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Abstract

Localizing individuals in crowds is more in accordance
with the practical demands of subsequent high-level crowd
analysis tasks than simply counting. However, existing
localization based methods relying on intermediate rep-
resentations (i.e., density maps or pseudo boxes) serving
as learning targets are counter-intuitive and error-prone.
In this paper, we propose a purely point-based framework
for joint crowd counting and individual localization. For
this framework, instead of merely reporting the absolute
counting error at image level, we propose a new metric,
called density Normalized Average Precision (nAP), to pro-
vide more comprehensive and more precise performance
evaluation. Moreover, we design an intuitive solution un-
der this framework, which is called Point to Point Network
(P2PNet). P2PNet discards superfluous steps and directly
predicts a set of point proposals to represent heads in an
image, being consistent with the human annotation results.
By thorough analysis, we reveal the key step towards im-
plementing such a novel idea is to assign optimal learn-
ing targets for these proposals. Therefore, we propose to
conduct this crucial association in an one-to-one match-
ing manner using the Hungarian algorithm. The P2PNet
not only significantly surpasses state-of-the-art methods on
popular counting benchmarks, but also achieves promis-
ing localization accuracy. The codes will be available at:
TencentYoutuResearch/CrowdCounting-P2PNet.

1. Introduction
Among all the related concrete tasks of crowd analysis,

crowd counting is a fundamental pillar, aiming to estimate
the number of individuals in a crowd. However, simply giv-
ing a single number is obviously far from being able to sup-
port the practical demands of subsequent higher-level crowd
∗Equal contribution. †Corresponding author.
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Figure 1. Illustrations for the comparison of our pipeline with ex-
isting methods, in which the predictions are marked in Red while
the ground truths are marked as Green. Top flow: The dominated
density map learning based methods fail to provide the exact lo-
cations of individuals. Middle flow: The estimated inaccurate
ground truth bounding boxes make the detection based methods
error-prone, such as the missing detections as indicated, especially
for the NMS-like process. Bottom flow: Our pipeline directly pre-
dicts a set of points to represent the locations of individuals, which
is simple, intuitive and competitive as demonstrated, bypassing
those error-prone steps. Best viewed in color.

analysis tasks, such as crowd tracking, activity recognition,
abnormality detection, flow/behavior prediction, etc.

In fact, there is an obvious tendency in this field for
more challenging fine-grained estimation (i.e., the locations
of individuals) beyond simply counting. Specifically, some
approaches cast crowd counting as a head detection prob-
lem, but leaving more efforts on labor-intensive annotation
for tiny-scale heads. Other approaches [26, 30] attempted
to generate the pseudo bounding boxes of heads with only
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point annotations provided, which however appears to be
tricky or inaccurate at least. Also trying to directly lo-
cate individuals, several methods [14, 20] got stuck in sup-
pressing or splitting over-close instance candidates, mak-
ing themselves error-prone due to the extreme head scale
variation, especially for highly-congested regions. To es-
chew the above problems, we propose a purely point-based
framework for jointly counting and localizing individuals in
crowds. This framework directly uses point annotations as
learning targets and simultaneously outputs points to locate
individuals, benefiting from the high-precision localization
property of point representation and its relatively cheaper
annotation cost. The pipeline is illustrated in Figure 1.

Additionally, in terms of the evaluation metrics, some
farsighted works [7, 32] encourage to adopt patch-level met-
rics for fine-grained evaluation, but they only provide a
rough measure for localization. Other existing localization
aware metrics either ignore the significant density variation
across crowds [26, 30] or lack the punishment for dupli-
cate predictions [30, 35]. Instead, we propose a new met-
ric called density Normalized Average Precision (nAP) to
provide a comprehensive evaluation metric for both local-
ization and counting errors. The nAP metric supports both
box and point representation as inputs (i.e., predictions or
annotations), without the defects mentioned above.

Finally, as an intuitive solution under this new frame-
work, we develop a novel method to directly predict a set of
point proposals with the coordinates of heads in an image
and their confidences. Specifically, we propose a Point-to-
Point Network (P2PNet) to directly receive a set of anno-
tated head points for training and predict points too dur-
ing inference. Then to make such an idea work correctly,
we delve into the ground truth target assignation process to
reveal the crucial of such association. The conclusion is
that either the case when multiple proposals are matched to
a single ground truth, or the opposite case, can make the
model confused during training, leading to over-estimated
or under-estimated counts. So we propose to perform an
one-to-one matching by Hungarian algorithm to associate
the point proposals with their ground truth targets, and the
unmatched proposals should be classified as negatives. We
empirically show that such a matching is beneficial to im-
proving the nAP metric, serving as a key component for our
solution under the new framework. This simple, intuitive
and efficient design yields state-of-the-art counting perfor-
mance and promising localization accuracy.

