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Abstract

This paper considers matching images of low-light
scenes, aiming to widen the frontier of SfM and visual
SLAM applications. Recent image sensors can record the
brightness of scenes with more than eight-bit precision,
available in their RAW-format image. We are interested in
making full use of such high-precision information to match
extremely low-light scene images that conventional meth-
ods cannot handle. For extreme low-light scenes, even if
some of their brightness information exists in the RAW for-
mat images’ low bits, the standard raw image processing
on cameras fails to utilize them properly. As was recently
shown by Chen et al.[14], CNNs can learn to produce im-
ages with a natural appearance from such RAW-format im-
ages. To consider if and how well we can utilize such infor-
mation stored in RAW-format images for image matching,
we have created a new dataset named MID (matching in the
dark). Using it, we experimentally evaluated combinations
of eight image-enhancing methods and eleven image match-
ing methods consisting of classical/neural local descriptors
and classical/neural initial point-matching methods. The
results show the advantage of using the RAW-format images
and the strengths and weaknesses of the above component
methods. They also imply there is room for further research.

1. Introduction
Structure-from-motion (SfM) [24, 58] and visual SLAM

(simultaneous localization and mapping) [38, 53] have been
used for real-world applications for a while. The main-
stream methods use point correspondences between multi-
ple views of a scene. They first detect keypoints and ex-
tract the descriptor of the local feature at each keypoint
[31, 35, 2, 44]. They then find initial point correspondences
between images and eliminate outliers from them, finally
estimating the geometric parameters such as camera poses,
etc.

SfM and visual SLAM have the potential to widen their
application fields. One important target is the application to
extremely low-light environments, such as outdoor scenes
at night under moonlight or indoor scenes with insufficient
illumination. Making it possible to use SfM and visual
SLAM in these environments is essential for real-world ap-
plications, such as autonomous vehicles that can operate at
night.

Owing to the advancement of image sensors, they can
record incoming light with more than eight bits (e.g., 14
bits). However, standard raw image processing employed
on many cameras cannot make full use of the information
existing in the lower bits of the sensor signal; it reduces
mosaic artifacts on the sensor signal, adjusts the white bal-
ance and contrast, and then converts the processed signal
into the standard format of eight-bit RGB images (we will
refer to this raw image processing as RIP in this paper).
This limitation arguably comes from the requirement for
versatility against all sorts of scenes with various lighting
conditions in addition to reducing the number of bits. In
extreme low-light scenes, even when some details of the
scenes’ brightness are stored in the low bits of their RAW
signals, the standard RIP often yields mostly black images.
The study of SID (see-in-the-dark) [14] well proves such
limitation of the image pipeline, in which the authors show
that a CNN can learn to convert such RAW-format images
of dark scenes into brightened images with a natural appear-
ance.

It is very likely that we can do the same with SfM and
visual SLAM applied to low-light scenes, i.e., extracting the
information present in the lower bits of the RAW signals
to make SfM/visual SLAM work. The question is how to
do this. It is noteworthy that the goal is not to generate
natural looking bright images as SID does but to achieve
the optimal performance for SfM and visual SLAM.

There are potentially several directions to achieve the
goal. One is to develop a keypoint detector and a feature
descriptor that work directly on the RAW-format images.
Even if keypoint detectors and descriptors are not good

6029



enough, it could be possible to attain the necessary level
of matching performance by strengthening the subsequent
steps in the pipeline. Recently, CNNs have been applied to
these steps, leading to promising results, such as outlier re-
moval in the initial correspondences [37, 12] and establish-
ing initial matching [45]. In parallel to these, the applica-
tion of image enhancement methods for RAW-format low-
light images in a pre-processing stage of image matching
could be useful, e.g., SID [14] and others [13, 57]. Methods
for more general image restoration would be applied to the
RAW-format images [63, 29].

