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Abstract

Multi-view pedestrian detection aims to predict a bird’s
eye view (BEV) occupancy map from multiple camera views.
This task is confronted with two challenges: how to estab-
lish the 3D correspondences from views to the BEV map
and how to assemble occupancy information across views.
In this paper, we propose a novel Stacked HOmography
Transformations (SHOT) approach, which is motivated by
approximating projections in 3D world coordinates via a
stack of homographies. We first construct a stack of trans-
formations for projecting views to the ground plane at dif-
ferent height levels. Then we design a soft selection mod-
ule so that the network learns to predict the likelihood of
the stack of transformations. Moreover, we provide an in-
depth theoretical analysis on constructing SHOT and how
well SHOT approximates projections in 3D world coordi-
nates. SHOT is empirically verified to be capable of esti-
mating accurate correspondences from individual views to
the BEV map, leading to new state-of-the-art performance
on standard evaluation benchmarks.

1. Introduction
Multi-view detection, a.k.a. multi-camera detection [20,

1], aims to detect objects from a set of synchronized images
from different sensing viewpoints of a scene. Compared
with the single view detection, multi-view object detection
enables to aggregate the information across multiple view-
points and infer 3D structures of the scene [8, 5], hence is
generally robust to occlusions, which is a major challenge
to single-view detection in crowded scenes. In this paper, as
shown in Figure 1, we focus on detecting pedestrians from
multi-view images, where the input is a batch of images
from different viewpoints and the output is an occupancy
map from the bird’s eye view (BEV) of the plane.

Estimating the occupancy map from a set of multi-view
images is challenging in two aspects. First, due to the
change of view point, occlusions and ambiguities in object
appearances often present in different views, therefore it is
not a trivial problem to match the features of pedestrians ac-

Input: Multi-view Images

Occupancy Map

Output:
Bird's-eye View

Figure 1. The task of multi-view pedestrian detection: Given a
batch of synchronized images captured from different view angles,
our goal is to predict an occupancy map of the scene.

curately among input views. Second, even if the correspon-
dences are adequately estimated, one view only provides an
incomplete representation for the whole scene, bringing dif-
ficulties in assembling the knowledge of occupancy across
all views. For example, due to occlusions, an area may be
only visible in one view, so we have to identify that view
and exclude the distractions from other views according to
the pre-established correspondences.

To optimize the correspondence and feature extraction
jointly in an end-to-end manner, recent work [13, 12] pro-
posed to project the features extracted from 2D images to
a shared space for aggregating information from all views,
while keep the framework differentiable. However, previ-
ous works either project the features to large 3D grids [13],
or only project the features to the ground plane [12]. The
full 3D projection proposed by [13] is expensive since 3D
convolutions are involved in dealing with the projected fea-
tures. Meanwhile, 2D projection used in [12] is not accurate
due to misalignments.

In this paper, for the first challenge of establishing the
3D correspondence, we propose to project the feature maps
onto different height levels according to different semantic
parts of the pedestrian. As illustrated in Figure 2, our mo-
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Figure 2. Illustration of different projection schemes: (a) the proposed stacked homography transformations (SHOT) approximates 3D
projection with a stack of homographies; (b) 3D projection proposed in [13] project 2D feature points to 3D grids; (c) 2D projection
proposed in [12] projects 2D feature onto the 2D ground plane. Our method achieves a better tradeoff between projection efficiency and
accuracy than the other two schemes.

tivation is that each pixel should be projected to a ground
plane at a proper height. To achieved this, we construct a
stack of homography projections, which are H0, H1 and
H2 in the figure.

For the second challenge, assembling occupancy infor-
mation across views, we design a soft selection module
to ensure the network differentiable, thus learning how to
aggregate the occupancy information end-to-end. Specifi-
cally, for each pixel of the features extracted from individ-
ual views, we design a likelihood map prediction module to
softly select projections from the stack of transformations.
Since each pixel is projected with a stack of homography
transformations, our method is named Stacked HOmogra-
phy Transformations (SHOT).

