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Abstract

Adversarial training (AT) has become the de-facto stan-
dard to obtain models robust against adversarial exam-
ples. However, AT exhibits severe robust overfitting: cross-
entropy loss on adversarial examples, so-called robust loss,
decreases continuously on training examples, while even-
tually increasing on test examples. In practice, this leads
to poor robust generalization, i.e., adversarial robustness
does not generalize well to new examples. In this paper,
we study the relationship between robust generalization and
flatness of the robust loss landscape in weight space, i.e.,
whether robust loss changes significantly when perturbing
weights. To this end, we propose average- and worst-case
metrics to measure flatness in the robust loss landscape
and show a correlation between good robust generaliza-
tion and flatness. For example, throughout training, flat-
ness reduces significantly during overfitting such that early
stopping effectively finds flatter minima in the robust loss
landscape. Similarly, AT variants achieving higher adver-
sarial robustness also correspond to flatter minima. This
holds for many popular choices, e.g., AT-AWP, TRADES,
MART, AT with self-supervision or additional unlabeled ex-
amples, as well as simple regularization techniques, e.g.,
AutoAugment, weight decay or label noise. For fair com-
parison across these approaches, our flatness measures are
specifically designed to be scale-invariant and we conduct
extensive experiments to validate our findings.

1. Introduction
In order to obtain robustness against adversarial exam-

ples [56], adversarial training (AT) [37] augments train-
ing with adversarial examples that are generated on-the-
fly. While many different variants have been proposed,
AT is known to require more training data [29, 49], gen-
erally leading to generalization problems [17]. In fact, ro-
bust overfitting [46] has been identified as the main problem
in AT: adversarial robustness on test examples eventually
starts to decrease, while robustness on training examples
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Figure 1: Robust Generalization and Flatness: Robust
loss (RLoss, lower is more robust, y-axis), i.e., cross-
entropy loss on PGD adversarial examples [37], against our
average-case flatness measure of RLoss in weight space
(lower is “flatter”, x-axis). Popular AT variants improving
adversarial robustness on CIFAR10, e.g., TRADES [72],
AT-AWP [62], MART [60] or AT with self-supervision
[22]/unlabeled examples [7], also correspond to flatter min-
ima. Vice-versa, regularization explicitly improving flat-
ness, e.g., Entropy-SGD [8], weight decay or weight clip-
ping [52], also improve robustness. Across all models, there
is a clear relationship between good robust generaliza-
tion and flatness in RLoss. •,�Our models, without early
stopping. N RobustBench [10] models with early stopping.

continues to increase (cf. Fig. 2). This is typically observed
as increasing robust loss (RLoss) or robust test error (RErr),
i.e., (cross-entropy) loss and test error on adversarial exam-
ples. As a result, the robust generalization gap, i.e., the
difference between test and training robustness, tends to be
very large. In [46], early stopping is used as a simple and
effective strategy to avoid robust overfitting. However, de-
spite recent work tackling robust overfitting [51, 62, 25], it
remains an open and poorly understood problem.

In “clean” generalization (i.e., on natural examples),
overfitting is well-studied and commonly tied to flatness of
the loss landscape in weight space, both visually [34] and
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Figure 2: Robust Overfitting: Robust (cross-entropy) loss
(RLoss) and robust error (RErr) over epochs (normalized
by 150 epochs) for AT, using a ResNet-18 on CIFAR10
(cf. Sec. 4), to illustrate robust overfitting. Left: Training
RLoss (light blue) reduces continuously throughout train-
ing, while test RLoss (dark blue) eventually increases again.
We also highlight that robust overfitting is not limited to in-
correctly classified examples (green), but also affects cor-
rectly classified ones (rose). Right: Similar behavior, but
less pronounced, can be observed considering RErr. We
also show RErr obtained through early stopping (red).

empirically [41, 28, 27]. In general, the optimal weights on
test examples do not coincide with the minimum found on
training examples. Flatness ensures that the loss does not
increase significantly in a neighborhood around the found
minimum. Therefore, flatness leads to good generalization
because the loss on test examples does not increase sig-
nificantly (i.e., small generalization gap, cf. Fig. 3, right).
[34] showed that visually flatter minima correspond to bet-
ter generalization. [41] and [28] formalize this idea by
measuring the change in loss within a local neighborhood
around the minimum considering random [41] or “adversar-
ial” weight perturbations [28]. These measures are shown
to be effective in predicting generalization in a recent large-
scale empirical study [27] and explicitly encouraging flat-
ness during training has been shown to be successful in
practice [74, 9, 35, 8, 26].