As above, we can think of multiple different approaches
to making SfM and visual SLAM methods applicable to low
light environments. To promote further studies, we need a
dataset to evaluate the above approaches in a multi-faceted
fashion. Aiming at widening their application field toward
lower-light scenes, it is necessary to examine how underex-
posed the image will be that each approach can deal with.
There is currently no dataset that can be used for this pur-
pose. Considering these, we create a dataset having the fol-
lowing features:

• To examine each method’s limit with underexposed
images, we acquire multiple RAW-format images at
each scene’s position with 48 = (6 shutter speeds ×
8 ISO settings) exposure settings ranging from ex-
treme to mildly underexposure settings. The camera
is mounted on a tripod while capturing all the images.

• We additionally provide long-exposure images, using
which as the ground truth, one can evaluate image
restoration methods on the task of estimating it from
one of the underexposed images.

• The current standard for the evaluation of image
matching methods is to measure the accuracy of the
downstream task, i.e., the estimation of geometric pa-
rameters, as was pointed out in recent studies [27].
Therefore, we acquire images from two positions to
form stereo pairs for each scene along with their
ground truth relative pose. To obtain the ground truth
pose, we capture a good quality image with a long-
exposure setting for each scene position.

• The dataset contains diverse scenes consisting of 54
outdoor and 54 indoor scenes.

Using this dataset, we experimentally evaluate several
existing component methods for the SfM pipeline, i.e.,
detecting keypoints and extracting descriptors [31], find-
ing initial point correspondences, and removing outliers
from them [20, 12, 45]. We choose classical methods
and learning-based methods for each. We also evaluate
the effectiveness of image enhancement, including classi-
cal image-enhancing methods with/without denoising [16],

and a CNN-based method [14, 62]. The results show the
importance of using the RAW-format images instead of us-
ing the processed images by the standard RIP. They further
provide the strengths and weaknesses of the above compo-
nent methods, also showing that there is room for further
improvement.

2. Related Work
2.1. Matching Multi-view Images

Matching multi-view images of a scene is a fundamental
task of computer vision, and its research has a long history.
It generally performs the following steps: detecting key-
points/computing local descriptors, establishing initial point
correspondences, and removing outliers to finding correct
correspondences. A baseline of this pipeline, built upon tra-
ditional methods, consists of SIFT [31], SURF [8], etc. for
detecting interest points and extracting their local descrip-
tor, nearest neighbor search in the descriptor’s space for ob-
taining initial correspondences across images, with an op-
tional ‘ratio test’ step for filtering out unreliable matches
[31], and RANSAC for outlier removal [20, 43].

A recent trend is to use CNNs to detect keypoints
and/or extract local descriptors. Early studies attempted to
learn either keypoint detectors [56, 48, 7], or descriptors
[51, 61, 23, 5, 60]. In contrast, in recent studies, researchers
have proposed end-to-end pipelines [59, 17, 19, 40, 26, 39]
that can perform the two at once. Despite the success of
CNNs in many computer vision tasks, it remains unclear
that these learning-based methods have surpassed the clas-
sical hand-crafted methods. In parallel to the developments
of methods for keypoint detectors and descriptors, several
recent studies have developed learning-based methods for
initial point matching and outlier removal [12, 45].

2.2. Datasets for Image Matching

There are many datasets created for the research of im-
age matching [36, 1, 64, 42, 52, 28, 56]. Many recent stud-
ies of image matching employ HPatches [6]. There are
also a number of datasets for visual SLAM and localiza-
tion/navigation [47, 21, 33, 46, 4].

Some of these datasets provide challenging cases, in-
cluding illumination changes, matching daylight and night-
time images, motion blur in low-light conditions, etc. How-
ever, all these datasets provide only images in the regime
where the standard RIP can successfully yield RGB images
with a well-balanced brightness histogram. This is also the
case with a recent study [25] that analyzes image retrieval
under varying illumination conditions. Our dataset contains
the images of very dark scenes all in a RAW-format with
14-bit depth. In fact, while we have verified the authors’
findings in [25] with 8-bit images converted from our RAW-
format images using the standard RIP, they do not hold in
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the case of directly using the RAW-format images, as we
will show later.