Intuitively, SHOT can be viewed as an approximation
of a 3D projection with a stack of homographies. Then
we theoretically analyze the properties of SHOT in two as-
pects: (1) the requirements of acquiring the pre-computed
homographies and (2) the requirements of serving as a 3D
projection. SHOT achieves the state-of-the-art performance
of 90.2% MODA on WILDTRACK and 88.3% MODA on
MultiviewX, which outperforms the recent method [12] by
2% on WILDTRACK and 4.2% on MultiviewX, respec-
tively. Moreover, we investigate the performance of SHOT
under a practical yet challenging setting: both the scene and
the camera locations are distinctly different between train-
ing and testing. The results validate the generalization abil-
ity of SHOT. To sum up, our contributions are as follows:

• We propose a novel stacked homography transfor-
mations (SHOT) to establish accurate 3D correspon-
dences between individual input views and the BEV
occupancy map.

• We theoretically analyze the geometry property of
SHOT and demonstrate two properties: 1) The stack of
transformations can be effectively constructed without
knowing extrinsic parameters; 2) SHOT can project all
human body parts to the same grid on the BEV map
with proper hyperparameters.

• We conduct experiments on standard benchmarks and
achieve new state-of-the-art results. Moreover, we in-
vestigate the performance of SHOT under a new chal-
lenging setting: training and testing involve different
scenes and camera viewpoints.

2. Related work

Multi-view detection. The most challenging part of
multi-view detection is gathering occupancy knowledge
about objects or pedestrians from multiple views. Before
the surge of deep neural networks, modeling the corre-
spondence across cameras was mostly done by probabilis-
tic modeling of objects [8, 5, 20, 18]. Rubino et al. [19]
estimate a quadric (ellipsoid) in 3D from a set of 2D el-
lipses fitted to the object detection bounding boxes in mul-
tiple views. Baqué et al. [2] proposed an end-to-end train-
able model based on CRF and use high-order CRF terms
to represent potential occlusions. In [25], Xu et al. pro-
posed to re-formulate the computation of correspondences
among views as a problem of compositional structure opti-
mization. In [3], the authors proposed a large scale dataset
WILDTRACK and systematically review the performance
of recent multi-view detection methods. Recently, Hou et
al. [12] proposed the simple yet effective feature perspec-
tive transformation for the multi-view detection task, which
was trained end-to-end and reached new SOTA.
Multiple projections for parallel planes. The proposed
SHOT projects each view to multiple parallel planes with
respect to the ground plane. The idea of multiple projec-
tions for parallel planes was made possible by the results
published in [6]. Khan et al. [15] proposed Multiple Scene
Planes for tracking occluded people. Similarly, Eshel et
al. [7] proposed to detect head and apply the plane trans-
formation. Also, similar idea has been successfully adopted
in the field of multi-view crowd counting [27, 29, 28, 30].
Our method differs from previous methods for the reason
that the proposed SHOT is combined with the soft selection
module for pedestrian detection.
Geometry integrated deep networks. Multiple view ge-
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Figure 3. Illustration of the proposed SHOT. Each feature map will be projected with a stack of homographies and the projection results
are selected softly to form a proper screen→BEV projection.
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Figure 4. Network details about the soft selection module.

ometry is one of the cornerstones in computer vision [9].
Each projection in our work is essentially a homography,
which describes the translation of a plane for the pin-hole
camera model. In [24, 26], the authors used perspective
projection to connect 2D estimations to 3D worlds. Shi et
al. [21] proposed polar transformation to align an aerial im-
age with a ground-view panorama. Perspective transforma-
tion is also widely used in pose estimation tasks [13, 11, 23],
to infer the 3D positions of body joints. In [16], Nassar
et al. proposed to learn the warping and detection together
with geometric soft constraints. Besides, Roddick et al. [17]
propose to project features on to the ground plane and pre-
dict BEV semantic segmentation maps. Our method differs
from previous methods because we aim at learning to pre-
dict the likelihood of transformations to each pixel for the
pedestrian detection task.

