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Abstract

We present a novel framework for mesh reconstruction

from unstructured point clouds by taking advantage of the

learned visibility of the 3D points in the virtual views and

traditional graph-cut based mesh generation. Specifically,

we first propose a three-step network that explicitly employs

depth completion for visibility prediction. Then the visi-

bility information of multiple views is aggregated to gen-

erate a 3D mesh model by solving an optimization prob-

lem considering visibility in which a novel adaptive visibil-

ity weighting in surface determination is also introduced to

suppress line of sight with a large incident angle. Compared

to other learning-based approaches, our pipeline only exer-

cises the learning on a 2D binary classification task, i.e.,

points visible or not in a view, which is much more gener-

alizable and practically more efficient and capable to deal

with a large number of points. Experiments demonstrate

that our method with favorable transferability and robust-

ness, and achieve competing performances w.r.t. state-of-

the-art learning-based approaches on small complex ob-

jects and outperforms on large indoor and outdoor scenes.

Code is available at https://github.com/GDAOSU/vis2mesh.

1. Introduction

3D surface reconstruction is essential to drive many com-

puter vision and VR/AR applications, such as vision-based

localization, view rendering, animation, and autonomous

navigation. With the development of 3D sensors, e.g., Li-

DAR or depth sensors, we can directly capture accurate 3D

point clouds. However, determining surfaces from unstruc-

tured point clouds remains a challenging problem, espe-

cially for point clouds of objects of complex shapes, vary-

ing point density, completeness, and volumes. A favorable

mesh reconstruction method should be 1) capable of recov-

ering geometric details captured by the point clouds; 2) ro-

bust and generalizable to different scene contexts; 3) scal-

able to large scenes and tractable in terms of memory and
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Figure 1. Examples of reconstructed surfaces with our approach

on both indoor and large outdoor scenes. The number of points

ranges from thousands to millions.

computation.

Typical reconstruction methods either explicitly explore

the local surface recovery through connecting neighbor-

ing points (e.g. Delaunay Triangulation [5]), or sort solu-

tions globally through implicit surface determination (e.g.

Screened Poisson Surface Reconstruction [21, 22] ). How-

ever, both of them favor high-density point clouds. With

the development of 3D deep learning, many learning-based

methods have demonstrated their strong capability when

reconstructing mesh surfaces from moderately dense or

even comparatively sparse point clouds of complex objects.

However, these end-to-end deep architectures, on one hand,

encode the contextual/scene information which often runs

into generalization issues; on the other hand, the heavy net-

works challenge the memory and computations when scal-

ing up to large scenes.

The point visibility in views has been shown as a good

source of information, which can greatly benefit surface re-

construction [47]. For example, a 3D point visible on a

physical image view alludes to the fact the line of sight from
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the 3D point to the view perspective center, travels through

free space (no objects or parts occludes), which as a result,

can serve as a strong constraint to guide the mesh recon-

struction. Intuitively, the more visible a point is in more

views, the more information about the free space between

points and views that one can explore [17]. This principle

has been practiced in multi-view stereo (MVS) and range

images and shows promising results [25, 26, 51], in which

the visibility of each 3D point to each physical is recorded

through dense matching (in MVS) or decoded directly from

the sensors. However, in both cases, the visibility is limited

by the number of physical views and accounts for only lim-

ited knowledge of the free space, thus leading to the lack of

reconstruction details.

To address it, we propose a novel solution by generat-

ing a large number of virtual views around the point clouds

and utilize the learned visibility through a graph-cut based

surface reconstruction approach. This will literally give us

unlimited visibility information for high-quality mesh gen-

eration through traditional approaches based on visibility.

However, it is non-trivial to design such a system. First,

visibility prediction in virtual views is not easy as the pro-

jected pixels from the point clouds to different views can

have varying sparsity. Second, unlike the MVS views which

normally assume a good incidence angle to the generated

point clouds, the generated virtual views may present a large

variation in terms of their incident angle and distance to

the surface. To solve these problems, we design a network

for visibility prediction, which utilizes partial convolution

to model the sparsity of the input in the neural network. To

further improve the accuracy, we propose a cascade network

that explicitly employs depth completion as an intermedi-

ate task. Secondly, to suppress the side effect of unfavored

virtual rays (large-incidence angle to the surface), we pro-

pose a novel adaptive visibility weighting term that adap-

tively weights the virtual rays. Compared to the end-to-end

learning-based methods, our method has better generaliza-

tion across different scene contexts because a very simple

and learning-friendly task, i.e., visibility prediction, is in-

volved in our pipeline. Moreover, our method also main-

tains the capability to process an extremely large volume of

outdoor point clouds with high quality.

