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Abstract

Recently, self-supervised learning (SSL) has been proved
very effective and it can help boost the performance in
learning representations from unlabeled data in the image
domain. Yet, very little is explored about its usefulness in 3D
skeleton-based action recognition understanding. Directly
applying existing SSL techniques for 3D skeleton learning,
however, suffers from trivial solutions and imprecise rep-
resentations. To tackle these drawbacks, we consider per-
ceiving the consistency and continuity of motion at different
playback speeds are two critical issues. To this end, we pro-
pose a novel SSL method to learn the 3D skeleton represen-
tation in an efficacious way. Specifically, by constructing a
positive clip (speed-changed) and a negative clip (motion-
broken) of the sampled action sequence, we encourage the
positive pairs closer while pushing the negative pairs to
force the network to learn the intrinsic dynamic motion con-
sistency information. Moreover, to enhance the learning
features, skeleton interpolation is further exploited to model
the continuity of human skeleton data. To validate the effec-
tiveness of the proposed method, extensive experiments are
conducted on Kinetics, NTU60, NTU120, and PKUMMD
datasets with several alternative network architectures. Ex-
perimental evaluations demonstrate the superiority of our
approach and through which, we can gain significant per-
formance improvement without using extra labeled data.

1. Introduction

In recent years, 3D action recognition based on skeleton
has made remarkable progress through learning discrimina-
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Figure 1. An illustrative example (i.e., “jump up”) of our main
idea. (a) Motion consistency. Although the two clips are sampled
consecutively (1x speed) and alternately (2x speed), respectively,
we can easily tell they are similar because they share the same
underlying skeletal movements and the consistent motion trends.
(b) Motion continuity. When the sampling interval is set to 2
frames, the complemented motion of the interval frames should
make the whole temporal motion look natural and coherent.

tive features with deep learning networks [31, 33, 37, 49].
However, these methods rely heavily on supervision, and
collecting such labels is very time-consuming and labor-
intensive. This makes the development of unsupervised
learning techniques and the use of a large amount of unla-
beled data the urgent needs, and among them a powerful ap-
proach is self-supervised learning (SSL). In image domain,
as images contain rich information that is beneficial to fea-
ture extraction, many effective SSL techniques [3, 6, 11, 38]
are well exploited. Comparatively, for tasks over skeleton
data which represent a person by 3D coordinate positions
of key joints, it becomes very challenging to leverage SSL
techniques to learn discriminative motion representation.

Some recent methods [53, 18] attempt to solve these
challenges by directly adopting the existing video SSL tech-
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niques on skeleton data such as using motion prediction [7],
jigsaw puzzle recognition [26] and temporal clip orders pre-
diction [48] as pretext tasks. As for sequence data, play-
back rate perception [1, 43] achieves great success and is the
most common way to model spatial-temporal information,
which can help networks to learn representative motion fea-
tures. However, directly applying these methods to skeleton
data suffer from two limitations: (1) Human skeleton mo-
tions in nature move at different speeds, and predicting dif-
ferent absolute playback speeds of the sequence is ambigu-
ous, which will yield trivial solutions as mentioned in [11].
Namely, the network can easily predict the corresponding
rates by simply remembering certain frames, this is harm-
ful to features representation learning. (2) Unlike the video
data, 3D skeleton only contains dynamic motion informa-
tion but without appearance information. Such methods as
in [46, 43] that explore instance appearance features are not
suitable for the skeleton data, which will cause imprecise
learning representations. Therefore, how to extend the ex-
isting SSL methods to the skeleton domain is a challenging
task and has not been well explored.

Motivation. Inspired by human visual intuition, we ob-
serve that perceiving the motion consistency and continuity
are two critical issues for learning motion representation.
As shown in Figure 1(a), the same motion clips with differ-
ent playback speeds look similar to each other since they
share the intrinsic motion consistency (i.e., squat-down,
leg-lifted). Further to say, we will not consider of an ac-
celerating “walking” motion (i.e., 2x playback speed) as a
“jumping” motion because they don’t have the same under-
lying motion. In addition, as shown in Figure 1(b), we argue
that it is possible for us to imagine the correlation between
the missing frames when we have fully learned the motion
since each clip has the property of motion continuity.