3. Preliminaries and notations
We denote the input images from N views as

(I1, · · · , IN ) and the extracted feature maps for each im-
age as (J1, · · · ,JN ). Denote the intrinsic parameters of
camera i (for view i) as Ki ∈ R3×3. Assume that for a
point from camera i, its image coordinate is (u, v)T and
world coordinate is (X,Y, Z)T , then by the pinhole camera
model we have u

v

1

 ∼ Ki[Ri|ti]


X

Y

Z

1

 , (1)

where [Ri|ti] ∈ R3×4 denotes the extrinsic parameters of
camera i. Following [12], we define ground plane d0 as the
Z = 0 plane in the world coordinates. From Equation (1)
we can see that if Z = 0 the projection matrix Ki[Ri|ti]
can be converted to a 3× 3 matrix, representing the projec-

tion from Z = 0 plane to the screen plane. That is, if we de-
note the extrinsic matrix as Ei = [Ri|ti] = (ei1, e

i
2, e

i
3, e

i
4),

where each e is a column vector, the matrix for the pro-
jection from Z = 0 plane to the screen plane is KiEi

0

where Ei
0 = (ei1, e

i
2, e

i
4), as the world coordinates will be

ei1X + ei2Y + ei4.
Next, we denote the projective mapping from world co-

ordinates to an occupancy map as Kg ∈ R3×3. We can
treat Kg as the intrinsic parameters for the “ground cam-
era”, which quantizes the ground plane world coordinates
into grids [12]. Now using Kg , the transformation from im-
age i to the ground occupancy map can be represented as
Hi

0 = Kg(E
i
0)

−1(Ki)−1, which is a homography matrix.
Finally, we denote the size of input images as H ×W and
denote the output ground plane occupancy map as Hg×Wg .

4. Proposed method

Our motivation is to approximate transformations in 3D
world coordinates with a stack of homographies, such that
we can project all body parts of one person to the same lo-
cation on the BEV map. To achieve this goal, we propose
stacked homography transformations (SHOT), which con-
sists of two steps: construction of a stack of homographies
and soft selection of the transformations.

4.1. Construction of a stack of homographies

Instead of directly estimating the 3D locations of pedes-
trians, we approximate the transformations in 3D world co-
ordinates with a stack of homographies. Each homogra-
phy in the stack is designed to project a view to a ground
plane at a certain height. Specifically, for each view i, we
define that there are D + 1 transformations in total, and
∆z is the distance between each two target planes, which
are parallel to the ground plane. The homographies are the
projections from the screen plane to the Z = {k∆z|k =
0, · · · , D} planes in the world coordinates, where D indi-
cates the size of the stack. In Figure 3, we demonstrate
an example of D = 3 which projects the screen plane to
Z = {0,∆z, 2∆z} planes. As we can see from the figure,
by selecting the target of projection we can align different
body parts of one person to the same BEV position.
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Figure 5. Overview of our proposed framework.

Calculating the homography matrices is straightforward
if the extrinsic parameters are known. Following notations
in Section 3, the homography Hi

k for projection from image
i to k∆z plane can be computed as

Hi
k = Kg(E

i
k)

−1(Ki)−1,where Ei
k = (ei1, e

i
2, e

i
4+k∆zei3).

(2)
As we have N cameras and there are D+1 transformations
pre-computed for each camera, the number of transforma-
tions is then in total N(D + 1), i.e., {(Hi

0, · · · ,Hi
D)}i=N

i=1 .
Here, note that we can still compute the homographies with-
out knowing extrinsic parameters and further analysis to be
discussed in Section 6.4.

4.2. Soft selection module

With a stack of homographies, we now face a new prob-
lem: Which homography should be used for which pixel?
Since we need to keep the network end-to-end differen-
tiable, we propose to generate a selection mask for each
input view from the extracted features, i.e., (J1, · · · ,JN ).
The motivation of using the features as input is that the net-
work can predict a proper likelihood score for transforma-
tions according to the semantic information presented by
the features. For example, the network may recognize the
head of a person and then assign the transformation that best
fits the height of the head.

The computation graph of the soft selection module is
shown in Figure 4. With the features J i as inputs, we first
estimate the selection likelihood scores on each pixel of the
feature maps with softmax for all the transformations. Let
the likelihood tensors be {gk(J i)}k=D

k=0 , where gk() means
the likelihood prediction for transformation k. Then ho-
mography matrices are applied accordingly and we have
{Hi

k ·
(
gk(J

i) ◦ J i
)
}k=D
k=0 . After applying a convolutional

layer to each feature, for each view we sum up all the fea-
tures projected by the stack of homographies.