There are also many evaluation methods for image
matching, which are developed aiming at a more precise
evaluation [49, 36, 1, 15, 10]. A recent study has introduced
a comprehensive benchmark for image matching [27]. As
in this study, the current trend is to focus on the downstream
task; the accuracy of the reconstructed camera pose is cho-
sen as a primary metric for evaluation. Following this trend,
our dataset provides the ground truth for the relative camera
pose between every stereo image pair.

2.3. Image Enhancement

There are many image-enhancing methods that improve
the quality of underexposed images. Besides basic image
processing such as histogram equalization, there are many
methods based on different assumptions and physics-based
models, etc., such as global analysis and processing based
on the inverse dark channel prior [34, 18], the wavelet trans-
form [32], the Retinex model [41], and illumination map es-
timation [22]. These methods are proven to be effective for
images that are mildly underexposed.

To deal with more severely underexposed images, Chen
et al. proposed a learning-based method that uses a CNN
to directly convert a low-light RAW image to a good qual-
ity RGB image [14]. Creating a dataset containing pairs
of underexposed and well-exposed RAW images (i.e., the
SID dataset), they train the CNN in a supervised fashion.
Their method can handle more severe image noise and color
distortion emerging in underexposed images than the previ-
ous methods. For the problem of enhancing extreme low-
light videos, Chen et al. extended this method while creat-
ing a dataset for training [13]. In parallel to these studies,
Wei et al. have developed a model of image noises, mak-
ing it possible to synthesize realistic underexposed images
[57]. They demonstrated that a CNN trained on the syn-
thetic dataset generated by their model performs denoising
equally well or even better than a CNN trained on pairs of
real under/well-exposed images.

While these studies aim sorely at image enhancement,
our study considers the problem of matching images of ex-
tremely low-light scenes. Our dataset contains stereo image
pairs of multiple scenes; there are 48 low-light RAW images
with different exposure settings and one long-exposure ref-
erence image for each camera position of each scene. It is
noteworthy that they include much more underexposed im-
ages than the datasets of [14, 13].

3. Dataset for Low-light Image Matching
3.1. Design of the Dataset

We built a dataset of stereo images of low-light scenes
and named it the MID (Matching In the Dark) dataset. It

Figure 1. Example stereo image pairs (long exposure versions)
of four indoor scenes (upper two rows) and four outdoor scenes
(lower two rows).

contains stereo image pairs of 54 indoor and 54 outdoor
scenes (108 in total). We used a high-end digital camera
to capture all the images; they are recorded in a RAW for-
mat with 14-bit depths. Figure 1 shows example scene im-
ages. For each of the 108 scenes, we captured images from
two viewpoints with 49 different exposure settings, i.e., 48
exposure settings in a fixed range plus one long exposure
setting to acquire a reference image. Note that most of the
images are so underexposed that the standard RIP cannot
yield reasonable RGB images from them.

Some of the 48 images of each scene captured with the
most underexposed settings are so underexposed that they
appear to store only noises; it will be impossible to perform
image matching using them, even if we try every one of the
currently available methods. Nevertheless, we keep these
images in the dataset to assess the lower limit of exposure
to which image matching and restoration methods work, not
only existing methods but those to be developed in the fu-
ture. We designed the dataset primarily to evaluate image
matching methods in low-light conditions, but the users can
also evaluate image-enhancing methods. Our 48 images of
each scene contain more severely underexposed ones than
any existing datasets for low-light image enhancement (e.g.,
[14]).

3.2. Detailed Specifications

The dataset contains 10,584 (= 108(scenes)×2(stereo)×
(48 + 1)(exposure settings)) images in total. They are of
6, 720 × 4, 480 pixels and in a RAW format of 14 bits per
pixel; its Bayer pattern is RGGB. We used Canon EOS 5D
Mark IV with a full-frame CMOS sensor and EF24-70mm
f/2.8L II USM to capture these images.