Recently, [62] applied the idea of flat minima to AT:
through adversarial weight perturbations, AT is regularized
to find flatter minima of the robust loss landscape. This re-
duces the impact of robust overfitting and improves robust
generalization, but does not avoid robust overfitting. As re-
sult, early stopping is still necessary. Furthermore, flatness
is only assessed visually and it remains unclear whether flat-
ness does actually improve in these adversarial weight di-
rections. Similarly, [18] shows that weight averaging [26]
can improve robust generalization, indicating that flatness
might be beneficial in general. This raises the question
whether other “tricks” [42, 18], e.g., different activation
functions [51] or label smoothing [55], or approaches such
as AT with self-supervision [22]/unlabeled examples [7] are
successful because of finding flatter minima.

Contributions: In this paper, we study whether flat-
ness of the robust loss (RLoss) in weight space im-
proves robust generalization. To this end, we propose
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Figure 3: Measuring Flatness. Left: Illustration of mea-
suring flatness in a random (i.e., average-case, blue) di-
rection by computing the difference between RLoss L̃ af-
ter perturbing weights (i.e., w + ν) and the “reference”
RLoss L given a local neighborhood Bξ(w) around the
found weights w, see Sec. 3.3. In practice, we average
across/take the worst of several random/adversarial direc-
tions. Right: Large changes in RLoss around the “sharp”
minimum causes poor generalization from training (black)
to test examples (red).

both average- and worst-case flatness measures for the ro-
bust case, thereby addressing challenges such as scale-
invariance [14], estimation of RLoss on top or jointly with
weight perturbations, and the discrepancy between RLoss
and RErr. We show that robust generalization generally
improves alongside flatness and vice-versa: Fig. 1 plots
RLoss (lower is more robust, y-axis) against our average-
case flatness in RLoss (lower is flatter, x-axis), showing a
clear relationship. In contrast to [62], not providing empir-
ical flatness measures, our results show that this relation-
ship is stronger for average-case flatness. This trend covers
a wide range of AT variants on CIFAR10, e.g., AT-AWP
[62], TRADES [72], MART [60], AT with self-supervision
[22] or additional unlabeled examples [7, 2], as well as var-
ious regularization schemes, including AutoAugment [12],
label smoothing [55] and noise or weight clipping [52]. Fur-
thermore, we consider hyper-parameters, e.g., learning rate
schedule, weight decay, batch size, or different activation
functions [15, 39, 21], and methods explicitly improving
flatness, e.g., Entropy-SGD [8] or weight averaging [26].

2. Related Work
Adversarial Training (AT): Despite a vast amount of

work on adversarial robustness, e.g., see [50, 69, 1, 5, 65],
adversarial training (AT) has become the de-facto standard
for (empirical) robustness. Originally proposed in different
variants in [56, 40, 24], it received considerable attention in
[37, 16] and has been extended in various ways: [33, 7, 2]
utilize interpolated or unlabeled examples, [57, 38] achieve
robustness against multiple threat models, [54, 32, 64] aug-
ment AT with a reject option, [67, 36] use Bayesian net-
works, [58, 19] build ensembles, [4, 13] adapt the threat
model for each example, [61, 3, 47] perform AT with single-
step attacks, [22] uses self-supervision and [43] additionally
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regularizes features – to name a few directions. However,
AT is slow [71] and suffers from increased sample complex-
ity [49] as well as reduced (clean) accuracy [59, 53, 72, 45].
Furthermore, progress is slowing down. In fact, “stan-
dard” AT is shown to perform surprisingly well on recent
benchmarks [11, 10] when tuning hyper-parameters prop-
erly [42, 18]. In our experiments, we consider several pop-
ular variants [62, 60, 72, 7, 22].

Robust Overfitting: Recently, [46] identified robust
overfitting as a crucial problem in AT and proposed early
stopping as an effective mitigation strategy. This motivated
work [51, 62] trying to mitigate robust overfitting. While
[51] studies the use of different activation functions, [62]
proposes AT with adversarial weight perturbations (AT-
AWP) explicitly aimed at finding flatter minima in order to
reduce overfitting. While the results are promising, early
stopping is still necessary. Furthermore, flatness is merely
assessed visually, leaving open whether AT-AWP actually
improves flatness in adversarial weight directions. We con-
sider both average- and worst-case flatness, i.e., random and
adversarial weight perturbations, to answer this question.

Flat Minima in the loss landscape, w.r.t. changes in the
weights, are generally assumed to improve standard gen-
eralization [23]. [34] shows that residual connections in
ResNets [20] or weight decay lead to visually flatter min-
ima. [41, 28] formalize this concept of flatness in terms of
average-case and worst-case flatness. [28, 27] show that
worst-case flatness correlates well with better generaliza-
tion, e.g., for small batch sizes, while [41] argues that gen-
eralization can be explained using both an average-case flat-
ness measure and an appropriate capacity measure. Simi-
larly, batch normalization is argued to improve generaliza-
tion by allowing to find flatter minima [48, 6]. These in-
sights have been used to explicitly regularize flatness [74],
improve semi-supervised learning [9] and develop novel op-
timization algorithms such as Entropy-SGD [8], local SGD
[35] or weight averaging [26]. [14], in contrast, criticizes
some of these flatness measures as not being scale-invariant.
We transfer the intuition of flatness to the robust loss land-
scape, showing that flatness is desirable for adversarial ro-
bustness, while using scale-invariant measures.