4.3. Overall framework

In Figure 5, we demonstrate the overall framework for
multi-view pedestrian detection, which is inspired by the
structure designed in [12]. Specifically, ResNet-18 [10]
with dilation is chosen as the backbone and reduces the
resolution by 8 times from the input. Then the feature
maps are upsampled to Hf × Wf and sent to a classi-
fier for detecting pedestrians in each image. The loss is
Lsingle =

∑
i ∥sih − yi

h∥22 + ∥sif − yi
f∥22, where for image

i, sih and sif are the classification map for head and foot,
and yi

h and yi
f are the ground truth labels blurred with a

Gaussian kernel for head and foot, respectively.
Next, the features are projected with the proposed SHOT.

The features from all views are concatenated and sent to the
classifier layer for pedestrian detection. After the final BEV
detection results are generated, the loss is calculated with
Lground = ∥sg − yg∥22. Here, sg and yg are the predic-
tion of the BEV occupancy map and the ground truth of the
BEV occupancy map blurred with a Gaussian kernel, re-
spectively. Finally, the total loss is the combination of the
above two losses, that is, L = Lsingle + Lground. All net-
work modules are jointly optimized in an end-to-end man-
ner: the convolutional backbone for feature extraction of
the pedestrians, soft selection module for establishing the
correspondences, and classifier layers for detecting pedes-
trians.

5. Properties of SHOT

In this section, we analyze the property of the proposed
SHOT in two aspects: 1) Besides camera intrinsic param-
eters, what else should we know for constructing the ho-
mographies? 2) How do SHOT approximate the 3D point
projection? Without loss of generality, we omit the super-
script i for cameras in this section for simplicity.
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5.1. Requirements for running SHOT

In Section 4.1, we illustrate our approach with the as-
sumption of knowing the extrinsic parameters of a camera,
which sometimes may not be practical. Meanwhile, observ-
ing that H0 is a homography, we can mark corresponding
points on the ground easily, such as intersections of bricks
on the pavement. Note that only 4 point correspondences
are theoretically enough for estimating H0 [9]. A question
then naturally arises: what extra information is needed for
constructing a stack of homographies in our method? We
first show that two extra annotations of the pedestrians with
the same height are enough for acquiring a stack of trans-
formations.

As demonstrated in Figure 6, for a pedestrian in image
coordinates we denote the location of feet as f and the lo-
cation of head as h. Next, we denote the coordinates on the
BEV occupancy map of this person as o correspondingly.
Then formally we have the following proposition (full proof
included in supplementary):

Proposition 1. If K,Kg and H0 are known, we can con-
struct a stack of transformations {(H0, · · · ,HD)} with
only two extra annotations of pedestrians if they have the
same height. Two extra annotations means two sets of
points correspondences in the camera image and BEV im-
age, i.e., (f1,h1,o1) and (f2,h2,o2).

Proof. (Sketch) First observe that we can recover part of
extrinsic parameters with E0 = K−1H−1

0 Kg , then if we
define ED = K−1H−1

D Kg , we have ED = E0+∆T where
∆T is 0 0 ∆t1

0 0 ∆t2
0 0 ∆t3

 . (3)

To construct a set of transformations, we only need to know
∆t1,∆t2 and ∆t3. Next, from one annotation (f ,h,o) we
have the equations{

E0K
−1
g o ∼ K−1f ,

EDK−1
g o ∼ K−1h.

(4)

Then there are two equations for solving ∆T,{
∆t1 − hu∆t3 = (hu − fu)(e31ox + e32oy + e33),

∆t2 − hv∆t3 = (hv − fv)(e31ox + e32oy + e33),
(5)

where hu, hv , fu, fv and ox, oy are the first and second ele-
ments from K−1h, K−1f and K−1

g o, respectively. e31, e32
and e33 are elements of the third row of E0. As each point
provides two equations and there are three variables, we
need two extra annotations for constructing the transforma-
tions.

In the above proposition, the requirement of two pedes-
trians with the same height could be hard to meet. Fortu-
nately, in practice we usually have a bunch of point pairs

Figure 6. Geometry of SHOT.

with noise, which reduce the impact of not satisfying the
height constraint. In fact, we find that in our experiments
we can even set ∆t3 = 0 while still can achieve good
projection result. In other words, only one annotation of
pedestrian shows promising results in our experiments. The
reason may be that the gap of the scale between the whole
scene and pedestrian height is large. We present results on a
real image in Section 6.4 and calculate transformations with
Equation (5) from one annotation.