The major contributions of this work are three-fold:
1. We propose a purely point-based framework for joint

counting and individual localization in crowds. This frame-
work encourages fine-grained predictions, benefiting the
practical demands of downstream tasks in crowd analysis.

2. We propose a new metric termed density Normalized
Average Precision to account for the evaluation of both lo-

calization and counting, as a comprehensive evaluation met-
ric under the new framework.

3. We propose P2PNet as an intuitive solution following
this conceptually simple framework. The method achieves
state-of-the-art counting accuracy and promising localiza-
tion performance, and might also be inspiring for other tasks
relying on point predictions.

2. Related Works
In this section, we review two kinds of crowd counting

methods in recent literature. They are grouped according to
whether locations of individuals could be provided. Since
we focus on the estimation of locations, existing metrics
accounting for localization errors are also discussed.

Density Map based Methods. The adoption of density
map is a common choice of most state-of-the-art crowd
counting methods, since it was firstly introduced in [15].
And the estimated count is obtained by summing over the
predicted density maps. Recently, many efforts have been
devoted to pushing forward the counting performance fron-
tier of such methods. They either conduct a pixel-wise den-
sity map regression [16, 28, 11, 1, 25, 8], or resort to classify
the count value of local patch into several bins [39, 21, 22].
Although many compelling models have been proposed,
these density map learning based models still fail to provide
the exact locations of individuals in crowds, not to mention
their inherent flaws as pointed out in [1, 27, 21]. Whereas
the proposed method goes beyond counting and focuses on
the direct prediction for locations of individuals, eschewing
the defects of density maps and also benefiting the down-
stream practical applications.

Localization based Methods. These methods typically
achieve counting by firstly predicting the locations of indi-
viduals. Motivating by cutting-edge object detectors, some
counting methods [17, 26, 30] try to predict the bounding
boxes for heads of individuals. However, with only the
point annotations available, these methods rely on heuris-
tic estimation for ground truth bounding boxes, which is
error-prone or even infeasible. These inaccurate bounding
boxes not only confuse the model training process, but also
make the post-process, i.e., NMS, fail to suppress false de-
tections. Without those inaccurate targets introduced, other
methods locate individuals by points [20] or blobs [14], but
leaving more efforts to remove duplicates or split over-close
detected individuals in congest regions. Instead, bypassing
these tricky post-processing with an one-to-one matching,
we propose to streamline the framework to directly estimate
the point locations of individuals.

Localization Aware Metrics. Traditional universally
agreed evaluation metrics only measure the counting errors,
entirely ignoring the significant spatial variation of estima-
tion errors in single image. To provide a more accurate eval-
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uation, some works [7, 23, 32] advocate to adopt patch-level
or pixel-level absolute counting error as criteria, in lieu of
the commonly used image-level metric. Other research [30]
proposes Mean Localization Error to compute the average
pixel distance between the predictions and ground truths,
merely evaluating the localization errors. Inspired by eval-
uation metric used in object detection, [10] proposes to use
the area under the Precision-Recall curve after a greedy as-
sociation, which however ignores the punishment for dupli-
cate predictions. Hence, [20] proposes to adopt a sequen-
tial matching and then use the standard Average Precision
(AP) for evaluation. In this paper, we propose a new met-
ric, termed density Normalized Average Precision (nAP),
as a comprehensive evaluation metric for both localization
errors and false detections. In particular, the nAP metric
introduces a density normalization to account for the large
density variation problem in crowds.

3. Our Work

We firstly introduce the proposed framework in detail
(Sec. 3.1), and the new evaluation metric nAP is also pre-
sented (Sec. 3.2). Then we conduct a thorough analysis to
reveal the key issue in improving the nAP metric under the
new framework (Sec. 3.3). Inspired by the insightful anal-
ysis, we introduce the proposed P2PNet (Sec. 3.4), which
directly predicts a set of point proposals to represent heads.