Our contributions can be summarized as follows:

Firstly, we present a surface reconstruction framework

from unstructured point clouds, that exploits the power of

both traditional and learning-based methods; Secondly, we

propose a three-step network that explicitly employs the

depth completion for the visibility prediction of 3D points;

Thirdly, we propose a novel adaptive visibility weighting

term into the traditional graph-cut based meshing pipeline,

to increase the geometric details; Lastly, we demonstrate

through our experiments that our proposed method yields

better generalization capability, and can be scaled up to pro-

cess point clouds of a large scene. It is also robust against

different types of noises and incomplete data and has better

performance than the state-of-the-art methods.

2. Related Work

Classic surface reconstruction from unstructured point

clouds exploits both local and global surface smoothness,

global regularity, visibility, etc. [3]. The local surface

smoothness based methods [12, 16, 1] seek for smooth sur-

face only in close proximity to the data. The global sur-

face smoothness based methods [20, 7, 21, 22, 24] tend

to find a field function (signed distance function, indicator

function) approximating the point cloud. The most com-

mon global smoothness algorithm is Screened Poisson Sur-

face Reconstruction (SPSR) [21, 22] which can generate

smooth, void-free surfaces with high-quality oriented nor-

mals, while it can be oversensitive to incorrect normals, as

well as non-watertight shapes. The global regularity based

methods [33, 56, 27] deal with the man-made objects or

architectural shapes that feature symmetry, orthogonality,

repetition, and parallelism. The visibility based methods as-

sume the information of the sensors from which the point

clouds are collected, and this yields additional cues as rays

and visibility of each point at sensor locations in which they

are observable. Varying forms of visibility (includes lines

of sight [11, 25], exterior visibility [45, 19], parity [32])

have been explored. The most widely used methods utilize

lines of sight [25, 26, 17, 18, 59] that determine the surface

between interior and exterior tetrahedron of the Delaunay

triangulation of a point set by solving a s-t graph which is

weighted by lines of sight. Nonetheless, the quality of re-

sults relies on the number and quality of rays and it may

fall short in concave areas on the reconstructed surface if

insufficient rays are identified [59].

Learning-based surface reconstruction takes a data-

driven approach that takes advantage of the available ex-

amples and the high-capability network structures [40, 41,

9, 52] to build surfaces for challenging and complex point

clouds that classic methods have poor performance on. Sev-

eral methods [8, 31, 35] encode the entire object to an em-

bedding vector and decode it with a neural network, as a

general problem in such deep networks, the representation

often cannot be generalized to objects of unseen categories

or scenes. CONet [36] proposed alternative volumetric rep-

resentations and enabled convolution in the implicit field

making the representations invariant to translation, and the

sliding-window nature of this approach makes CONet ca-

pable of scaling up to large scenes, while the method being

local does not capture global shape information and the vol-

umetric representations are still memory demanding for 3D

data generation. Points2Surf [13] proposed a patch-based

learning framework combining outputs of local-scale and

global-scale neural networks to construct a signed distance
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Figure 2. The proposed Vis2Mesh framework. Our framework reconstructs surfaces in four steps shown in inference region from left to

right follow the flow of arrows: 1) Virtual view sampling 2) Rendering 3) Visibility determination and 4) Delaunay and graph-cut based

surface reconstruction. Visibility determination composed by three networks: CoarseVisNet, predicting visibility from sparse depth input,

DepthCompNet completing dense depth map based on coarse predicted visible points and FineVisNet refining visibility prediction with

sparse depth and completed dense depth map, detailed in Section 4.2.

function (SDF) and shows a certain level of generalization

capability. Yet the query on the per-voxel level and the in-

ference over the voxels field are computationally intensive

(4x slower than SPSR), which limits it to only process small

scenes. The MIER method [30] uses the explicit represen-

tation of input points and cast the connectivity to a sur-

rogate comparing geodesic/euclidean distances. A neural

network-based classifier is trained to determine surface tri-

angles, which has shown to be capable of preserving fine-

grained details and works well on ambiguous structures.