5.2. Approximating 3D projection with SHOT

Since a homography matrix is a projection between
planes but we need 3D point projections in multi-view de-
tection, we now investigate how SHOT approximates a 3D
point projection. The key observation is that there are two
discretizations in the whole framework: First, a stack of ho-
mographies is a discretization of Z axis of the world coordi-
nates; Second, a BEV map is a discretization of the ground
plane. The two discretizations play different roles. The dis-
cretization of the Z axis can be viewed as quantizing the
input occupancy map while the BEV map can be viewed as
quantizing the output occupancy map. Therefore theoreti-
cally we can align the two discretizations such that all points
of an object can be projected on the same grid. In Figure 6,
we show an example of SHOT with D = 3, which is able to
project all points into one grid on BEV. Formally, we have
the following proposition for the alignment

Proposition 2. If we set D = ⌈∥H0(f − h)∥⌉ (⌈·⌉
is the ceiling function) and D∆ze3 is a solution for
(∆t1,∆t2,∆t3) in Equation (5), all points with the same
Z value can be projected to the same grid on BEV map.

Proof. Since H0 is a homography, vector f − h will be
projected as another vector on the BEV occupancy map.
Observe that the number of occupied pixels of H0(f − h)
reflects the number of grids needed to be aligned, thus the
number of transformations should be D = ⌈∥H0(f−h)∥⌉.
Next, if projection HD can transform the topmost point to
the same occupancy pixel, then all points on f − h can be
transformed to the same pixel. From the proposition intro-
duced last section, transforming the topmost point means
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Method
WILDTRACK MultiviewX

MODA MODP Precision Recall MODA MODP Precision Recall

RCNN & clustering [25] 11.3 18.4 68 43 18.7 46.4 63.5 43.9
POM-CNN [8] 23.2 30.5 75 55 - - - -
DeepMCD [4] 67.8 64.2 85 82 70.0 73.0 85.7 83.3
Deep-Occlusion [2] 74.1 53.8 95 80 75.2 54.7 97.8 80.2
MVDet [12] 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7
Volumetric [13]∗ 88.6 73.8 95.3 93.2 84.2 80.3 97.5 86.4

Ours 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5

Table 1. Comparison to state-of-the-art methods. Our results are averaged on 5 repeated runs. ∗ Volumetric is our re-implementation and
all other results of comparison methods are quoted from [12].

Setting MODA MODP Prcn Rcll

project images
MVDet [12] 19.5 51.0 84.4 24.0
Ours 32.3 73.2 92.4 35.1

project results
MVDet [12] 73.2 79.7 87.6 85.0
Ours 77.0 79.6 89.8 86.8

w/o large kernel

MVDet [12] 77.2
(6.7↓)

76.3
(3.3↓)

89.5
(7.3↓)

85.9
(0.8↓)

Ours 86.1
(2.2↓)

81.8
(0.2↓)

91.9
(4.7↓)

94.4
(2.9↑)

Table 2. Applying SHOT under different settings. Results on Mul-
tiviewX is reported.The settings project images and project results
are applying perspective projection to images and results. The set-
ting w/o large kernel means not using large kernel in the final oc-
cupancy map classification layers, which is used for aggregating
knowledge across views in [12]. The numbers in parentheses are
the performance drop compared to the setting with large kernel.

that D∆ze3 is a solution for (∆t1,∆t2,∆t3) in Equa-
tion (5).

The above theoretical analysis proves that the proposed
SHOT can be constructed effectively with very few anno-
tations, which demonstrates the suitability for pedestrian
detection task. Also, with a proper D and ∆z, SHOT is
capable of perfectly projecting all points of interest to the
same grid on the BEV map, which demonstrates the broad
applicability.