For each scene, we set up the camera in two positions to
capture stereo images. For each position, we mounted the
camera on a sturdy tripod while capturing 49 images. We
first captured a long-exposure image, which serves as a ref-
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erence image; we use it to compute the ground-truth camera
poses of the stereo pair, as will be explained in Sec. 3.3. To
capture the reference image, we choose exposure time from
the range of 10 to 30 seconds, while fixing ISO to 400.

We then captured the low-light images in 48 dif-
ferent exposure settings that are combinations between
six exposure times and eight ISO values. The expo-
sure time is chosen from the range of [1/200, 1] sec-
onds for the indoor scenes and [1/200, 0.5] seconds for
the outdoor scenes. The ISO value is chosen from
{100, 200, 400, 800, 1600, 3200, 6400, 12800}.

The indoor scene images were captured in closed rooms
with regular lights turned off; the illuminance at the camera
is in the range of 0.02 to 0.3 lux. The outdoor scene images
were captured at night under moonlight or street lighting.
The illuminance at the camera is in the range of 0.01 to 3
lux.

3.3. Obtaining Ground Truth Camera Pose

To compare various image matching methods with dif-
ferent local descriptors and keypoint detectors, we need to
evaluate the accuracy of the camera poses estimated from
their matching results. We consider stereo matching in our
dataset, and an image matching method yields the estimate
of the relative camera pose between the stereo images. To
obtain its ground truth, we use the pairs of the reference im-
ages to perform image matching, from which we estimate
the relative camera pose for each scene. Following [11], we
use it as the ground truth after manual inspection along with
correction, if necessary, which we will explain later.

The detailed procedure for obtaining the ground truth
camera pose for each scene is as follows.

We first convert the two reference images in the RAW
format into RGB space1. We then covert each RGB im-
age into grayscale and compute keypoints and their descrip-
tors using the difference of Gaussian (DoG) operator and
the RootSIFT descriptor [3]. We next establish their initial
point matches using nearest neighbor search with Lowe’s
ratio test [31] with a threshold of 0.8.

We then estimate the essential matrix by using the 5-
point algorithm with the pretrained neural-guided RANSAC
(NG-RANSAC) [12]. We employed the authors’ implemen-
tation for it. We employ NG-RANSAC over conventional
RANSAC, since we found in our experiments that it consis-
tently yields more accurate results. Calibrating the camera
with the standard method using a planar calibration chart,
we decompose the estimated essential matrix and obtain the
relative camera pose (i.e., translation and rotation) between
the stereo pair.

As mentioned above, we performed a manual inspection

1Following [14], we used rawpy (https://pypi.org/project/
rawpy/), a python wrapper for libraw that is a raw image processing li-
brary (https://www.libraw.org/)

of the estimated essential matrix, ensuring they are reliable
enough to be used as the ground truths. We did this by
checking if any image point on the paired images satisfies
the epipolar constraint given by the estimated essential ma-
trix. To be specific, we manually select a point on either left
or right image and draw its epipolar line on the other image.

We then visually check if the corresponding point lies
on the epipolar line with a deviation less than one pixel.
We chose a variety of points having different depths for this
check. If an estimated essential matrix fails to pass this test,
we either remove the scene entirely or manually add several
point matches to get a more accurate estimate of the essen-
tial matrix and perform the above test again. All the scenes
in our dataset have passed this test.

4. Matching Images in Low-light Scenes
This section discusses what methods are applicable to

matching low-light images in our dataset. We evaluate those
in our experiments.

4.1. Conversion of RAW Images to RGB

As there is currently no image matching method di-
rectly applicable to RAW-format images, we consider ex-
isting keypoint detectors and local descriptors that receive
grayscale images. To cope with the low-light condition, we
plug image enhancement methods before keypoint detectors
and local descriptors, which we will describe later.

It is first necessary to convert RAW-format images into
RGB/grayscale images. We have two choices here. One is
to use the standard RIP that converts RAW to RGB. As men-
tioned in Sec. 1, the standard RIP often fails to make use of
brightness information stored in the lower bits of RAW sig-
nals of dark scenes, due to the requirement for versatility
against a variety of scenes with different illumination con-
ditions and also the limit of computational resources avail-
able to on-board RIP. To confirm its limitation, we evaluate
this standard-camera-pipeline-based conversion in our ex-
periment; we use the LibRaw library using rawpy, a Python
image processing module.