However, the per-triangle classification overlooks the con-

nectivity of adjacent triangles, causing holes on the recon-

structed surfaces. Point2Mesh [15] proposed a self-prior

to detect self-similarity, which contributes to reconstructing

surface as well as removing noises and completing miss-

ing parts. Nonetheless, Point2Mesh only works with wa-

tertight and simple models, requires an initial mesh model,

and comparably needs a long running time to converge. As

compared to the classic methods, the learning-based meth-

ods, in general, demand a high volume of memory and can

be scene-specific.

3. Preliminary

This section introduces the formula of Delaunay trian-

gulation and graph-cut optimization based surface recon-

struction [26]. The surface reconstruction problem is con-

sidered as the outer space/inner space labeling problem of

the connected graph built based on Delaunay triangulation,

to be solved by minimum s-t cut algorithm [6]. The recon-

structed surface, denoted by S in the following, is a union

of oriented Delaunay triangles which are guaranteed to be

watertight and intersection free as it bounds a volume con-

sist of tetrahedra. The energy function of the reconstruction

problem is formulated by the basic method [26] as Equa-

tion 1.

E(S) = Evis(S,V) + λqlEql(S)

=
∑

v∈V

[Es(v) + Et(v) + Eij(v)] + λqlEql(S),
(1)

where Evis(S,V) is a sum of penalties for conflicts and
wrong orientations of the surface S concerning the con-
straints imposed by all lines of sight V , Eql(S) is an ad-
ditional smoothness term to suppress skinny triangles [26].
In graph-cut, Es and Et are data terms for outer and inner
space respectively, and Eij is a smoothness term. Eql(S) is
another smoothness term independent of visibility.

Es(v) = ∞ · δ[T1 ∈ t], (2a)

Et(v) = αvis · δ[TM+1 ∈ s], (2b)

Eij(v) =

M−1∑

i=1

αvis · δ[Ti ∈ s ∧ Ti+1 ∈ t], (2c)

where Ti is the i-th tetrahedron intersects with the line of

sight v, M is the size of the intersection set. So that T1 and

TM+1 denote the first and the one right behind the last tetra-

hedra along v. The conditional operator δ[·] is 1 if the con-

dition is true, otherwise is 0. αvis is the confidence of the

visibility which is proportional to the distance to the end-

point, which is called soft visibility constraint. Please refer

to our supp. material for more details about graph weight-

ing.

4. Method

In this section, we introduce our framework of surface

reconstruction from unstructured point clouds (Figure 2).

Firstly, we sample feasible 6 DoF (Degree of freedom)

poses according to input point clouds. Then, a 3D renderer

will take poses as viewing parameters and project points

onto that virtual image plane based on its projection ma-

trix. Next, a three-step network that explicitly employs
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(a) Spherical (b) Grid+Nadir (c) Grid+Oblique (d) Customized

Figure 3. Virtual view generators. Spherical Pattern Generator:

samples around the object while targeting it, always used for small

objects. Grid+Nadir Generator: samples in grid fashion that par-

allel to the ground plane for the terrain-like large-scale scenario,

uses above ground height and overlap rate to control the density

of sampled views. Grid+Oblique generator: beside nadir views,

samples concentric oblique views to capture facades in the urban

area. Customized: we create an interactive tool to let users pick

views. Customized views can improve the quality of ambiguous

structures of complex objects.

depth completion to assist visibility estimation, and predicts

the visible and occluded points to build visibility informa-

tion. Finally, the graph-cut based solver processes the input

points associated with predicted visibility to reconstruct the

surface. Our overall framework is shown in Figure 2, and

the individual components will be discussed in the follow-

ing subsections.

4.1. Virtual View Sampling

Given the input unstructured point cloud, we first gen-

erate the images under virtual views that simulate the input

images in the MVS method. Virtual view sampling given a

presumed object or scene is a challenging problem, and au-

tomatic view selection for tasks such as stereo reconstruc-

tion or surveillance is an active topic in computer vision

and robotics community [37, 46, 54, 55], and the perfor-

mance of these methods are task and scene-specific. In our

work, we utilize several general generators as shown in Fig-

ure 3 and empirically find that they work very well with

our method when dealing with different objects and scene

contexts. In practice, our method shows a certain level of

robustness regarding varieties of virtual view sampling, and

the number of virtual views can affect surface quality, the

analysis of which can be found in Section 5.2.