Based on the above observation, we propose a novel SSL
method to learn the 3D skeleton representation in an ef-
ficacious way. Specifically, we construct two clips from
the same sampled motion sequence as positive and negative
pairs, respectively. Then we train the networks to distin-
guish their intrinsic motion consistency instead of predict-
ing the specific playback speed of each video clip. The pos-
itive pairs are with the same motion but different playback
speeds, while the negative pairs are with the same playback
speeds but motion-broken. Our objective is to pull the posi-
tive closer while pushing the negative farther to the original
clip in the latent space. In this sense, the networks can pay
more attention to the skeleton dynamic motion information
so as to learn discriminative feature representation.

Moreover, to encourage the networks to learn the en-
hanced motion features, we design a skeleton interpolation
module, which aims to model the motion continuity of hu-
man skeleton data. In this task, the input actions at different
playback speeds are reconstructed to the actions of a par-

ticular interpolation rate. Namely, some accelerating mo-
tion can complement the dynamic information of the miss-
ing frames (e.g., a 2x playback speed motion can be inter-
polated into a 1x playback speed motion) to establish the
learning of motion coherence, so as to have better represen-
tation of the underlying motion features.

In the proposed self-supervised framework, we utilize
different deep neural networks as our backbones to learn
skeleton representation. To validate the effectiveness of our
approach in deep learning for 3D skeleton-based action un-
derstanding, we conduct massive experiments covering dif-
ferent settings, including self-supervised pre-training, fine-
tuning on downstream tasks and semi-supervised training.
Experimental results show the superiority of our proposed
method and we can significantly boost the performance
without using any extra labeled data. The main contribu-
tions of our paper can be summarized as follows:

• We propose a novel approach for self-supervised skele-
ton representation learning by perceiving motion con-
sistency and continuity, through which, we can drive
the network to learn the discriminative motion repre-
sentation features.

• By constructing speed-changed and motion-broken
clips, we encourage the positive pairs closer while
pushing the negative pairs to force the network to learn
the intrinsic motion consistency information. More-
over, skeleton interpolation is further exploited to
model the continuity of human skeleton data to en-
hance the learning features.

• Extensive experimental evaluations on three network
architectures under several settings show the effec-
tiveness of our proposed approach powered by self-
supervised pre-training. We consider these findings
will encourage more research on unsupervised pretext
task design for 3D skeleton action understanding.

2. Related Work
2.1. Skeleton-based Action Recognition

Human skeletons can well reflect the nature of human ac-
tivities. Some early work [40, 41, 44] identified actions by
using the geometric relationship between bones and joints.
However, the performance of these handcrafted-feature-
based methods is unsatisfactory. Benefiting from the deep
neural networks, data-driven methods have become the
mainstream methods. CNN-based methods [19, 13, 22]
converted skeletal data into pseudo-image data by design-
ing transformation rules, and then perform convolution op-
eration. Leveraging the merits of recurrent layers, many
works [54, 50, 51] utilized Recurrent Neural Networks
(RNN) to model long-short term temporal evolution of dif-
ferent actions. However, both RNNs and CNNs fail to
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fully represent the structure of the skeleton data because the
skeleton data are naturally embedded in the form of graphs
rather than a vector sequence or 2D grids. Recently, Graph
CNNs [5, 25] showed advantages of graph representation in
many tasks for non-Euclidean data, as it can naturally deal
with these irregular structures. ST-GCN [49] first proposed
the spatial-temporal graph convolution aim at modeling dy-
namic skeletons sequences. Subsequently, Shi et al. [32]
employed the two-stream method to add an adaptive dy-
namic learning module to improve the action recognition
accuracy. In [17], Li et al. explored the A-links and S-
links from input data for capturing actional dependencies
and then refine them during training. Also, there are some
other graph-based approaches [52, 4] with lower computa-
tional complexity.