3. Robust Generalization and Flat Minima
We study robust generalization and overfitting in the

context of flatness of the robust loss landscape in weight
space, i.e., w.r.t. changes in the weights. While flat min-
ima have consistently been linked to standard generaliza-
tion [23, 34, 41, 28], this relationship remains unclear for
adversarial robustness. We start by briefly introducing the
robust overfitting phenomenon (Sec. 3.1). Then, we dis-
cuss problems in judging flatness visually [34] (Sec. 3.2).
Thus, we are inspired by [28, 41] and introduce average-
and worst-case flatness measures based on the change in ro-

Model RErr ↓
AT (baseline) • 62.8
Scaled×0.5 • 62.8
Scaled×2 • 62.8
MiSH • 59.8
Batch size 8 • 58.2
Adam • 57.5

Label smoothing • 61.2
MART • 61
Entropy-SGD • 58.6
Self-supervision • 57.1
TRADES • 56.7
AT-AWP • 54.3
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Figure 4: Visualizing Flatness: RLoss landscape across 10
random or adversarial directions. Top: Our AT baseline
(ResNet-18) and scaled variants (×2 and ×0.5). Training
with smaller batch size or Adam [30] improves adversarial
robustness (lower RErr vs. AutoAttack [11]) but does not
result in visually flatter minima. Bottom: AT-AWP [62] or
Entropy-SGD [8] improve robustness and visual flatness in
random directions. In adversarial directions, however, AT-
AWP looks very sharp. Overall, visual inspection does not
provide a clear, objective picture of flatness.

bust loss along random or adversarial weight directions in
a local neighborhood (Sec. 3.3), cf. Fig. 3. We also discuss
the connection of flatness to the Hessian eigenspectrum [66]
and the importance of scale-invariance as outlined in [14].

3.1. Background

Adversarial Training (AT): Let f be a (deep) neural
network taking input x ∈ [0, 1]D and weights w ∈ RW
and predicting a label f(x;w). Given a true label y, an ad-
versarial example is a perturbation x̃ = x + δ such that
f(x̃;w) 6= y. The perturbation δ is intended to be nearly in-
visible which is, in practice, enforced using a Lp constraint:
‖δ‖p ≤ ε. To obtain robustness against these perturbations,
AT injects adversarial examples during training:

minw Ex,y
[
max‖δ‖p≤ε L(f(x+ δ;w), y)

]
(1)

where L denotes the cross-entropy loss. The outer min-
imization problem can be solved using regular stochastic
gradient descent (SGD) on mini-batches. To compute ad-
versarial examples, the inner maximization problem is tack-
led using projected gradient descent (PGD) [37]. Here, we
focus on p = ∞ as this constrains the maximum change
per feature/pixel, e.g., ε = 8/255 on CIFAR10. For eval-
uation (at test time), we consider both robust loss (RLoss)
max‖δ‖∞≤ε L(f(x + δ;w), y), approximated using PGD,
and robust test error (RErr), which we approximate using
AutoAttack [11]. Note that AutoAttack stops when adver-
sarial examples are found and does not maximize cross-
entropy loss, rendering it unfit to estimate RLoss.

Robust Overfitting: Following [46], Fig. 2 illustrates
the problem of robust overfitting, plotting RLoss (left) and
RErr (right) over epochs, which we normalize by the total
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Figure 5: Understanding Robust Overfitting: Training curves plotted over (normalized) epochs, see Sec. 3.4 for detailed
discussion. First column: RLoss, split for correct/incorrect test examples, for AT and MART, which successfully dampens
the effect of overfitting using a weighted loss on incorrectly classified examples. Second column: Both label smoothing and
label noise reduce robust overfitting w.r.t. RLoss. However, the reduction in RLoss does not translate to a similar reduction
of RErr. Third to fifth column: RLoss (test solid and train dotted) for various approaches improving adversarial robustness
and different learning rate schedules. While some approaches avoid robust overfitting altogether (e.g., AT-AWP), others
(e.g., weight decay) merely reduce its impact (third column). But the success depends strongly on hyper-parameters (fourth
column). Robust overfitting occurs using all tested learning rate schedules (fifth column), confirming [46].