3.1. The Purely Point-based Framework

The proposed framework directly receives point annota-
tions as its learning targets and then provides the exact lo-
cations for individuals in a crowd, rather than simply count-
ing the number of individuals within it. And the locations
of individuals are typically indicated by the center points of
heads, possibly with optional confidence scores.

Formally, given an image with N individuals, we use
pi = (xi, yi), i ∈ {1, .., N}, to represent the head’s cen-
ter point of the i-th individual, which is located in (xi, yi).
Then the collection of the center points for all individu-
als could be further denoted as P = {pi|i ∈ {1, .., N}}.
Assuming a well-designed model M is trained to instan-
tiate this new framework. And the model M predicts an-
other two collections P̂ = {p̂j |j ∈ {1, ..,M}} and Ĉ =
{ĉj |j ∈ {1, ..,M}}, in which M is the number of predicted
individuals, and ĉj is the confidence score of the predicted
point p̂j . Without loss of generality, we may assume that p̂j
is exactly the prediction for the ground truth point pi. Then
our goal is to ensure that the distance between p̂j and pi is
as close as possible with a sufficiently high score ĉj . As a
byproduct, the number of predicted individuals M should
also be close enough to the ground truth crowd number
N . In a nutshell, the new framework could simultaneously
achieve crowd counting and individual localization.

Compared with traditional counting methods, the in-
dividual locations provided by this framework are help-
ful to those motion based crowd analysis tasks, such as
crowd tracking [42], activity recognition [6], abnormal-
ity detection [3], etc. Besides, without relying on labor-
intensive annotations, inaccurate pseudo boxes or tricky
post-processing, this framework benefits from the high-
precision localization property of original point represen-
tation, especially for highly-congested regions in crowds.

Therefore, this new framework is worth more attentions
due to its advantages and practical values over traditional
crowd counting. However, since the existence of severe oc-
clusions, density variations, and annotation errors, it is quite
challenging to tackle with such a task [20, 26, 30], which
even is considered as ideal but infeasible in [10].

3.2. Density Normalized Average Precision

It is natural to ask that how to evaluate the performance
of model M under the above new framework. In fact, a
well-performed model following this framework should not
only produce as few as false positives or false negatives, but
also achieve competitive localization accuracy. Therefore,
motivated by the mean Average Precision (mAP) [19] met-
ric widely used in Object Detection, we propose a density
Normalized Average Precision (nAP) to evaluate both the
localization errors and counting performance.

The nAP is calculated based on the Average Precision,
which is the area under the Precision-Recall (PR) curve.
And the PR curve could be easily obtained by accumulat-
ing a binary list following the common practice in [19]. In
the binary list, a True Positive (TP) prediction is indicated
by 1, and a False Positive (FP) prediction is indicated by
0. Specifically, given all predicted head points P̂ , we firstly
sort the point list with their confidence scores from high to
low. Then we sequentially determine that the point under
investigation is either TP or FP, according to a pre-defined
density aware criterion. Different from the greedy associa-
tion used in [10, 30], we apply a sequential association in
which those higher scored predictions are associated firstly.
In this way, these TP predictions could be easily obtained
by a simple threshold filtering during inference.

We introduce our density aware criterion as follows. A
predicted point p̂j is classified as TP only if it could be
matched to certain ground truth pi, in which pi must not be
matched before by any higher-ranked point. The matching
process is guided by a pixel-level Euclidean distance based
criterion 1(p̂j , pi). However, directly using the pixel dis-
tance to measure the affinity ignores the side effects from
the large density variation across crowds. Thus, we intro-
duce a density normalization for this matching criterion to
mitigate the density variation problem. The density around
a certain ground truth point is estimated following [41].
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Figure 2. Illustration for different levels of localization accuracy in
nAP (k=3). The yellow circle indicates the region within dkNN(pi)
pixels from the center GT point pi. A typical value for δ is 0.5,
as indicated by the blue circle, which means that the nearest GT
point of most pixels within this region should be pi. The red circle
represents a threshold (δ=0.25) for stricter localization accuracy.

Formally, the final criterion used in nAP is defined as:

1(p̂j , pi) =

{
1, if d(p̂j , pi)/dkNN(pi) < δ,

0, otherwise,
(1)

where d(p̂j , pi) = ||p̂j − pi||2 denotes to the Euclidean dis-
tance, and dkNN(pi) denotes the average distance to the k
nearest neighbors of pi. We use a threshold δ to control the
desired localization accuracy, as shown in Figure 2.