2.2. Self-Supervised Learning

Image: Self-supervised learning aims to learn feature
representations from a large amount of unlabeled data,
which is usually achieved by setting different pretext tasks
and utilize easy-to-obtain automatically generated supervi-
sion. In the image domain, [16] performed image coloriza-
tion pretext to establish a mapping from objects to colors.
In recent studies, some works [26, 45] tried to solve jigsaw
problems to learn the information of different patches in the
images. Komodakis et al. [15] proposed a simple rotation
transformation to make the network to predict different ro-
tation degrees of the images to identify object’s features.
Later, such transformations as scaling, warping and inpaint-
ing have been applied to the latest work [11]. With the birth
of the contrastive learning paradigm [3, 9], most of the cur-
rent works [47, 8] explored to construct positive pairs and
negative pairs for feature learning.

Video: In terms of the video domain, many methods in
the field of 2D are still applicable to 3D field. Some pre-
vious video self-supervised learning methods focused on
learning features from static images [42] and from seg-
menting objects using optical flow [27]. Recently, some
works paid much more attention to model the temporal in-
formation from videos. Xu et al. [48] shuffled the order of
video clips and force the network to predict different orders.
Luo et al. [23] generated blanks by withholding video clips
and created options by applying spatial-temporal operations
on the withheld clips for features learning. More recently,
many works [1, 43] have been proposed to learn features
through discriminating playback speeds.

Skeleton: As aforementioned, there is little previous in-
vestigation on skeleton self-supervised learning. Although
[53] proposed a skeleton inpainting architecture to learn
the long-term dynamics and [36] utilized Predict & Clus-
ter manner to learn features. However, they ignored the
high-level semantic and spatial-temporal information of the
skeleton and thus may yield less discriminative feature rep-

resentations. Besides, they only measure their capability
under the limited settings. Si et al. [34] proposed the ad-
versarial SSL learning for only the semi-supervised setting.
Lin et al. [18] applied the existing SSL techniques to skele-
ton data, which we have discussed it may suffer from some
limitations.

Hence, we propose an effective self-supervised strategy
to learn the representation that is beneficial for 3D skeleton-
based action recognition. Meanwhile, we hope to unify the
evaluation standards (e.g., use certain networks as the back-
bones and evaluate on self-supervised pre-training, fine-
tuning on downstream tasks like in 2D image domain) to
facilitate more follow-up researches in this field.

3. Method

Problem definition. Let M={mi}Ni=1 be a skeleton motion
set containing N sequences. We sample a clip ci ∈ mi

from the action set with ri playback speed. Our goal task is
to learn an encoder f(·; θ) in a self-supervised manner that
models the skeleton clips ci to its corresponding features
xi that best represents the spatial-temporal features of the
motion in the latent space.

3.1. Spatial-Motion Consistency

Given a skeleton action sequence, we first sample 3
clips ci, cj and ck with playback speeds ri, rj and rk,
respectively. Consider the temporal ambiguity among ac-
tion sequences, we sample a fixed length of 32 frames of
each clip as a learning sample, and the start frame of each
sample is randomly chosen. Typically, we consider 4 play-
back speed candidates, where the corresponding speeds r
are 1×, 2×, 4×, 8×, respectively. For example, when r
= 2 and starting from the 10th frame, it contains frame
{10, 12, 14, ..., 72, 74} in total length of 32 frames. If the
desired training clip is longer than the original skeleton se-
quence sample, we will loop over it from the start.