The other choice is to do the conversion without using
the standard RIP. We will explain this below, because it is
coupled with the image enhancement step.

4.2. Image Enhancement

Thus, we consider two methods, i.e., using the standard
RIP for the RAW-to-RGB conversion and directly using
RAW-format images. For each, we consider three different
image enhancing methods.

4.2.1 Conversion by standard camera pipeline

When using the standard RIP to convert RAW images,
we consider applying the following four methods to its out-
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Figure 2. Images of a scene captured from the same camera pose that are converted from their RAW-format originals by three conversion
methods. (a) RIP-HistEq. (b) Direct-BM3D. (c) SID. See text for these methods.
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Figure 3. The pipelines of two image-enhancing methods. (a)
Direct-HistEq or Direct-CLAHE. (b) SID.

puts: none, a classical histogram equalization, a contrast
limited adaptive histogram equalization (CLAHE), and a
CNN-based image enhancement, MIRNet [62]. We choose
MIRNet because it is currently the best image-enhancing
method applicable to RGB/grayscale images. Figure 2(a)
shows examples of the standard RIP with histogram equal-
ization. We will refer to the four methods as standard RIP,
RIP-HistEq, RIP-CLAHE, and RIP-MIRNet in Sec. 5.

4.2.2 Direct Use of RAW-format Images

We consider two approaches. One is to use standard im-
age processing methods to convert RAW to RGB/grayscale
images; see Fig. 3(a). For this, we employ the following
simple approach. Given a Bayer array containing the input
RAW data, we first apply black level subtraction to it and
then split the result into four channels; the pixel values are
now represented as floating point numbers. We then take
the average of the two green channels to obtain an RGB im-
age and convert it to grayscale using the OpenCV function

cvtColor. Next, we perform histogram equalization or
CLAHE to improve the brightness of the image. We map
the brightness in the range [m − 2d,m + 2d], where m is
the average brightness and d is the mean absolute difference
from m to each pixel value, to the range [0, 255]. Finally, we
quantize the pixel depth to 8 bits. We will call this method
Direct-HistEq or Direct-CLAHE.

We optionally apply denoising to the converted image at
the final step. We employ BM3D [16] with a noise PSD
ratio of 0.08 in our experiments. The resulting image will
be transferred to the second step of image matching. Fig-
ure 2(b) shows examples of the converted images by the
method. We will call this method Direct-BM3D.

In parallel to the above, we consider a CNN-based im-
age enhancing method that directly works on RAW-format
images; see Fig. 3(b). We employ SID [14], a CNN trained
on the task of converting an underexposed RAW image of
a low-light scene to a good quality image. It is designed to
receive the RAW data of an image and output an RGB im-
age. We calculate the amplification ratio of SID using shut-
ter speed and ISO values between the underexposed and the
reference images. As the output of SID is twice as large as
others, we downscale the image size by 2 : 1 and then con-
vert it into grayscale for image matching; see Fig. 2(c). We
used the pretrained model provided by the authors , which
is trained on the SID dataset. We call this method SID in
what follows.

4.3. Image Matching

We consider matching a pair of images of a scene here. It
is to establish point correspondences between images while
imposing the epipolar constraint on them and estimate the
camera pose (i.e., a essential or fundamental matrix) en-
coded in the constraint. The standard approach to the prob-
lem is to first extract keypoints and their local descriptors
from each input image, establish initial matching of the key-
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points between the images, and finally estimate the camera
pose from them.

There are at least several methods for each of the three
steps. There are many classical methods that do not rely
on learning data. As with other computer vision problems,
neural networks have been applied to each step. They were
first applied to the first step, i.e., keypoint detectors [56]
and descriptors [23, 51, 5, 60], to name a few. The next
was the third step of robust estimation [37, 12]. Recently,
SuperGlue [45] was proposed, which deals with the step of
establishing initial point correspondences.