number of epochs for clarity. Shortly after the first learn-
ing rate drop (at epoch 60, i.e., 40% of training), test RLoss
and RErr start to increase significantly, while robustness on
training examples continues to improve. Robust overfitting
was shown to be independent of the learning rate sched-
ule [46] and, as we show (Sec. 4.1), occurs across vari-
ous different activation functions as well as many popular
AT variants. In contrast to [46], mostly focusing on RErr,
Fig. 2 shows that RLoss overfits more severely, indicating a
“disconnectedness” between RLoss and RErr that we con-
sider in detail later. For now, RLoss and RErr do clearly not
move “in parallel” and RLoss, reaching values around 4, is
higher than for a random classifier (which is possible con-
sidering adversarial examples). This is primarily due to
an extremely high RLoss on incorrectly classified test ex-
amples (which are “trivial” adversarial examples). We em-
phasize, however, that robust overfitting also occurs on cor-
rectly classified test examples.

3.2. Intuition and Visualizing Flatness

For judging robust flatness, we consider how RLoss
changes w.r.t. random or adversarial perturbations in the
weights w. Generally, we expect flatter minima to gener-
alize better as the loss does not change significantly within
a small neighborhood around the minimum, i.e., the found
weights. Then, even if the loss landscape on test examples
does not coincide with the loss landscape on training ex-
amples, loss remains small, ensuring good generalization.
The contrary case, i.e., that sharp minima generalize poorly
is illustrated in Fig. 3 (right). Before considering to mea-
sure flatness, we discuss the easiest way to “judge” flatness:
visual inspection of the RLoss landscape along random or
adversarial directions in weight space.

In [34], loss landscape is visualized along normalized
random directions. Normalization is important to handle
different scales, i.e., weight distributions, and allow com-

parison across models. We follow [62] and perform per-
layer normalization: Letting ν ∈ RW be a direction in
weight space, it is normalized as

ν̂(l) =
ν(l)

‖ν(l)‖2
‖w(l)‖2 for layer l. (2)

In contrast to [34], we also consider biases and treat them
as individual layer, but we exclude batch normalization pa-
rameters. Then, the loss landscape is visualized in discrete
steps along this direction, i.e., w + sν̂ for s ∈ [−1, 1]. Ad-
versarial examples are computed “on-the-fly”, i.e., for each
w + sν̂ individually, to avoid underestimating RLoss as in
[68, 44]. The result is indeed scale-invariant: Fig. 4 (top)
shows that the loss landscapes for scaled versions (factors
0.5 or 2, see supplementary material) of our AT baseline
coincide with the original landscape. However, Fig. 4 also
illustrates that judging flatness visually is difficult: Con-
sidering random weight directions, AT with Adam [30] or
small batch size improves adversarial robustness, but the
found minima look less flat (top). For other approaches,
e.g., TRADES [72] or AT-AWP [62], results look indeed
flatter while also improving robustness (bottom). In ad-
versarial directions, in contrast, AT-AWP looks particularly
sharp. Furthermore, not only flatness but also the vertical
“height” of the loss landscape matters and it is impossible
to tell “how much” flatness is necessary.

3.3. Average- and Worst-Case Flatness Measures

In order to objectively measure and compare flatness, we
draw inspiration from [41, 28] and propose average- and
worst-case flatness measures adapted to the robust loss. We
emphasize that measuring flatness in RLoss is non-trivial
and flatness in (clean) Loss cannot be expected to correlate
with robustness (see supplementary material). For example,
we need to ensure scale-invariance [14] and estimate RLoss
on top of random or adversarial weight perturbations:
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Figure 6: Flatness Throughout Training. Left: Flatness in RLoss throughout training, showing that flatness reduces when
the model overfits (i.e., test RLoss increases, while train RLoss decreases). Middle: Test RLoss (y-axis) plotted against
flatness in RLoss (x-axis) during training (early epochs in dark blue, late epochs in dark red), showing a clear correlation,
for both average- and worst-case flatness. Right: AT with self-supervision reduces the impact of robust overfitting (RLoss
increases less) and simultaneously favors flatter minima. This behavior is pronounced for AT-AWP, explicitly optimizing
flatness, and AT with additional unlabeled examples, generally resulting in the highest adversarial robustness, cf. Tab. 1.

Average-Case / Random Flatness: Considering ran-
dom weight perturbations ν ∈ Bξ(w) within the ξ-
neighborhood of w, average-case flatness is computed as

Eν [ max
‖δ‖∞≤ε

L(f(x+δ;w+ν), y)]

− max
‖δ‖∞≤ε

L(f(x+δ;w), y) (3)

averaged over test examples x, y, as illustrated in Fig. 3. We
define Bξ(w) using relative L2-balls per layer (cf. Eq. (2)):

Bξ(w) = {w + ν : ‖ν(l)‖2 ≤ ξ‖w(l)‖2∀ layers l}. (4)

This ensures scale-invariance w.r.t. the weights asBξ(w)
scales with the weights on a per-layer basis. Note that the
second term in Eq. (3), i.e., the “reference” robust loss, is
important to make the measure independent of the absolute
loss (i.e., corresponding to the vertical shift in Fig. 4, left).
In practice, ξ can be as large as 0.5. We refer to Eq. (3) as
average-case flatness in RLoss.