3.3. Our Approach

Our approach is an intuitive solution following the pro-
posed framework, which directly predict a set of point pro-
posals to represent the center points for heads of individu-
als. In fact, the idea of point prediction is not new to the
vision community, although it is quite different here. To
name a few, in the field of pose estimation, some methods
adopt heatmap regression [4, 37] or direct point regression
[33, 38] to predict the locations of pre-defined keypoints.
Since the number of the keypoints to be predicted is fixed,
the learning targets for these point proposals could be deter-
mined entirely before the training. Differently, the proposed
framework aims to predict a point set of unknown size and is
an open-set problem by nature [39]. Thus, one crucial prob-
lem of such a methodology is to determine which ground
truth point should the current prediction be responsible for.

We propose to solve this key problem with a mutually
optimal one-to-one association strategy during the training
stage. Let us conduct a thorough analysis to show the de-
fects of the other two strategies for the ground truth targets
assignment. Firstly, for each ground truth point, the pro-
posal with the nearest distance should produce the best pre-
diction. However, if we select the nearest proposal for every
ground truth point, it is likely that one proposal might be
matched to multiple ground truth points, as shown in Fig-
ure 3 (a). In such a case, only one ground truth could be
correctly predicted, leading to under-estimated counts, es-
pecially for the congested regions. Secondly, for each point
proposal, we may assign the nearest ground truth point as

Ground Truth Point Positive Proposal Negative Proposal

Matched

(a) 1 v N Match

Positive Region

(b) N v 1 Match (c) 1 v 1 Match

Figure 3. (a) Multiple ground truth points might be matched to
the same proposal when selecting the nearest proposal for each of
them, which leads to under-estimated counts. (b) Multiple pro-
posals might be matched to the same ground truth point when se-
lecting the nearest ground truth for each of them, which leads to
over-estimated counts. (c) Our One-to-One match is without the
above two defects, thus is suitable for direct point prediction.

its target. Intuitively, this strategy might be helpful to allevi-
ate the overall overhead of the optimization, since the near-
est ground truth point is relatively easier to predict. How-
ever, in such an assignment, there may exist multiple pro-
posals which simultaneously predict the same ground truth,
as shown in Figure 3 (b). Because there are no scale an-
notations available, it is tricky to suppress these duplicate
predictions, which might lead to over-estimated. Conse-
quently, the association process should take both sides into
consideration and produces the mutually optimal one-to-
one matching results, as shown in Figure 3 (c).

Additionally, both the other two strategies have to deter-
mine a negative threshold, and the proposals whose distance
with their matched targets are above this threshold will be
considered as negatives. While using the one-to-one match-
ing, those unmatched proposals are automatically remained
as negatives, without any hyperparameter introduced. In a
nutshell, the key to solve the open-set direct point prediction
problem is to ensure a mutually optimal one-to-one match-
ing between predicted and ground truth points.

After the ground truth targets are obtained, these point
proposals could be trained through an end-to-end optimiza-
tion. Finally, the positive proposals should be pushed to-
ward their targets, while those negative proposals would be
simply classified as backgrounds. Since the point propos-
als are dynamically updated along with the training process,
those proposals which have the potential to perform better
could be gradually selected by the one-to-one matching to
serve as the final predictions.

Actually, the distance used in above matching could be
any other cost measure beyond pixel distance, such as a
combination of confidence score and pixel distance. We
empirically show that taking confidence scores of proposals
into consideration during the one-to-one matching is help-
ful to improve the proposed nAP metric. Let us consider
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Figure 4. Two types of layout for reference points (s = 2,K = 4).

two predicted proposals around the same ground truth point
pi. If they have the same confidence score, the one closer to
pi should be matched as positive and encouraged to achieve
higher localization accuracy. While the other one proposal
should be matched as negative and supervised to lower its
confidence, thus might not be matched again during next
training iteration. On the contrary, if the two proposals
share the same distance from pi, the one with higher con-
fidence should be trained to be closer to pi with a much
higher confidence. Both the above two cases would encour-
age the positive proposals to have more accurate locations
as well as relatively higher confidences, which is beneficial
to the improvement of nAP under the proposed framework.

3.4. The P2PNet Model

In this part, we present the detailed pipeline of the pro-
posed Point to Point Network (P2PNet). Begining with the
generation of point proposals, we introduce our one-to-one
association strategy in detail. Then we present the loss func-
tion and the network architecture for the P2PNet.