5. Experiments
We experimentally evaluate the combinations of several

methods discussed in Sec. 4 using our dataset.

5.1. Experimental Configuration

5.1.1 Compared Methods

We choose both classical methods and neural network-
based methods for each step of image matching. As for
keypoint detection and local descriptors, we choose Root-
SIFT [3] and ORB [44] as representative classical methods;
we consider ORB because it has been widely used for vi-
sual SLAM. We use their implementation of OpenCV-3.4.2.
We use SuperPoint [17], Reinforced SuperPoint [9], GIFT
[30], R2D2 [26], and RF-Net [50] as representative neural
network-based methods. Furthermore, we employ L2-Net
[54] and SOSNet [55] as hybrid methods of classical and
neural-based methods; they compute local descriptors based
on the SIFT keypoints and neural networks. For them, we
use the authors’ implementation and follow the settings rec-
ommended in their papers.

As for outlier removal of point correspondences, we
choose RANSAC and NG-RANSAC [12]. We use
the OpenCV-3.4.2 implementation of RANSAC with
threshold = 0.001, probability = 0.999, and
maxIters = 10, 000 with the five point algorithm and use
the authors’ code for the latter. For obtaining initial point
correspondences, we use the nearest neighbor search and
also SuperGlue [45]. We apply Lowe’s ratio test [31] with
a threshold of 0.8 to RootSIFT, L2-Net, SOSNet, and RF-
Net.

To summarize, we compare the following eleven meth-
ods: SP: Superpoint + NN + RANSAC, RSP: Rein-
forced SuperPoint + NN + RANSAC, GIFT: GIFT +
NN + RANSAC, SP + SG: SuperPoint + SuperGlue +
RANSAC, R2D2: R2D2 + NN + RANSAC, RF: RF-
Net + NN + RANSAC, L2: L2-Net + NN + RANSAC,
SOS: SOSNet + NN + RANSAC, RS: RootSIFT + NN +
RANSAC, RS + NG: RootSIFT + NN + NG-RANSAC,
ORB: ORB + NN + RANSAC. As for image enhancers,
we use the eight methods explained in Sec. 4.2., i.e.,
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Figure 4. Angular errors of the camera pose estimated by several
methods for a scene from images with 6 × 8 different exposure
settings. The number of cells with an error lower than a specified
threshold quantifies the robustness of the method.

standard RIP, RIP-HistEq, RIP-CLAHE, RIP-MIRNet,
Direct-HistEq, Direct-CLAHE, Direct-BM3D, and SID.
We combine these eight image enhancers with the above
eleven image matching methods and evaluate each of the
88 pairs. We resize the output images from each image en-
hancer to 960×640 pixels and feed it to the image matching
step.

5.1.2 Evaluation

We compare these methods by evaluating the accuracy
of their estimated relative camera pose. We apply each pair
of an image enhancer and an image matching method to
the stereo images of each scene. We consider only pairs of
stereo images with the same exposure setting; there are 48
pairs per each scene. Thus, we have 48 estimates of relative
camera pose for each scene.

To evaluate the accuracy of these estimates, we follow
the previous work [37, 12, 45]. Specifically, we measure the
difference between the rotational component of the ground
truth camera pose and its estimate, as well as the angular
difference between their translational components. We use
the maximum of the two values as the final angular error.
Figure 4 shows examples of the results. Each of the colored
6×8 matrices indicate the above angular errors of one of the
compared methods for a scene and the 48 exposure settings.