6. Experiments
To evaluate our proposed SHOT, we first conduct exper-

iments following the evaluation protocols used in [3, 12].
Then, we conduct various ablation studies and present visu-
alization to validate the effectiveness of our method1.
6.1. Datasets

WILDTRACK [3]. In this dataset, pedestrians on 12 me-
ters by 36 meters region are captured from 7 cameras. The
size of images is 1080 × 1920 and annotated 2 frames per

1Our code is avaliable in the supplementary.

second. There are 400 images for the scene and the total
number of images is 2,800 since there are 7 cameras. On
average, each frame captures 23.8 persons and each person
is seen in 30.41 frames.
MultiviewX [12]. This dataset is a synthetic dataset gen-
erated with Unity engine and human models from Per-
sonX [22]. Same as WILDTRACK, 400 frames are of size
1080×1920 and annotated 2 frames per second. The ground
plane is of size 16 × 25m2, slightly smaller than WILD-
TRACK. Unlike WILDTRACK, 6 cameras are used in this
dataset and there are 40 persons in each frame.

6.2. Implementation details and metrics
Our implementation is based on the released code

of [12]. Specifically, as [12], the input image size (H,W )
is set to (720, 1280) and the size of output feature for each
view (Hf ,Wf ) is set to (270, 480). For training, we use
the SGD optimizer with learning rate 0.15 and momentum
0.9. D is set to 4. ∆z is set to 10 on WILDTRACK and 0.1
on MultiviewX. In our experiments, all networks are trained
with batch size 1 on two Titan XP GPUs.
Evaluation metrics. We use the data split in [12] and fol-
low the metrics proposed in [14]. Four metrics are reported:
Multiple Object Detection Accuracy (MODA), Multiple
Object Detection Precision (MODP), precision and recall.
To calculate the metrics, false positives (FP), false nega-
tives (FN) and true positives (TP) are first computed. Then,
MODA is computed by 1 − FP+FN

N , where N is the num-
ber of ground truth pedestrians. MODP is computed by∑

1−d[d<t]/t
TP , where d is the distances from a detection to

its ground truth and t is the threshold set to 20. MODP tells
us the precision of detection. Finally, precision is computed
by TP

FP+TP and recall is computed by TP
N . For all metrics, we

report the percentage.

6.3. Comparison to state-of-the-art methods

We compare SHOT to the state-of-the-art methods in
multiple aspects. We present quantitative comparisons on
standard validation benchmarks and then demonstrate the
effectiveness of our proposed SHOT.
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Figure 7. Visual comparison of extracted feature maps and projected feature maps. First column: one example view and current ground
truth BEV occupancy map. Second column: the feature maps extracted for the demonstrated view. Third column: Feature maps of the
view after projecting to BEV map. Fourth column: Concatenation of projected features from all views.

On standard multi-view detection benchmarks. As the
first experiment, we report the performance of our method
and compare it with the state-of-the-art methods in Ta-
ble 1. The comparison shows that our method outperforms
all competing methods significantly. More precisely, on
WILDTRACK, our method is better than others for all the
metrics. For MultiviewX, our method outperforms the oth-
ers by a large margin (4.4% higher than the current best) for
the MODA metric. Besides, our recall is remarkably better
than others (4.8% higher than the current best), while the
precision remains as good as the best one.
Applying SHOT under different settings. In [12], the au-
thors first studied three different projection schemes: im-
age level, result level, and feature level. They found that
projecting the intermediate feature is the most effective
scheme, which is the final result reported in Table 1. Then
they found that using a large kernel in the final occupancy
classification layer is beneficial for aggregating the knowl-
edge across views. As a comparison, we conduct exper-
iments to validate the effectiveness of SHOT accordingly.
First, we observe that applying SHOT to the other two
schemes is also beneficial. From the results shown in Ta-
ble 2, we can see that our SHOT module consistently im-
proves the detection performance. Moreover, under the set-
ting w/o large kernel, it is clear that our method is less af-
fected by using small kernels when performing BEV occu-
pancy map classification. The reason is that SHOT is capa-
ble of aligning the features, therefore relaxing the require-
ment on the final occupancy map classification layers from
aggregating occupancy knowledge across views.
Visual comparisons of projected feature maps. To fur-
ther validate our claim that SHOT can directly help to gather

knowledge across views, we visualize the intermediate fea-
ture maps of our method. In Figure 7, we present two ran-
domly selected samples from the test set of WILDTRACK.
For visualizing features, we normalize the feature tensor
along the channel dimension. The first point we can ob-
serve is that the features after projection and concatenation
(3rd and 4th column) are very different between MVDet and
ours. The features projected with our method are more fo-
cused while features from MVDet are more blurred, which
demonstrates that SHOT can indeed help align the features
on the BEV map. The second observation is that by compar-
ing the extracted image feature (2nd column), our method
also focuses on other human body parts. For example, from
the last row, we can observe that the response on the human
body is higher than the counterpart, indicating that features
from the human body are useful for classification on the
BEV map. To sum up, all the above results validate our mo-
tivation and claim that SHOT can help align the feature on
the BEV map.