4.2. Visibility Estimation Network

Given the projected image with sparse depth informa-

tion, we exploit the deep neural network to predict the visi-

bility of 3D points in the virtual views. The biggest chal-

lenge of the visibility estimation task is that it requires

pixel-wise accuracy rather than region-wise. To this end,

the standard CNNs (Convolutional Neural Networks) with

small kernel size is preferred for the task because it is sensi-

tive to local structure. However, for data with varying spar-

sity levels, the standard CNNs have poor performance since

invalid pixels or voids produced by projecting sparse points

make it difficult to learn robust representations [49].

Partial Convolution (PConv) [29, 28] is proposed for

image inpainting from an incomplete input image. The

proposed re-weighted convolution operation is particularly

suitable for processing sparse data since it models the valid-

ity of each pixel and propagates it along with the convolu-

tional operation. A similar idea has been used in depth com-

pletion [49] from sparse laser scan data. Visibility predic-

tion exploits the local sensitivity of neural networks, while

depth completion requires local smoothness. Therefore, we

design an intermediate task with a dedicated network mod-

ule for depth completion and proposed a cascade network

VDVNet (Visibility-Depth-Visibility).

The input of our visibility estimation network is a H ×

W×2 feature map in which the first channel is a normalized

depth image, and the second is a binary mask that indicates

whether the pixel is valid. Our frame shown in Figure 2

includes an example input and intermediate results between

different network components (which will be detailed in the

following sections). The specifications of the network ar-

chitecture can be found in our supplementary material.

CoarseVisNet. We train the sub-network to predict the

visibility with supervised learning. As shown in Figure 2,

we apply Sparse BCELoss (binary cross-entropy loss with

mask) between the predicted coarse visibility map and the

ground truth visibility map, where the mask indicates the

valid pixels.

DepthCompNet. The depth completion sub-network is de-

signed to convert a sparse depth map to a dense one. We fil-

ter raw depth map with coarse visibility predicted by Coar-

seVisNet before feeding it to DepthCompNet. The supervi-

sion of DepthCompNet is depth maps of ground truth sur-

face. Mean squared error loss function is applied between

them (Sparse MSELoss in Figure 2).

FineVisNet. This module takes the input of CoarseVisNet

and the output of DepthCompNet to predict the fine visibil-

ity. The loss function is applied as same as CoarseVisNet.

Training Data. The training data used for visibility pre-

diction can be easily simulated from any type of 3D model.

We select a few well-reconstructed textured mesh models

of large-scale scenes from a public MVS reconstruction

dataset [53] as the ground truth surfaces to generate syn-

thetic visibility. Points are uniformly and sparsely sampled

from surfaces. Then, the sampled points are further aug-

mented with additional Gaussian white noises and outliers.

In the next step, we sample virtual views from the point

clouds with the combination of patterns shown in Figure 3.

For each view, a depth map of both point clouds and surface

are rendered and combined to generate the ground truth vis-

ibility. If the depth value of the point rendered image and

the surface rendered image are matched, the point is labeled

as visible, otherwise, as occluded. Depth maps of the sur-
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(a) Sharp angle

(b) Fronto-parallel (c) γ = 0.1 (d) γ = 1 (e) γ = 0.4

Figure 4. Geometric illustration of adaptive visibility weighting,

where λavw = 1.

faces serve as ground truth depth for the training of Depth-

CompNet.

4.3. Adaptive Visibility Weighting of Graph­Cut
based Surface Reconstruction

Once the visibility of points in all views is predicted, we

utilize the graph-cut based mesh generation [26] to recon-

struct the final mesh model. Due to the different characteris-

tics of virtual visibility, the basic method [26] suffers from

the over-smoothing issue of creases on the surface, which

motivates us to propose adaptive visibility weighting. The

formulas of the basic method can be found in Section 3.

Compared with the visibility from instruments, the vir-

tual view visibility generated by our VDVNet from un-

ordered points and sampled views has very different char-

acteristics in terms of density, direction, and distance. As

Equation 2b indicates, the basic method has an issue that

the strong constraint imposed on the tetrahedra right behind

the point along the line of sight and might overlook details

of the surface especially when the lines of sight have a large

incident angle. Since the large incident angle is rare in tra-

ditional applications, the issue of the baseline method was

not discovered before.