Point Proposal Prediction. Let us denote the deep fea-
ture map outputted from the backbone network by Fs, in
which s is the downsampling stride and Fs is with a size
of H × W . Then based on Fs, we adopt two parallel
branches for point coordinate regression and proposal clas-
sification. For the classification branch, it outputs the con-
fidence scores with a Softmax normalization. For the re-
gression branch, it resorts to predict the offsets of the point
coordinates due to the intrinsic translation invariant prop-
erty of convolution layers. Specifically, each pixel on Fs
should correspond to a patch of size s × s in the input im-
age. In that patch, we firstly introduces a set of fixed ref-
erence points R = {Rk|k ∈ {1, ...,K}} with pre-defined
locations Rk = (xk, yk). These reference points could be
either densely arranged on the patch or just set to the center
of that patch, as shown in Figure 4. Since there are K refer-
ence points for each location on Fs, the regression branch
should produce totally H ×W × K point proposals. As-
suming the reference point Rk predicts offsets (∆k

jx,∆
k
jy)

for its point proposal p̂j = (x̂j , ŷj), then the coordinate of
p̂j is calculated as follows:

x̂j = xk + γ∆k
jx,

ŷj = yk + γ∆k
jy,

(2)

where γ is a normalization term, which scales the offsets to
rectify the relatively small predictions.

Proposal Matching. Following the symbols defined in
Sec. 3.1, we assign the ground truth target from P̂ for ev-
ery point proposal in P using an one-to-one matching strat-
egy Ω(P, P̂,D). The D is a pair-wise matching cost ma-
trix with the shape N × M , which measures the distance
between two points in a pair. Instead of simply using the
pixel distance, we also consider the confidence score of that
proposal, since we encourage the positive proposals to have
higher confidences. Formally, the cost matrix D is defined
as follows:

D(P, P̂) =
(
τ ||pi − p̂j ||2 − ĉj

)
i∈N,j∈M , (3)

where ||·||2 denotes to the l2 distance, and ĉj is the confi-
dence score of the proposal p̂j . τ is a weight term to balance
the effect from the pixel distance.

Based on the pair-wise cost matrixD, we conduct the as-
sociation using the Hungarian algorithm [13, 29, 36] as the
matching strategy Ω. Note that in our implementation, we
ensure M > N to produce many enough predictions, since
those redundant proposals would be classified as negatives.
From the perspective of the ground truth points, let us use a
permutation ξ of {1, ...,M} to represent the optimal match-
ing result, i.e., ξ = Ω(P, P̂,D). That is to say, the ground
truth point pi is matched to the proposal p̂ξ(i). Furthermore,
those matched proposals (positives) could be represented as
a set P̂pos = {p̂ξ(i)|i ∈ {1, ..., N}}, and those unmatched
proposals in the set P̂neg =

{
p̂ξ(i)|i ∈ {N + 1, ...,M}

}
are labeled as negatives.

Loss Design. After the ground truth targets have been ob-
tained, we calculate the Euclidean loss Lloc to supervise the
point regression, and use Cross Entropy loss Lcls to train
the proposal classification. The final loss function L is the
summation of the above two losses, which is defined as:

Lcls = − 1

M

{
N∑
i=1

log ĉξ(i) + λ1

M∑
i=N+1

log
(
1− ĉξ(i)

)}
,

(4)

Lloc =
1

N

N∑
i=1

∣∣∣∣pi − p̂ξ(i)∣∣∣∣22 , (5)

L = Lcls + λ2Lloc, (6)

where ||·||l2 denotes to the Euclidean distance, λ1 is a re-
weight factor for negative proposals, and λ2 is a weight term
to balance the effect of the regression loss.

Network Design. As illustrated in Figure 5, we use the
first 13 convolutional layers in VGG-16 bn [31] to extract
deep features. With the outputted feature map, we upsam-
ple its spatial resolution by a factor of 2 using nearest neigh-
bor interpolation. Then the upsampled map is merged with
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Figure 5. The overall architecture of the proposed P2PNet. Built upon the VGG16, it firstly introduce an upsampling path to obtain fine-
grained deep feature map. Then it exploits two branches to simultaneously predict a set of point proposals and their confidence scores.
The key step in our pipeline is to ensure an one-to-one matching between point proposals and ground truth points, which determines the
learning targets of those proposals.

the feature map from a lateral connection by element-wise
addition. This lateral connection is used to reduce channel
dimensions of the feature map after the fourth convolutional
blcok. Finally, the merged feature map undergoes a 3 × 3
convolutional layer to get Fs, and the convolution in which
is used to reduce the aliasing effect due to the upsampling.