Worst-Case / Adversarial Flatness: [62] explicitly op-
timizes flatness in adversarial weight directions and shows
that average-case flatness is not sufficient to improve ad-
versarial robustness. As it is unclear whether [62] actually
improves worst-case flatness, we define

max
ν∈Bξ(w)

[
max
‖δ‖∞≤ε

L(f(x+δ;w+ν), y)
]

− max
‖δ‖∞≤ε

L(f(x+δ;w), y)
(5)

as worst-case flatness in RLoss. Here, we use the same
definition of Bξ(w) as above (aligned with [62]), but for
smaller values of ξ. Regarding standard performance, this
worst-case notion of flatness has been shown to be a reliable
predictor of generalization [27, 28]. For computing Eq. (5)
in practice, we jointly optimize over ν and δ (for each batch
individually) using PGD. As illustrated in Fig. 4, RLoss in-
creases quickly along adversarial directions, even for very
small values of ξ, e.g., ξ = 0.005.

3.4. Discussion

In the context of flatness, there has also been some dis-
cussion concerning the meaning of Hessian eigenvalues
[34, 66] as well as concerns regarding the scale-invariance
of flatness measures [14]. First, regarding the Hessian
eigenspectrum, [66] shows that large Hessian eigenvalues
indicate poor adversarial robustness. However, Hessian
eigenvalues are generally not scale-invariant (which is ac-
knowledged in [66]): Our AT baseline has a maximum
eigenvalue of 1990 which reduces to 505 when up-scaling
the model and increases to 7936 when down-scaling, with-
out affecting robustness (cf. ×0.5 and ×2 in Fig. 4). We
also found that the largest eigenvalue is not correlated with
adversarial robustness. Second, following a similar train of
thought, [14] criticizes the flatness measures of [41, 28] as
not being scale-invariant. That is, through clever scaling
of weights, without changing predictions, arbitrary flatness
values can be “produced”. However, the analysis in [14]
does not take into account the relative neighborhood as de-
fined in [28], which renders the measure explicitly scale-
invariant. This also applies to our definition of Bξ(w) in
Eq. (4) and is shown in Fig. 4 where normalization is per-
formed relative (per-layer) to the weights; empirical valida-
tion can be found in the supplementary material.

4. Experiments
We start with a closer look at RLoss in robust over-

fitting (Sec. 4.1, Fig. 5). Then, we show a strong cor-
relation between good robust generalization and flatness
(Sec. 4.2). For example, robust overfitting causes sharper
minima (Fig. 6). More importantly, more robust models
generally find flatter minima and, vice-versa, methods en-
couraging flatness improve adversarial robustness (Fig. 7,
8). In fact, flatness improves robust generalization by both
lowering the robust generalization gap (incl. a reduction in
robust overfitting, cf. Fig. 9).
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Figure 7: Flatness Across Hyper-Parameters: RLoss (y-
axis) vs. average-case flatness (x-axis) for selected meth-
ods and hyper-parameters (cf. supplementary material). For
example, we consider different strengths of weight decay
(rose) or sizes ξ of adversarial weight perturbations for AT-
AWP (orange). For clarity, we plot (dotted) lines represent-
ing the trend per method. Clearly, improved adversarial ro-
bustness, i.e., low RLoss, is related to improved flatness.

Setup: On CIFAR10 [31], our AT baseline uses ResNet-
18 [20] and is trained for 150 epochs, batch size 128, learn-
ing rate 0.05, reduced by factor 0.1 at 60, 90 and 120
epochs, using weight decay 0.005 and momentum 0.9 with
standard SGD. We use random flips and cropping as data
augmentation. During training, we use 7 iterations PGD,
with learning rate 0.007, signed gradient and ε = 8/255 for
L∞ adversarial examples. PGD-7 is also used for early
stopping (every 5th epoch) on the last 500 test examples.
We do not use early stopping by default. For evaluation on
the first 1000 test examples, we run PGD with 20 iterations,
10 random restarts to estimate RLoss and AutoAttack [11]
to estimate RErr (cf. Sec. 3.1). For average-case flatness
of RLoss, we take the average of 10 random weight per-
turbations with ξ=0.5. For worst-case flatness, we maxi-
mize RLoss jointly over adversarial examples and adversar-
ial weights with ξ=0.00075, taking the worst of 10 restarts.