Since our virtual visibility is predicted by the neural net-

work from unordered points directly, the angle of the inci-

dence can range from 0 to 90 degrees, because there is no

implicit filter of the multi-stereo view method. The visibil-

ity with a large incident angle (Figure 4a) is equivalent to a

sharp surface in the depth map of the view, which is always

considered as a sign of self-occlusion [4].
The key idea of our adaptive visibility weighting (AVW)

is illustrated in Figure 4. Apparently, for surface reconstruc-
tion, a measurement for a sharp angle surface (Figure 4a) is
considered as the lowest confidence, while for the fronto-
parallel surface (Figure 4b) is considered the best confi-
dence. We use cosine similarity between the direction of the
line of sight and the surface normal to construct a smooth
weighting function. The weight is regarded as the confi-
dence of visibility, its definition overlaps with αvis, and it
changes terms Et and Eij . We use the product of two fac-
tors γ and αvis as the new confidence of line of sight. In
order to apply the weighting function to a tetrahedron with
3 triangles where the vertex and the line of sight intersect,
we consider the one most likely to be on the surface, that is,
the triangle whose normal is closest to the direction of the

ray. We took the maximum value of the cosine similarity of
the three angles, as shown in Equation 3, where the cosine
similarity is equivalent to the dot product because the nor-
mal is of unit length. Figure 4c, 4d, 4e show examples of
our adaptive visibility weighting term.

E
OURS
t (v) = γ · αvis · δ[TM+1 ∈ s], (3a)

E
OURS
ij (v) =

M−1∑

i=1

γ · αvis · δ[Ti ∈ s ∧ Ti+1 ∈ t], (3b)

γ = (1− λavw) + λavw max(NT
v · [Nf1, Nf2, Nf3]), (3c)

where Nv denotes direction of the incident line of sight v,

Nf# are normal of faces of tetrahedron TM+1 incident to

the endpoint of v, λavw is the damping factor to adjust the

adaptive visibility weighting γ. Our method is equivalent to

Labatut’s method [26] when λavw = 0.

5. Experiments

We evaluate our proposed Vis2Mesh method through a

series of quantitative and qualitative experiments covering

a variety of small objects, indoor scenarios, large-scale out-

door scenarios either acquired by multi-view stereo, laser

scanning, or simulated images. We compare our method

with several state-of-the-art learning-based reconstruction

approaches including Point2Mesh (P2M) [15], Points2Surf

(P2S) [13], Meshing Point Cloud with IER (MIER) [30]

Convolutional Occupancy Networks(CONet) [36], and a

classical approach Screened Poisson Surface Reconstruc-

tion (SPSR) [22]. To demonstrate the generalization capac-

ity, we widely collect data from multiple datasets with vary-

ing sensors and platforms, including BlendedMVS [53],

COSEG [50], Thingi10K [57], P2M [15], CONet [36],

senseFly [44], KITTI [14], Mai City Dataset [48], Airborne

LiDAR data of Columbus, Ohio [34] and Airborne LiDAR

data of Toronto [43]. Details of these datasets including

their source, volume, as well as virtual view generators used

in our experiments can be found in the supp. material.

Our method does not assume surface normal informa-

tion, while it is required for some of the comparing meth-

ods (SPSR, P2M, etc.). High-quality surface normals are

an important source of information to guide the reconstruc-

tion method but are not easily obtainable or directly mea-

sured by most of the sensors. In the experiment, the surface

normal used by these comparing methods is estimated by

a Minimal Spanning Tree (MST) based local plane fitting

method, implemented by the open-source software Cloud-

Compare [10]. The software also integrated SPSR [22] im-

plementation which we use in our comparative study. We

report the performance of the comparing methods quantita-

tively in Section 5.1, and qualitatively in Section 5.3.