The prediction head in our P2PNet is consisted of two
branches, which are both fed with Fs and produce point
locations and confidence scores respectively. For simplicity,
the architecture of the two branches are kept same, which
is consisted of three stacked convolutions interleaved with
ReLU activations. We have empirically found this simple
structure yield competitive results.

4. Experiments

4.1. Implementation Details

Dataset. We exploit existing publicly available datasets
in crowd counting to demonstrate the superiority of our
method. Specifically, extensive experiments are conducted
on four challenging datasets, including ShanghaiTech PartA
and PartB [41], UCF CC 50 [9], UCF-QNRF [10] and
NWPU-Crowd [35]. For experiments on UCF CC 50, we
conduct a five-fold cross validation following [9].

Data Augmentations. We firstly adopt random scaling
with its scaling factor selected from [0.7, 1.3], keeping the
shorter side not less than 128. Then we randomly crop an
image patches with a fixed-size of 128 × 128 from the re-
sized image. Finally, random flipping with a probability of
0.5 is also adopted. For the datasets containing extremely
large resolution, i.e., QNRF and NWPU-Crowd, we keep

the max size of image no longer than 1408 and 1920, re-
spectively, and keep the original aspect ratio.

Hyperparameters. We use the feature map of stride s =
8 for the prediction. The number K of the reference points
is set to 4 (8 for QNRF dataset). And K is set according
to the dataset statistics to ensure M > N . For the point
regression, we set the γ to 100. The weight term τ during
the matching is set as 5e-2. In the loss function, the λ1 is
set to 0.5, and λ2 is set to 2e-4. Adam algorithm [12] with
a fixed learning rate 1e-4 is used to optimize the model pa-
rameters. Since the weights in the backbone network have
been pre-trained on the ImageNet, thus, we use a smaller
learning rate 1e-5. The training batch size is set to 8.

4.2. Model Evaluation

As a comprehensive criteria, the proposed nAP metric is
firstly reported to evaluate the performance of our P2PNet
model. As shown in Table 1, the nAP is reported us-
ing three different thresholds of δ, which corresponds to
the average precision under different localization accura-
cies of the predicted individual points. Typically, nAP0.5

could satisfy the requirements of most practical applica-
tions, which means that the ground truth point is exactly
the nearest neighbor for most points within this region. Be-
sides, nAP0.1 and nAP0.25 are reported to account for some
requirements of high localization accuracy. Following re-
cent detection methods which report the average of AP un-
der several thresholds to provide a single number for the
overall performance, we adopt a similar metric. Specifi-
cally, we calculate multiple nAPδ with the δ starting from
0.05 to 0.50, with steps of 0.05. Then an average is done to

3370



nAPδ SHTech PartA SHTech PartB UCF CC 50 UCF-QNRF NWPU-Crowd

δ = 0.05 10.9% 23.8% 5.0% 5.9% 12.9%
δ = 0.25 70.3% 84.2% 54.5% 55.4% 71.3%
δ = 0.50 90.1% 94.1% 88.1% 83.2% 89.1%

δ = {0.05 : 0.05 : 0.50} 64.4% 76.3% 54.3% 53.1% 65.0%

Table 1. The overall performance of our P2PNet.

Methods Venue
SHTech PartA SHTech PartB UCF CC 50 UCF-QNRF
MAE MSE MAE MSE MAE MSE MAE MSE

CAN [24] CVPR’19 62.3 100.0 7.8 12.2 212.2 243.7 107.0 183.0
Bayesian+ [27] ICCV’19 62.8 101.8 7.7 12.7 229.3 308.2 88.7 154.8
S-DCNet [39] ICCV’19 58.3 95.0 6.7 10.7 204.2 301.3 104.4 176.1

SANet + SPANet [5] ICCV’19 59.4 92.5 6.5 9.9 232.6 311.7 - -
SDANet [28] AAAI’20 63.6 101.8 7.8 10.2 227.6 316.4 - -
ADSCNet [1] CVPR’20 55.4 97.7 6.4 11.3 198.4 267.3 71.3 132.5
ASNet [11] CVPR’20 57.78 90.13 - - 174.84 251.63 91.59 159.71