Methods: Besides our AT baseline, we consider AT-
AWP [63], TRADES [72], MART [60], AT with self-
supervision [22] or additional unlabeled examples [7, 2],
weight averaging [26] and AT with “early-stopped” PGD
[73]. We investigate different hyper-parameters and “tricks”
recently studied in [42, 18]: learning rate schedules,
batch size, weight decay, label smoothing [55] as well
as SiLU/Mish/GeLU [15, 39, 21] activation functions.
Furthermore, we consider Entropy-SGD [8], label noise,
weight clipping [52] and AutoAugment [12]. We empha-
size that weight averaging, Entropy-SGD and weight clip-
ping are known to improve flatness of the (clean) loss. If
not stated otherwise, these methods are applied on top or
as replacement of our AT baseline. We report results us-
ing the best hyper-parameters per method. Finally, we also

Model Robustness ↓ Flatness ↓ Early Stop.
(sorted asc. by test RErr) RErr RErr Avg Worst RErr ↓
(split at 70%/30% percentiles) (test) (train) (RLoss) (RLoss) (early stop)

+Unlabeled 48.9 43.2 (-5.7) 0.32 1.20 48.9 (-0.0)
Cyclic 53.6 35.4 (-18.2) 0.35 1.50) 53.6 (-0.0)
AutoAugment 54.0 47.9 (-6.1) 0.49 0.69 53.5 (-0.5)
AT-AWP 54.3 43.1 (-11.2) 0.35 2.68 53.6 (-0.7)
Label noise 56.2 30.0 (-26.2) 0.33 0.93) 55.5 (-0.7)
Weight clipping 56.5 39.0 (-17.5) 0.41 4.57 56.5 (-0.0)
TRADES 56.7 15.8 (-40.9) 0.57 2.25 53.4 (-3.3)
Self-supervision 57.1 45.0 (-12.1) 0.33 2.63 56.8 (-0.3)
Weight decay 58.1 32.8 (-25.3) 0.50 3.93 54.8 (-3.3)
Entropy-SGD 58.6 46.1 (-12.5) 0.28 1.80 56.9 (-1.7)
MiSH 59.8 5.3 (-54.5) 1.56 3.54 53.7 (-6.1)
“Late” multi-step 59.8 18.4 (-41.4) 0.80 2.96 57.8 (-2.0)
SiLU 60.0 5.6 (-54.4) 1.71 4.20 53.7 (-6.3)
Weight averaging 60.0 10.0 (-50.0) 1.28 5.98 53.0 (-7.0)
Larger ε=9/255 60.9 11.1 (-49.8) 1.33 5.84 53.8 (-7.1)
MART 61.0 20.8 (-40.2) 0.73 3.17 54.7 (-6.3)
GeLU 61.1 3.2 (-57.9) 1.55 4.12 56.7 (-4.4)
Label smoothing 61.2 8.0 (-53.2) 0.65 2.72 54.0 (-7.2)
AT (baseline) 62.8 10.7 (-52.1) 1.21 6.48 54.6 (-8.2)
Robustness Averages (across models)
Good (RErr<57%≈30% percentile) 54.3 36.3 (-18.0) 0.40 2.00 53.6 (-0.7)
Average (57%≥RErr < 60%) 58.7 29.5 (-29.2) 0.69 2.9 56.0 (-2.7)
Poor (RErr≥60%≈70% percentile) 61.0 9.9 (-51.1) 1.21 4.67 54.4 (-6.6)

Table 1: Robustness and Flatness, Quantitative Results:
Test and train RErr (first, second column, early stopping
in fifth column) as well as average-/worst-case flatness
in RLoss (third, fourth column) for selected methods, cf.
Fig. 8. We split methods into good , average , and poor
robustness using the 30% and 70% percentiles. Most meth-
ods improve adversarial robustness alongside both average-
and worst-case flatness.

use pre-trained models from RobustBench [10], which were
obtained using early stopping.

Our supplementary material includes additional details
on the experimental setup and the evaluated methods. Fur-
thermore, it contains an ablation regarding our average- and
worst-case flatness measure and hyper-parameter ablation
for individual methods, including training curves.