5.1. Quantitative Evaluation

We evaluate our method on points sampled from ground

truth mesh from COSEG, CONet, and BlendedMVS

6518



F-score Chamfer distance

P2M P2S MIER CONet
SPSR Ours Ours

P2M P2S MIER CONet
SPSR Ours Ours

(Trimmed) (γav = 0) (γav = 1) (Trimmed) (γav = 0) (γav = 1)

Object

25K

DSLR 0.9790 0.9014 0.9935 0.9041 0.9517 0.9844 0.9841 0.1593 0.3558 0.1440 0.2570 0.1288 0.0702 0.0707

bull 0.9990 0.9946 0.9851 0.8203 0.9993 0.9929 0.9991 0.3328 0.3576 0.3421 1.3881 0.2914 0.3037 0.2893

giraffe 0.9969 0.9525 0.9938 0.9776 0.9999 0.9989 0.9996 0.2227 0.4325 0.3276 0.3831 0.1893 0.2136 0.1939

Average 0.9916 0.9495 0.9908 0.9007 0.9836 0.9921 0.9943 0.2383 0.3819 0.2712 0.6761 0.2032 0.1959 0.1846

Indoor

100K

room0 / 0.7334 0.8885 0.9112 0.9049 0.9345 0.9340 / 2.0151 0.3403 0.6476 0.8272 0.3296 0.3571

room1 / 0.5379 0.8453 0.8695 0.8065 0.8747 0.8775 / 2.8026 0.6714 0.7814 1.2546 0.5971 0.5457

Average / 0.6356 0.8669 0.8903 0.8557 0.9046 0.9058 / 2.4088 0.5059 0.7145 1.0409 0.4634 0.4514

Outdoor

500K

Church / / / 0.4086 0.8292 0.9206 0.9221 / / / 19.8253 1.7784 0.6811 0.6657

Archway / / / 0.9133 0.9815 0.9840 0.9772 / / / 0.2753 0.0869 0.0677 0.0756

Pedestrian street / / / 0.7494 0.9401 0.9889 0.9860 / / / 0.8008 0.3561 0.1590 0.1620

Eco Park / / / 0.7416 0.8470 0.9431 0.9553 / / / 0.8813 0.9463 0.3273 0.2961

Dragon Park / / / 0.7700 0.8702 0.9804 0.9866 / / / 0.8696 0.7398 0.2096 0.1859

Average / / / 0.7166 0.8936 0.9634 0.9654 / / / 4.4809 0.7815 0.2890 0.2770

MVS

Hotel / / / 0.3577 0.7732 0.8229 0.8350 / / / 1.3053 0.9369 0.3660 0.3479

GSM Tower / / / 0.1863 0.6261 0.6321 0.6354 / / / 6.6513 0.8051 0.6935 0.6888

UThammasat / / / 0.4656 0.8046 0.7094 0.7259 / / / 1.4951 0.3741 0.3982 0.3737

Average / / / 0.3365 0.7346 0.7215 0.7321 / / / 1.7845 0.7054 0.4859 0.4701

Table 1. Quantitative comparison of reconstruction on COSEG, CONet, and BlendedMVS dataset, grouped by the size of the scene and

number of points. (“F-score”: Higher is better. “Chamfer distance”: Lower is better. “/”: Not applicable.)

datasets. Since the existing methods have certain limita-

tions on the amount of data, we divide the data set into ob-

ject/indoor/outdoor scenes, and the complexity and scene

scale are gradually increasing. We uniformly sample 25K

points from the ground truth surface for objects, 100K

points for indoor data, and 500K points for outdoor data.

In order to evaluated with actual data, we generated ground

truth for the sensefly [44] dataset by using a commercial

MVS pipeline [39] that employs SPSR for surface recon-

struction. Table 1 shows F-score [23] and Chamfer distance

(CD) [2] metrics on each category. To be noted that, we use

the sliding window manner of CONet for all scales, and we

trim SPSR output by the density value, and the threshold is

set to max density/2.

Compared with several state-of-the-art learning-based

reconstruction approaches and the SPSR method, our vir-

tual view visibility-based methods present outstanding per-

formance in terms of both metrics on each level of datasets,

which also proves the insensitivity of our method to the

type of scene. Furthermore, although our VDVNet is

trained from the synthetic dataset collected from outdoor-

level models, and the quantitative evaluation shows our

method has achieved competitive results on object-level and

indoor-level datasets. Regarding efficiency, our method has

similar speed and memory as SPSR when reaching the same

level of detail. Detailed statistics on running time can be

found in the supp. material.

5.2. Ablation Studies

We first demonstrate the advantage of virtual view visi-

bility in surface reconstruction even if the actual visibility

is available (Figure 6), and show the quality improvement

by the proposed adaptive visibility weighting (Figure 7).

Then, we analyze the network architecture with a quanti-

tative evaluation (Table 2).