We are interested in how robust each method will be for
underexposed images. To measure this, we count the expo-
sure settings (out of 48) for which each method performs
well. To be specific, denoting the above angular error of
i-th exposure setting by ei (i = 1, . . . , 48), we set a thresh-
old τ and count the exposure settings with an error lower
than τ as Nτ =

∑48
i=1 1(ei < τ), where 1(True) = 1

and 1(False) = 0. We normalize Nτ dividing by the total
number of exposure settings. As shown in Fig. 4, the an-
gular error decreases roughly in a monotonic manner from
well-exposed toward underexposed settings. Thus, a larger
Nτ means that the method is more robust to underexposure.
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Dirct-CLAHE

Figure 5. The normalized number Nτ of the exposure settings (the vertical axis) for which the estimation error of each method is lower
than threshold τ (the horizontal axis). Each panel shows the means and standard deviations over 54 indoor scenes for the eleven image
matching methods for an image-enhancing method.

5.2. Results

Figure 5 shows the results for the indoor scenes; see
Fig. 11 in the supplementary for the outdoor scenes. Ta-
ble 1 shows the mean of Nτ with τ = 5◦ over 54 scenes
for indoor and outdoor scenes, i.e., the values of the curve
in Fig. 5 and Fig. 11 at the error threshold τ = 5◦. It can be
used as a summary of Fig. 5 and Fig. 11. We can make the
following observations.

First, the overall comparison of the image enhancers in-
dicates the following: i) Using the standard RIP to convert
RAW-format images to 8-bit RGB images before enhancing
and matching is inferior to the direct use of RAW-format
images. This shows that the standard RIP cannot utilize the
information stored in the low bits of the RAW signals. This
fact forms a basis for our dataset.

Next, the overall comparison of the image matching
methods yields the following: ii) SP and its variants are
clearly better than the other methods. For example, SP
and GIFT outperform RS and R2D2 in all cases. This may
somewhat contradict previous reports [9, 27] that while SP
is superior to SIFT in the homography-based evaluation us-
ing the HPatches dataset, the superiority is not observed in
the evaluation with non-planar scene matching. Addition-
ally, iii) SP+SG performs the best in many cases. However,
the gap to other methods considerably differs between the
indoor and the outdoor scenes. For the outdoor scenes, the
gap to the second-best methods tends to be large, whereas,
for the indoor scenes, it is not so large.

The comparison within standard-camera-pipeline-based
enhancers indicates the following. iv) The results of the
standard RIP (without any enhancement) are the worst.
Comparing RIP-HistEq and RIP-MIRNet, the former is
comparable or even better than the latter. This agrees with
the results reported in the recent study of Jenicek and Chum
[25], where the authors use 8-bit RGB images outputted

from the standard RIP.
Finally, the comparison within the enhancers using

RAW-format images shows the following. v) For the out-
door scenes, the four enhancers show similar performance
in many cases. When used with SP+SG, both BM3D and
SID perform better than Direct-HistEq and Direct-CLAHE;
the two show the best performance. For the indoor scenes,
while there is a similar tendency, SID shows a good mar-
gin with others only when used with SP+SG. It is notewor-
thy that the superiority of SG depends on the chosen image
enhancer, regardless of whether they are applied to indoor
or outdoor scenes; this tendency cannot be predicted sorely
from the performance of SP.

We conclude that if we use SG, we should choose SID
for the image enhancer, which achieves the best perfor-
mance; if we do not, we should use BM3D since it achieves
good performance overall. This conclusion differs from that
with the standard-camera-pipeline-based enhancers (i.e.,
(iv)), which is another evidence that the proposed dataset
offers what is unavailable in the previous datasets providing
only low-bit depth images. Figure 6 shows the visualization
of a few matching results for an indoor scene.

6. Summary and Discussion
This paper has presented a dataset created for evaluating

image matching methods for low-light scene images. It con-
tains stereo images of diverse low-light scenes (54 indoor
and 54 outdoor scenes). They are captured with 48 different
exposure settings, including from mildly to severely under-
exposed ones. The dataset provides ground truth camera
poses to evaluate image matching methods in terms of the
accuracy of estimated camera poses.

We have reported the experiments we conducted to test
multiple combinations of existing image-enhancing meth-
ods and image-matching methods. The results can be sum-
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Table 1. Averaged number Nτ over 54 scenes of exposure settings for which each method yields a better result than error threshold = 5◦.
Extracted from Fig. 5 and Fig. 11 in the supplementary. ‘R-’ means ‘RIP-’ and ‘D-’ means ‘Direct-.’