6.4. Analysis

Previous results verify the effectiveness of our method.
In this section, we analyze our method in terms of explain-
ability and applicability.

Transformation selection module. As introduced in Sec-
tion 4.2, we predict the likelihood for each pixel of softly
selecting a specific homography from the stacked homog-
raphy transformations. It is important to analyze whether
the likelihood prediction module g() is functioning as ex-
pected. In Figure 8, we demonstrate the selection likeli-
hood values for each pixel. Observe that the color on the
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Figure 8. Visualization of estimated selection likelihood for each
homography transformation.

D 1 2 3 4 5 6

MODA 85.5 86.2 87.2 88.3 88.6 OOM

Table 3. Performance on MultiviewX with different D values and
each D means that D + 1 homographies are used. OOM means
out of memory.

0

1 2

3

4
5

Training Testing

MVDet Ours

MODA 33.0 49.1
MODP 76.5 77.0

Prcn 64.5 73.3
Rcll 73.4 77.1

Table 4. Performance comparison under the setting shown in the
left image. The cameras and the ground plane are different be-
tween training and testing. The numbers in the left image are the
camera ids.

human body becomes darker with a higher level transfor-
mation, indicating that the likelihood of selecting the higher
level transformations increases on body parts. The changes
in the likelihood of different body parts prove that the like-
lihood prediction module works expectedly.

The number D of stacked homography transformations.
Recall that the stacked homography transformations can be
viewed as a discretization of the Z axis in the world coordi-
nates, so the number D represents how fine the discretiza-
tion is. Although we introduce the condition for achieving
perfect alignment in Section 5.2, the alignment is different
for feature maps since the receptive field is usually large for
networks. Still, the foreseeable impact of D is that as D
increases the performance gets better until D reaches a cer-
tain value. The results are shown in Table 3, from which
we can observe that the change of performance meets our
expectations. Specifically, with a larger D, the performance
keeps improving with a diminishing gain. The performance
gap between D = 4 and 5 is getting quite small.

Input views are changed when testing. In this paper, we
follow the setting that the scene and the training and test-
ing views are the same. While this setting has its practical
application scenarios such as surveillance cameras. A more
practical and challenging setting is to train the model once
and deploy to a different scene. Therefore, we suggest to

(a) (c)

(b) (d)

Figure 9. Computing HD from H0 with one pedestrian annota-
tion. (a) Projection with HD computed with one annotation. (b)
Projection with HD computed with extrinsic parameters. (c) Pro-
jection with H0. (d) Difference between (a) and (b).

evaluate in a new setting: the scene and the camera loca-
tions are different between training and testing. To inves-
tigate the performance under this setting, we create a new
training-testing split on MultiviewX, by using cameras 0, 1,
and 5 for training and camera 2, 3, and 4 for testing. Also,
we split the ground plane into two parts from the middle
vertically, then the left part is used for training while the
right part is used for testing. In Table 4, we present a visu-
alization of our setting and performance comparison. Our
method again outperforms the baseline method MVDet in
this much more challenging setting.

Computing transformations without extrinsic parame-
ters. In Section 5, we mention that in practice we can
construct SHOT with only one pedestrian label from the
ground homography. Here we present an example from
WILDTRACK in Figure 9. As can be observed from the
images, there is very little difference between (a) and (b),
thus computing a stack of transformations will not restrict
the applicability.

7. Conclusion
In this paper, we propose the stacked homography trans-

formations (SHOT) as an approximation to the 3D point
projection. SHOT consists of two steps: first constructing
the transformations, then soft selecting transformations. We
theoretically analyze the requirements of applying SHOT
and how SHOT approximate 3D projections in the frame-
work. On standard benchmarks, our method reaches new
state-of-the-art with notable gain. Moreover, extensive
analysis validates our claims and motivations.
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