Importance of virtual view visibility. In this experiment,

we compare surfaces reconstructed by real visibility (ob-

tained from physical views) and virtual view visibility to

(a) Per Point (b) Grid Fusion (c) Ours

Figure 5. Methods of modeling visibility from mobile LiDAR

scans. (Per Point: each LiDAR point only connects to the tra-

jectory once. Grid Fusion: points within the voxel of the grid fuse

into a centroid and connect it to the trajectory. Ours: pure virtual

visibility generated from sampled views and VDVNet.)

prove the importance of virtual visibility. The data in this

experiment is LiDAR scans associated with 6DoF pose tra-

jectory from the Mai City Dataset [14]. We present three

methods as shown in Figure 5. Per Point is generated by as-

sociating the corresponding scan pose with each point, and

each point has only one line of sight (or visibility) collected

from the sensor. For Grid Fusion, we use a voxel grid filter

to aggregate nearby points’ visibility to obtain points with

multiple actual visibility. Finally, we use the proposed net-

work to generate virtual view visibility, where the virtual

views are sampled along the recorded trajectory.

The visual results shown in Figure 6 demonstrates that

the virtual views visibility place a significant improvement

in the mesh quality. Per Point actual visibility failed to re-

construct a complete scene because only one line of sight

associated with each point is not geometrical stable, and is

not sufficient to create a reliable weighted graph for the op-

timization. Grid Fusion shows better reconstruction quality

since more lines of sight are included (4/points on average),

but the details of reconstruction are poor, and noises seri-

ously affect the surface. In contrast, our pure virtual view

visibility method creates smooth, detailed, and noise-free

surfaces (thanks to the denoising capability of VDVNet).

Importance of adaptive visibility weighting. Figure 7

demonstrates the impact of proposed adaptive visibility

weighting. To be noted that when setting λavw = 0, the
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5M points

(a) Ground Truth

5M lines of sight

F-score: 0.51

CD: 4.30

(b) Per Point (actual visibility)

10M lines of sight

F-score: 0.75

CD: 0.25

(c) Grid Fusion (actual visibility)

17M lines of sight

F-score: 0.93

CD: 0.75

(d) Ours (virtual view visibility)

Figure 6. Importance of virtual view visibility. Reconstruction us-

ing our method for each visibility dataset in Figure 5.

(a) Points

F-score:
0.64

CD:
1.80

(b) λavw = 0

F-score:
0.97

CD:
0.23

(c) λavw = 1

Figure 7. Impact of AVW on synthetic data with complex shape.

The data is Birdcage.

visibility weighted graph is exactly equivalent to the ba-

sic method [26]. We observe the method λavw = 1 works

better than the basic method for objects with pole-like and

notches on the surface structure, since such a complex struc-

ture may introduce large incidence angles for our virtual

lines of sight. The adaptive visibility weighting works as

we expected in Section 4.3. The quantitative results in Ta-

ble 1 show that in most cases, adaptive visibility weighting

works better than the basic method.

Impact of the number of virtual views. To evaluate

the effect of the view configuration, we demonstrate the re-

construction results w.r.t. different numbers of virtual views

in Figure 8. Firstly, the single view on the top center of

the scene generates a very coarse surface. Secondly, 7 vir-

tual views on the spherical orbit around the target carved

out objects of the scene, the base of the lamp, legs of the

chair starting emerging. With more virtual views, the re-

constructed surface yields more geometric details. The last

configuration contains virtual views selected interactively

by the user to reconstruct the complex structure of the chair.

Visibility estimation networks. We independently evalu-

ate the performance of our VDVNet in the task of visibility

prediction comparing with geometric-based method Hidden

Point Removal (HPR) [19] implemented by Open3D [58]

and the baseline learning method UNet [42]. The VISIB-

NET proposed by InvSFM [38] is designed for the same

1 cam 8 cams 14 cams 38 cams

Figure 8. Impact of the number of virtual views.

Visibility Estimator #Param %P %R %F1 %AUC

HPR / 85.79 85.01 85.24 82.22

UNet 51M 90.42 87.10 88.68 88.52

UNet + PConv 51M 90.73 88.03 89.32 89.59

VISIBNET 52M 90.15 91.50 90.78 90.22

Ours w/o DepthComp or PConv 153M 91.84 84.08 87.71 89.29

Ours w/o DepthComp 153M 91.38 93.10 92.21 92.62

Ours w/o PConv 153M 91.86 94.24 93.01 93.14

Ours 153M 92.37 94.95 93.63 94.17

Table 2. Quantitative analysis of methods on binary visibility clas-

sification task. #Param is the number of parameters, %P is preci-

sion, %R is recall, %F1 is F1 score, and %AUC is Area Under The

Curve of ROC curves. DepthComp represents the depth comple-

tion module and PConv denotes t partial convolutional layers.
task as us, and its architecture is UNet with convolutional

layers at the end of the decoder.