AMRNet [25] ECCV’20 61.59 98.36 7.02 11.00 184.0 265.8 86.6 152.2
AMSNet [8] ECCV’20 56.7 93.4 6.7 10.2 208.4 297.3 101.8 163.2

DM-Count [34] NeurIPS’20 59.7 95.7 7.4 11.8 211.0 291.5 85.6 148.3
Ours - 52.74 85.06 6.25 9.9 172.72 256.18 85.32 154.5

Table 2. Comparison of the counting accuracy with state-of-the-art methods.

get the overall average precision nAP{0.05:0.05:0.50}.
From the Table 1, we observe that our P2PNet achieves

a promising average precision under different levels of
localization accuracy. Specifically, its overall metric
nAP{0.05:0.05:0.50} is around 60% on all datassets, which
should already meet the requirements of many practical ap-
plications. In terms of the primary indicator nAP0.5, the
P2PNet generally achieves a promising precision of more
than 80%. For most datasets, the P2PNet could achieve a
nAP0.5 of nearly 90%, which demonstrates the effective-
ness of our approach on individual localization. Even for
the stricter metric nAP0.25, the precision is still higher than
55%. These results are encouraging, since we did not use
any techniques like coordinate refinement in [2, 40] or ex-
ploiting multiple feature levels [18], which are both orthog-
onal to our contributions and should bring more improve-
ments. Besides, the P2PNet achieves a relatively lower pre-
cision on the nAP0.05, which is reasonable since the effects
of the labeling deviations might gradually become apparent
under such high localization accuracy.

Besides, we also notice that the NWPU-Crowd dataset
[35] provides scarce yet valuable box annotations, so we
report our localization performance using their metrics to
compare with other competitors. And our P2PNet achieves
an F1-measure/Precision/Recall of 71.2%/72.9%/69.5%,
which is the best among published methods with similar
backbones. For other localization based methods with of-
ficial codes available, we also report their results in nAP
metric (much lower than ours) in Supplementary.

Furthermore, we also evaluate the counting accuracy of
our model. The estimated crowd number of our P2PNet is
obtained by counting the predicted points with confidence

scores higher than 0.5. We compare the P2PNet with state-
of-the-art methods on several challenging datasets with var-
ious densities. Similar to [41], we also adopt Mean Abso-
lute Error (MAE) and Mean Squared Error (MSE) as the
evaluation metrics. The results are illustrated in Table 2 and
Table 3. The top performance is indicated by bold numbers
and the second best is indicated by underlined numbers.

Methods
NWPU-Crowd

MAE[O] MSE[O] MAE[L] MAE[S]
CSRNet [16] 121.3 387.8 112.0 522.7

Bayesian+ [27] 105.4 454.2 115.8 750.5
S-DCNet [39] 90.2 370.5 82.9 567.8

DM-Count [34] 88.4 388.6 88.0 498.0
Ours 77.44 362 83.28 553.92

Table 3. Comparison on the NWPU-Crowd dataset.
ShanghaiTech. There are two independent subsets in
ShanghaiTech dataset: PartA and PartB. The PartA con-
tains highly congested images collecting from the Internet.
While the PartB is collected from a busy street and repre-
sents relatively sparse scenes. Our P2PNet achieves the best
performance on both PartA and PartB. In particular, on the
PartA, the P2PNet reduces the MAE by 4.8% and MSE by
12.9% respectively, compared with the second best method
ADSCNet. For sparse scenes in PartB, the P2PNet could
also bring a reduction of 2.3% in MAE.
UCF CC 50. UCF CC 50 has only 50 images collecting
from the Internet, but contains complicated scenes with
large variation of crowd numbers. As shown in Table 2,
our P2PNet surpasses all the other methods, reducing the
MAE by 2.1 compared with the second best performance.
UCF-QNRF. UCF-QNRF is a challenging dataset due to
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Figure 6. Some qualitative results for the predicted individuals of our P2PNet. The white numbers denote to the ground truth or prediction
counts. The visualizations demonstrate the superiority of our method under various densities in terms of both localization and counting.