4.1. Understanding Robust Overfitting

In contrast to related work [46, 62], we take a closer look
at RLoss during robust overfitting because RErr is “blind”
to many improvements in RLoss, especially on incorrectly
classified examples. Fig. 5 shows training curves for various
methods, i.e., RLoss/RErr over (normalized) epochs. For
example, explicitly handling incorrectly classified examples
during training, using MART, helps but does not prevent
overfitting: RLoss for MART reduces compared to AT (first
column). Unfortunately, this improvement does not trans-
late to significantly better RErr, cf. Tab. 1. This discrepancy
between RLoss and RErr can be reproduced for other meth-
ods, as well: label smoothing and label noise enforce, in
expectation, the same target distribution. Thus, both reduce
RLoss during overfitting (second column, top, rose and dark
green). Label smoothing, however, does not improve RErr
as significantly as label noise, i.e., does not prevent mis-
classification. This illustrates an important aspect: against
adversarial examples, “merely” improving RLoss does not
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Figure 8: Robustness and Flatness: Left: RErr plotted against RLoss, showing that improved RLoss does not directly
translate to reduced RErr for large RLoss. In these cases, reducing RLoss mainly means reducing the confidence of adversarial
examples, which is necessary to improve adversarial robustness. Middle: RLoss or RErr (y-axis) plotted against our average-
case flatness in RLoss. We highlight selected models, as in Tab. 1. Considering RLoss, we reveal a striking correlation
between adversarial robustness and flatness. Popular AT variants improving robustness (e.g., TRADES, MART, etc.) also
correspond to flatter minima. Vice versa, methods improving flatness (e.g., Entropy-SGD, weight decay, etc.) improve
robustness obtained through AT. Subject to the non-trivial interplay between RErr and RLoss (cf. left), this relationship is
also visible using RErr to quantify robustness. Right: RLoss (y-axis) plotted against worst-case flatness (x-axis) shows a less
clear relationship. Still, improved flatness remains a necessity for better robust generalization, see Sec. 4.2 for discussion.

translate to improved RErr if RLoss is high to begin with,
i.e., “above” − ln(1/K)≈2.3 for K=10 classes. However,
this is usually the case during robust overfitting. RErr, on
the other hand, does not take into account the confidence
of wrong predictions, i.e., it is “blind” for these improve-
ments in RLoss. Label noise, in contrast, also improves
RErr, which might be due to the additional randomness.

Similar to established methods, many “simple” regular-
ization schemes prove surprisingly effective in tackling ro-
bust overfitting. For example, strong weight decay delays
robust overfitting and AutoAugment prevents overfitting en-
tirely, cf. Fig. 5 (third column). This indicates that pop-
ular AT variants, e.g., TRADES, AT with self-supervision
or unlabeled examples, improve adversarial robustness by
avoiding robust overfitting through regularization. This is
achieved by preventing convergence on training examples
(dotted). In regularization, however, hyper-parameters play
a key role: even AT-AWP does not prevent robust overfitting
if regularization is “too weak” (blue, fourth column). This
is particularly prominent in terms of RLoss (top). Finally,
learning rate schedules play an important role in how and
when robust overfitting occurs (fifth column). However, as
in [46], all schedules are subject to robust overfitting.

4.2. Robust Generalization and Flatness in RLoss

As robust overfitting is primarily avoided through strong
regularization, we hypothesize that this is because strong
regularization finds flatter minima in the RLoss landscape.
These flat minima help to improve robust generalization.

Flatness in RLoss “Explains” Overfitting: Using our
average- and worst-case flatness measures in RLoss, we find
that flatness reduces significantly during robust overfitting.
Namely, flatness “explains” the increased RLoss caused by
overfitting very well. Fig. 6 (left) plots RLoss, alongside

average- and worst-case flatness and the maximum Hessian
eigenvalue throughout training of our AT baseline. Clearly,
flatness increases alongside (test) RLoss as soon as robust
overfitting occurs. Note that the best epoch is 60, mean-
ing 0.4 (black dotted). For further illustration, Fig. 6 (mid-
dle) explicitly plots RLoss (y-axis) against flatness in RLoss
(x-axis) across epochs (dark blue to dark red): RLoss and
flatness clearly worsen “alongside” each other during over-
fitting, for both average- and worst-case flatness. Methods
such as AT with self-supervision, AT-AWP or AT with unla-
beled examples avoid both robust overfitting and sharp min-
ima (right). This relationship generalizes to different hyper-
parameter choices of these methods: Fig. 7 plots RLoss
(y-axis) vs. average-case flatness (x-axis) across different
hyper-parameters. Again, e.g., for TRADES or AT-AWP,
hyper-parameters with lower RLoss also correspond to flat-
ter minima. In fact, Fig. 7 indicates that the connection be-
tween robustness and flatness also generalizes across differ-
ent methods (and individual models).