Indoor Outdoor
RIP R-HistEq R-CLAHE R-MIRNet D-HistEq D-CLAHE D-BM3D SID RIP R-HistEq R-CLAHE R-MIRNet D-HistEq D-CLAHE D-BM3D SID

SP 0.223 0.421 0.275 0.381 0.548 0.540 0.596 0.583 0.233 0.379 0.269 0.352 0.460 0.475 0.502 0.500
RSP 0.190 0.379 0.277 0.365 0.523 0.523 0.581 0.577 0.215 0.363 0.277 0.335 0.435 0.448 0.494 0.477

GIFT 0.238 0.427 0.338 0.390 0.552 0.550 0.602 0.583 0.254 0.375 0.321 0.358 0.475 0.477 0.506 0.492
SP + SG 0.219 0.400 0.292 0.404 0.548 0.544 0.585 0.619 0.302 0.419 0.365 0.410 0.525 0.527 0.577 0.575

R2D2 0.113 0.317 0.192 0.229 0.388 0.383 0.483 0.421 0.104 0.240 0.163 0.188 0.267 0.277 0.373 0.321
RF 0.138 0.154 0.152 0.192 0.256 0.275 0.346 0.358 0.160 0.146 0.183 0.202 0.225 0.244 0.323 0.325
L2 0.027 0.323 0.077 0.227 0.442 0.415 0.444 0.394 0.052 0.331 0.096 0.258 0.410 0.423 0.427 0.406

SOS 0.029 0.333 0.077 0.229 0.438 0.429 0.440 0.392 0.054 0.325 0.096 0.256 0.417 0.413 0.423 0.402
RS 0.025 0.317 0.071 0.210 0.423 0.404 0.410 0.369 0.046 0.317 0.094 0.242 0.410 0.413 0.404 0.406

RS + NG 0.023 0.288 0.073 0.202 0.404 0.398 0.388 0.363 0.048 0.296 0.102 0.229 0.388 0.392 0.396 0.375
ORB 0.029 0.210 0.056 0.125 0.267 0.238 0.296 0.238 0.069 0.213 0.094 0.144 0.265 0.233 0.277 0.217

RIP RIP-MIRNet Dirct-HistEq SID

Ea
sy

H
ar

d

SP + SG

SP

RS

SP + SG

SP

RS

Figure 6. Visualization of the matching results for one of the 54 indoor scenes. Point correspondences judged as inliers are shown in green
lines. The combination of three matching methods and the four image enhancing methods are applied to two image pairs with different
levels of exposure (i.e., ‘Easy’ and ‘Hard’).

marized as follows.

• The direct use of the RAW-format images shows a
clear advantage over the standard RIP. Using the stan-
dard RIP yields only suboptimal performance, as it
cannot utilize information stored in the lower bits of
RAW-format signals. Moreover, when using the stan-
dard RIP, using classical histogram equalization or the
state-of-the-art CNN-based image-enhancing method
does not make a big difference, as reported in [25].

• SuperPoint and its variants work consistently better
than RootSIFT.

• SID is the best image enhancer when using Super-
Point+SuperGlue. Otherwise, BM3D and SID perform
equally well and better than the sole use of histogram
equalization.

While the above is our conclusion about the combina-
tions of currently available methods, we think there remains
much room for improvement. For instance, we manually
chose the range of 14-bit RAW signal and converted it into
8-bit images, and applied Superpoint to them. It is observed
that the manual method yields significantly better results
than the image enhancers tested in this paper, showing that
none of the tested methods can choose the best range in the
14-bit RAW signals for image matching; see Sec. B in the
supplementary for details. The standard image enhancers
are designed to yield images that appear the most natural,
which should differ from the best image for image match-
ing. We will explore this possibility in a future study.

Acknowledgments: This work was partly sup-
ported by JSPS KAKENHI Grant Number 20H05952 and
JP19H01110.
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