm can gen-
erate the subset of Pareto fronts with different preference to-
wards the target task l1 , as shown in Figure 3. Pareto-MTL
[22] can also generate distributed solutions on the Pareto
front. MOOMTL [33] fails to extend the solution set to-
wards any desired region, whereas linear scalarization (Lin-
Scalar) only finds the extreme solutions.

l1(x) = 1− e
−∥x− 1√

n
∥2
2 ,

l2(x) = 1− e
−∥x+ 1√

n
∥2
2 .

(17)

(a) LinScalar (b) MOOMTL

(c) ParetoMTL (d) PTL

l1(x)

l 2(x
)

l1(x)

l 2(x
)

l1(x)

l 2(x
)

l1(x)

l 2(x
)

Figure 3: Synthetic dataset performance. (a). The ob-
tained solutions of linear scalarization of the target and priv-
ileged tasks. (b). The obtained solutions of MOOMTL. (c).
The obtained solutions of a Pareto-MTL. (d). The obtained
solution from PTL in present work. The x-axis is the loss
for the target task and the y-axis is the loss for the privi-
leged task. The proposed PTL successfully generates a set
of widely distributed Pareto solutions that can sacrifice the
privileged task based on user preference. Details of the syn-
thetic example can be found in section 5.

5.2. Multi-MNIST and Multi-Fashion

Dataset and Task Description In the Multi-MNIST
dataset, each image has two digits. In the Multi-Fashion
dataset, each image has two fashion icons. In the Multi-
MNISTFashion dataset, each image has one digit on the left
and one fashion icon on the right. We followed [31] to gen-
erate the three datasets. There are two tasks: 1) classifying
the top- left image, and 2) classifying the bottom-right im-
age. We use the first task as target task and the other as
the privileged one. Each dataset has 60,000 training images
and 10,000 test images. The objectives are the cross entropy
loss.

Network Architecture The backbone network is a mod-
ified LeNet [42]. Our network starts from two convolu-
tional layers with a 5×5 kernel and a stride of 1 pixel. The
two layers have 10 and 20 channels respectively. A fully
connected layer of 50 channels appends the convolutional
layers, which is then followed by two 10-channel fully con-
nected layers, one for each task. We add a 2×2 max pooling
layer right after each convolutional layer and use ReLU as
the nonlinear function. The performance of the target task
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Pareto-MTL

Pareto-MTL Pareto-MTL

PTL (ours)

PTL (ours) PTL (ours)

Figure 4: Results on Multi-MNIST, Multi-Fashion and Multi-FashionMNIST. The x-axis is the accuracy of the target
task, and the y-axis is the accuracy of the privileged task.

are summarized in Table 1.

Table 1: Performance on the Multi-MNIST and its variants.

Method MultiMNIST Fashion FashionMNIST
STL 97.23% 80.93% 93.80%
GradNorm [6] 96.27% 78.86% 90.43%
Uncertainty [10] 96.47% 79.26% 89.80%
MOOMTL [33] 97.26% 80.14% 92.26%
Pareto-MTL [22] 91.92% 82.75% 95.07%
PTL (ours) 97.80% 86.71% 96.09%

PTL improves the accuracy of the state-of-the-art results
by 0.57%, 4% and 1% on Multi-MNIST, Multi-Fashion
and Multi-MNISTFashion. As PTL can prioritize the target
task, such improvements are as prediction by our theoreti-
cal analysis. Figure 4 shows the trade-offs between target
and privileged tasks under current methods. PTL can gen-
erates multiple solutions under different C1 and C2 values
specified by the user. Although Pareto-MTL [22] can also
achieve multiple solutions, its overall performance fails to
compete with ours. Our method also maintains the best
performance for the privileged task on Multi-MNIST and
Multi-Fashion, which might result from the mutually bene-
ficial task setting.

5.3. Results of More Tasks

Now we investigate the comprehensive effectiveness of
our proposed method PTL on more datasets with various
task types and number of tasks. We randomly select half
of tasks as target tasks and the rest as privileged tasks by
default if not illustrated explicitly.

Cityscapes. Cityscapes [11] is a large dataset for road
scene understanding, labelled with instance and semantic
segmentation from 20 classes. The dataset consists of 2,975
training and 500 validation images. 1,525 images are with-
held for testing on an online evaluation server. Our en-

coder is based on DeepLabV3 [4]. We use ResNet101 [18]
as the base feature encoder, followed by an Atrous Spatial
Pyramid Pooling (ASPP) module [4] to increase contextual
awareness. And we take semantic segmentation as the tar-
get task.