Improved Robustness Through Flatness: Indeed,
across all trained models, we found a strong correlation
between robust generalization and flatness, using RLoss
as measure for robust generalization. As discussed in
Sec. 4.1, we mainly consider RLoss to assess robust gen-
eralization as improvements in RLoss above ∼2.3 have, on
average, only small impact on RErr. Pushing RLoss below
2.3, in contrast, directly translates to better RErr. This is
illustrated in Fig. 8 (left) which plots RErr vs. RLoss for
all evaluated models. To avoid this “kink” in the dotted red
lines around RLoss≈2.3, Fig. 8 (middle left) plots RLoss
(y-axis) against average-case flatness in RLoss (x-axis),
highlighting selected models. This reveals a clear correla-
tion between robustness and flatness: More robust methods,
e.g., AT with unlabeled examples or AT-AWP, correspond to
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Figure 9: Robust Generalization and Early Stopping. Left: RLoss plotted vs. average-case flatness measured on training
examples. Even on training examples, flatness is a good indicator for robust generalization. Middle: Robust generaliza-
tion (RLoss) decomposed into the test-train difference and the last-best (epoch) improvement (y-axis), both plotted against
average-case flatness in RLoss (x-axis). In both cases, flatness seems to play an important role, i.e., flatness clearly reduces
both the robust generalization gap and robust overfitting. Right: RLoss vs. average-case flatness in RLoss for selected mod-
els (all in supplementary material) with and without early stopping (“ES”). Early stopping consistently leads to improved
adversarial robustness and better flatness.

flatter minima. Methods improving flatness, e.g., Entropy-
SGD, weight decay or weight clipping, improve adversarial
robustness. This also translates to RErr (middle right), sub-
ject to the described bend at RLoss≈2.3. While many ro-
bust methods still obtain better flatness, activation functions
such as SiLU, MiSH or GeLU also seem to improve flat-
ness, without clear advantage in terms of robustness. Sim-
ilarly, weight decay or clipping improve robustness consid-
erably. Overall, with Pearson/Spearman correlation coeffi-
cients of 0.85/0.87 (p-values<10−21), we revealed a strong
relationship between robustness and flatness.

Fig. 8 (right) shows that this relationship is less clear
when considering worst-case flatness in RLoss (Pearson co-
efficient 0.54). This is in contrast to [62] suggesting that
worst-case flatness, in particular, is important to improve
robustness of AT. However, worst-case flatness is more sen-
sitive to ξ and, thus, less comparable across methods. Note
that worst-case robustness is still a good indicator for over-
fitting, cf. Fig. 6. All results are summarized in tabular form
in Tab. 1: Grouping methods by good , average or poor
robustness, we find that methods need at least “some” flat-
ness, average- or worst-case, to be successful.

Decomposing Robust Generalization: So far, we used
(absolute) RLoss on test examples as proxy of robust gen-
eralization. This is based on the assumption that deep mod-
els are generally able to obtain nearly zero train RLoss.
However, this is not the case for many methods in Tab. 1
(second column). Thus, we also consider the robust gen-
eralization gap and the RLoss difference between last and
best (early stopped) epoch. First, however, Fig. 9 (left)
shows that flatness, when measured on training examples,
is also a good predictor of (test) robustness. Then, Fig. 9
(middle left) explicitly plots the RLoss generalization gap
(test−train RLoss, y-axis) against average-case flatness in
RLoss (x-axis). Robust methods generally reduce this gap
by both reducing test RLoss and avoiding convergence in
train RLoss. Furthermore, Fig. 9 (middle right) considers

the difference between last and best epoch, essentially quan-
tifying the extent of robust overfitting. Again, methods with
small difference, i.e., little robust overfitting, generally cor-
respond to flatter minima. This is also confirmed in Fig. 9
(right) showing that early stopping essentially finds flatter
minima along the training trajectory, thereby improving ad-
versarial robustness. Altogether, flatness improves robust
generalization by reducing both the robust generalization
gap and the impact of robust overfitting.

More Results: Fig. 1 shows that the pre-trained mod-
els from RobustBench [10] confirm our observations so far
(also see Fig. 9, middle left). While detailed analysis is not
possible as only early stopped models are provided, they
are consistently more robust and correspond to flatter min-
ima compared to our models. This is despite using different
architectures (commonly Wide ResNets [70]).

5. Conclusion

In this paper, we studied the relationship between ad-
versarial robustness, specifically considering robust over-
fitting [46], and flatness of the robust loss (RLoss) land-
scape w.r.t. perturbations in the weight space. We intro-
duced both average- and worst-case measures for flatness in
RLoss that are scale-invariant and allow comparison across
models. Considering adversarial training (AT) and several
popular variants, including TRADES [72], AT-AWP [62] or
AT with additional unlabeled examples [7], we show a clear
relationship between adversarial robustness and flatness
in RLoss. More robust methods predominantly find flatter
minima. Vice versa, approaches known to improve flatness,
e.g., Entropy-SGD [8] or weight clipping [52] can help AT
become more robust, as well. Moreover, even simple regu-
larization methods such as AutoAugment [12], weight de-
cay or label noise, are effective in increasing robustness by
improving flatness. These observations also generalize to
pre-trained models from RobustBench [10].
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