the much wider range of counts. As shown in Table 2,
our P2PNet achieves an MAE of 85.32, which is much bet-
ter than the Neural Architecture Search based method AM-
SNet. Compared with the previous best method ADSCNet,
although the accuracy of our method is not so competitive,
it is still much higher than ADSCNet on all other datasets.
Besides, among all the methods in Table 2, only ours could
provide exact individual locations.
NWPU-Crowd. The NWPU-Crowd dataset is a large-scale
congested dataset recently introduced in [35]. As shown in
Table 3, our P2PNet achieves the best overall MAE, with a
reduction of 12.4% compared with the second best method
DM-Count. Since our predictions are only based on a single
scale feature map for simplicity, the result is slightly lower
than those best performance on MAE[S]. MAE[S] is the
average MAE of different scale levels, please refer to [35].

4.3. Ablation Studies

Layout MAE MSE nAPδ
Center 53.7 89.61 61.7
Grid 52.74 85.06 64.4

Table 4. The effect of the layout for reference points. For an overall
comparison, we use δ = {0.05 : 0.05 : 0.50}.
Layout of reference points. We firstly evaluate the effect
from the layouts of the reference points. As shown in Ta-
ble 4, we compare two layouts in the Figure 4. Generally
speaking, both the two layouts achieve state-of-the-art per-
formance with minor difference, proving that the target as-
sociation matters more than the layout of reference points.
The Grid layout performs slightly better due to its dense ar-
rangement of reference points, which is beneficial for the
congested regions.
Effect of feature levels. We exhibit the effect of different
feature levels used for prediction. For fair comparison, we
keep the total reference points the same when using fea-
ture levels with different strides. As shown in Table 5, the

Method MAE MSE nAPδ

P2PNet
s = 4 53.51 85.77 66.8
s = 8 52.74 85.06 64.4
s = 16 54.3 85.18 52.4

Table 5. The ablation study on SHTech PartA. For an overall com-
parison, we use δ = {0.05 : 0.05 : 0.50}.

P2PNet consistently achieves competitive results using dif-
ferent feature levels, which demonstrates the effectiveness
of our point based solution. In particular, the feature level
with a stride of 8 provides a trade-off for the various densi-
ties, thus yields better performance.

In terms of the localization accuracy, we observe an ob-
vious trend of improvement on nAP when we increase the
feature map resolution, as shown in Table 5. It implies that
the finest feature map is beneficial for localization, which is
also in accord with the consensus on other tasks. Besides,
based on our baseline method, it would be interesting to in-
troduce existing multi-scale feature fusion techniques such
as [18], which are discarded in our P2PNet for simplicity.

5. Conclusion
In this work, we go beyond crowd counting and propose

a purely point-based framework to directly predict locations
for crowd individuals. This new framework could better
satisfy the practical demands of downstream tasks in crowd
analysis. In conjunction with it, we advocate to use a new
metric nAP for a more comprehensive accuracy evaluation
on both localization and counting. Moreover, as an intu-
itive solution following this framework, we propose a novel
network P2PNet, which is capable of directly taking point
annotations as supervision whilst predicting the point loca-
tions during inference. P2PNet’s key component is the one-
to-one matching during the ground truth targets association,
which is beneficial to the improvement of the nAP metric.
This conceptually simple framework yields state-of-the-art
counting performance and promising localization accuracy.

3372



References
[1] Shuai Bai, Zhiqun He, Yu Qiao, Hanzhe Hu, Wei Wu, and

Junjie Yan. Adaptive dilated network with self-correction
supervision for counting. In IEEE Conference on Computer
Vision and Pattern Recognition, 2020. 2, 7

[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving
into high quality object detection. In IEEE Conference on
Computer Vision and Pattern Recognition, 2018. 7

[3] Xiao-Han Chen and Jian-Huang Lai. Detecting abnormal
crowd behaviors based on the div-curl characteristics of flow
fields. Pattern Recognition, 2019. 3

[4] Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang
Zhang, Gang Yu, and Jian Sun. Cascaded pyramid network
for multi-person pose estimation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2018. 4

[5] Zhi-Qi Cheng, Jun-Xiu Li, Qi Dai, Xiao Wu, and Alexan-
der G Hauptmann. Learning spatial awareness to improve
crowd counting. In IEEE International Conference on Com-
puter Vision, 2019. 7

[6] Camille Dupont, Luis Tobias, and Bertrand Luvison. Crowd-
11: A dataset for fine grained crowd behaviour analysis. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2017. 3
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