CelebA. CelebA dataset [23] includes 200K face images
annotated with 40 attributes. Each attribute is a binary clas-
sification task and therefore this can be modified into a 40-
way MTL problem. We divide the target-privileged task
sets by taking the hardest 23 tasks as the target ones, and
the remaining tasks are privileged tasks. Following [33], we
use ResNet-18 [18] without the final layer as a shared rep-
resentation function. Since there are 40 attributes, we add
40 separate 2048 x 2 dimensional fully-connected layers as
task-specific functions. The final two-dimensional output is
passed through a 2-class softmax function to get binary at-
tribute classification probabilities. We use cross-entropy as
a task-specific loss.

CIFAR-100. Following [21], we we split the CIFAR-
100 dataset [21] into 20 tasks, where each task is a 5-way
classification problem. The shared architecture has four
convolution layers that have 3x3 convolution and 32 filters,
with batch normalization and one ReLU following them.
There are 20 task-specific FC layers. We report the test ac-
curacy for all 20 tasks.

PASCAL. PASCAL dataset [16] includes 20 classifica-
tion labels for 11540 images. We modify the dataset into
a 20-way MTL problem. The 10 target tasks are randomly
selected from all the tasks, and the remaining 10 tasks are
the privileged tasks. We use SENet-101 as the shared archi-
tecture [20] with a head for binary classification per task.

ImageNet-100. We randomly select 100 classes from
the ImageNet [30] dataset to form a 100-way MTL classi-
fication problem. We randomly select 50% tasks as target
tasks and the rest 50% tasks as privileged tasks. We use
ResNet-50 [18] as the backbone with a head for binary clas-
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Table 2: Average performance of target tasks for different task types (↑ for prediction accuracy and ↓ for error).

Cityscapes ↑ CelebA ↓ CIFAR-100 ↓ PASCAL ↑ ImageNet-100 ↑
#tasks 2 40 20 20 100
task type dense segmentation binary attribute multi-class binary attribute binary classification
tMOOMTL 64.35% 28.55% 17.76% 81.30% 78.31%
Uncertainty [10] - 13.46% 20.65% - -
MOOMTL [33] 65.95% 13.94% 19.86% 77.13% 75.90%
PTL (ours) 66.75% 11.94% 16.72% 83.56% 79.46%

sification per task.
Results. As in Table 2 and Figure 5, our algorithm

on average can improve the SOTA results by 1.4% for all
datasets, implying the efficacy of including privileged learn-
ing in MTL. In our experiments, the number of tasks ranges
from 2 to 100, suggesting the applicability of our algorithm
at different scales. For CelebA dataset, we observe that
tMOOMTL has extremely low performance. We infer that
it is due to the fierce competition between the hard tasks
within the target task set. But the PTL method can alle-
viate the competition and significantly improve the perfor-
mance. In addition, our experiments include the shared-
network that ranges from 4-layered convolutional network,
ResNet-18, ResNet-50, ResNet-101 and SENet-101. This
shows that our algorithm is effective under various neural
architectures and sizes.
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Figure 5: Prediction error of individual target tasks.

Ablation Study on the Effect of Parameters C1 and
C2 in Eq.(14). To show the effect of parameters C1 and
C2 in Eq.(14), we perform ablation study with CIFAR100
dataset. The 10 targeted tasks are randomly selected from
the 20 5-way classification problems, and the remaining 10
tasks are used as the privileged tasks. For investigation of
C1, we set C2 as 0, i.e. no direction correction against the
privileged tasks. During the investigation of C2, C1 is set as
0.1, which highlights the impact from direction correction.
We report the average error of the targeted tasks and the
privileged tasks. The results are shown in Figure 6. When
C1 increases from 0 to 1, the performance peaks at around
C1 = 0.17 with error as 16.52%. When C2 increases from
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Figure 6: Ablation study on CIFAR100 dataset.

1e − 4 to 1, the performance peaks around C2 = 0.82
with error as 16.18%. Altogether, it shows that appropriate
amount of slack descent for the privileged tasks helps the
performance of the targeted tasks, and that additional direc-
tion correction can further improve learning of the targeted
tasks.

6. Conclusion

We present the learning with privileged task framework
that generalizes the MOO-MTL algorithm, which is adapt-
able to the user’s preference for the certain tasks. The model
consists of slack descent of the privileged tasks and the di-
rection correction towards the target tasks. We strictly prove
the effectiveness of PTL using the KKT condition and pro-
vides illustrative analysis of the model. The novel hybrid
block coordinate descent method can solve the dual prob-
lem efficiently. PTL can achieve state-of-the-art perfor-
mance on both synthetic and real-world datasets. Further
analysis of the effect of task correlation and conflict under
this model would be helpful. Theoretical improvement on
the relationship between our model and the ϵ-Pareto opti-
mality could be future direction.
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