We report the size and the performance of classifiers in

Table 2 on our pixel-wise visibility dataset sampled from

BlendedMVS. We observe the networks with partial convo-

lutional layers outperform standard convolutional networks

without parameter increasing. The variants of our networks

present the contribution of the depth completion module

and partial convolutional layers w.r.t. visibility estimation

task. Please refer to the supp. material for the evaluation

ofdatasets with various modalities as well as the qualitative

results of visibility estimation.

Impact of noises and missing data. Since the real 3D

point clouds normally have noises and incomplete data, it is

very important for mesh generation to deal with these prob-

lems. We designed two experiments to evaluate the robust-

ness of different methods against the additional noises and

incompleteness.

We evaluated the impact of additional noises (random

noise and outliers) on CONet, SPSR, and our method on in-

door scenes, as shown in Figure 9. The added noises may

affect both the position of the points and the normals of the

points. The middle column of Figure 9 shows outliers in-

troduced undesired objects to CONet, but it has much less

impact on other methods and ours. However, noises can be

problematic for SPSR since it relies on high-quality normal

estimation, which can be easily affected by noises. CONet

and our method have demonstrated a certain level of noises

robustness in the reconstructed meshes. Incomplete data

or missing data is a common problem in practice, such as

those from laser scanning. Figure 10 compares the results
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Figure 9. Evaluation of the methods subject to additional noises on

the point clouds. The data is Room0.

(a) CONet (b) SPSR (c) Ours

Figure 10. Evaluation of the methods on incomplete point clouds.

The data is Toronto downtown.

(a) P2M (b) P2S (c) MIER

(d) CONet (e) SPSR (f) Ours

Figure 11. Qualitative comparison on small object level datasets.

The data is DSLR.

of CONet and ours in large-scale scenes, and we note that

our approach is able to complete the missing facades with

triangle faces in the incomplete region. Thanks to Delaunay

triangulation and tetrahedron labeling, our method is able to

close gaps and holes caused by missing data.

5.3. Qualitative Evaluation

Our qualitative comparison is divided into three scales as

well, shown in Figure 11, the first column of Figure 9, and

Figure 12 respectively. P2M [15] and P2S [13] have poor

reconstruction quality in terms of open surface (DSLR). Tri-

angles generated by MIER [30] are close to the ground truth

(a) SPSR (b) Ours (λavw = 1)

Figure 12. Qualitative comparison on the large-scale outdoor

dataset. The data are Eco Park (top) and Crossroad (bottom).

surface, but the completeness is poor. CONet usually pro-

duces a flat surface, which is a good feature for specific

scenes (i.e. indoors), but it is not good for curved surfaces.

While SPSR [22] also produces reasonable reconstructions,

it tends to close the resulting meshes and present bubbles

event after trimming with the threshold max density/2.

A carefully chosen trimming parameter could reduce such

artifacts. Moreover, instead of uniform sampling from

the ground truth surface, we use real-world datasets de-

rived from multi-view stereo [44] or laser scan data [14] to

demonstrate the generality of the proposed method. More

results can be found in the supp. material.

6. Conclusion

We presented a novel surface reconstruction framework

that combines the traditional graph-cut based method and

learning-based method. In our method, the neural network

only focuses on a very simple task - learning to predict

the visibility of the point clouds given a view which thus

present a much better generalization capability over exist-

ing learning-based approaches, while maintaining the effi-

ciency of the traditional method. Specifically, we proposed

a three-step network that explicitly employs depth comple-

tion for the visibility prediction of 3D points. Furthermore,

we have improved graph-cut based formulation by propos-

ing a novel adaptive visibility weighting term. Experiments

show that our proposed method can be generalized to point

clouds in different scene contexts, and can be extended to

point clouds in large scenes. On datasets of varying scales,

our framework presents better performance than the com-

paring classic reconstruction methods and state-of-the-art

learning-based approaches.
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