As is shown in Figure 2, the core idea of the motion mod-
eling module is to maintain the spatial-motion consistency
of the positive pairs while breaking the spatial regions of
the negative pairs. To this end, we apply different trans-
formations on the three sampled input clips respectively to
construct a triplet, e.g., basic b = S(ri, ci), positive sample
p = S(rj , cj) and negative sample n = B(rk, ck), where
rj ̸= ri = rk and S(r, ) indicates the operation of uniformly
sampling with the same interval frames r, B(r, ) denotes the
operation of randomly breaking the subsampling skeleton
(i.e., shuffle data). We observe that compared to b, negative
n shuffles the skeleton sequences destroying the underly-
ing content of the motion and it breaks the motion seman-
tics of the original movement. As for positive p, it changes
the speed but retains the spatial and structural information
keeping the intrinsic motion consistency as b.
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Figure 2. Motion consistency modeling module. The positive pairs
are constructed by speed-changed operation while the negative
pairs are constructed by motion-broken operation. Then we map
the triplet by the encoder into a feature space. The objective is
to pull the positive pairs closer while pushing away the negative
pairs.

Afterwards, we train the network encoder f(·; θ) and
project the triplet (ci, cj , ck) to an embedding feature space,
and term them as xi, xj and xk, respectively. We ex-
pect the features of positive pairs to be closer compared
with the negative pairs. The assumption behind this is that
the networks must first learn to understand the underlying
content of skeleton motion before they can distinguish the
triplet. Formally, we can achieve this goal by using a triplet
loss [29] as follows:

Ltriplet = max(0, γ − (d(xi, xj)− d(xi, xk))), (1)

where γ > 0 is a margin hyperparameter, d(xi, xj) = ||xi−
xj ||2 and d(xi, xk) = ||xi − xk||2.

It is worth mentioning that we only consider to construct
the negative pairs within the same skeleton action sequence.
In the training process, we can also use other action se-
quences as negative samples to train our network to learn
more deep motion representation features. Specifically, we
maintain (ci, cj) as the positive pairs and sample K clips
{cn}Kn=1 from other samples to form in (ci, cn) as the neg-
ative pairs. We then apply the InfoNCE loss [10] as the
training loss to fulfill this objective:

LNCE = −log
exp(d(xi, xj)/τ)

exp(d(xi, xj)/τ) +
∑K

n=1 exp(d(xi, xn)/τ)
,

(2)
where τ is a temperature hyper-parameter which affects the
concentration level of distribution. We use a memory bank
with size K to save features proposed in [9].
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Figure 3. Motion continuity modeling module. The encoder is
shared with the motion consistency modeling module. The in-
put is sampled with the r playback speed and the output is the
upsampling-interpolated motion by the decoder with the interpo-
lation rate of l. The ground-truth of input S(r) can be sampled
online from the raw input data by operation S( r

l
).

3.2. Temporal-Motion Continuity

The motion continuity modeling module is performed
with a feature decoder network, as shown in Figure 3.
More specifically, as for the decoder, we conduct 4 con-
volution blocks using spatial-temporal convolution opera-
tion [49] and add a simply modified spatial-temporal decon-
volution in the last layer (the details of the decoder can be
found in the supplementary material). Unlike the previous
work [53], we do not directly reconstruct the input skeleton
action sequences, but we set a specific interpolation rate to
conduct upsampling-interpolation of high-semantic skele-
ton sequences. Compared to reconstruct the original skele-
ton data, we aim to interpolate and complement the motion
of the missing interval frames to recover the whole action,
making the whole temporal motion look coherent and natu-
ral, which can drive the networks better capture the differ-
ences in dynamics among adjacent frames and understand
the essence of the motions.

To predict the interpolated motions, we generate the self-
supervision ground-truth as shown in Figure 3 black ar-
row part. We assume that the interpolation rate is set to
l, which means that the interpolated ground-truth can be
sampled online from the raw input skeleton data across r

l
frames. Namely, the total length of the interpolated frames
are l times of the input skeleton samples. When the in-
put skeleton clip is sampled in 1× rate in its original pace,
we repeat the clip and splice these l segments together.
Note that we only consider up-interpolating the output of
the speed-changed clips from the encoder and ignore the
motion-broken clips, because the motion-broken data lose
the continuity of the original action, and interpolating them
will destroy the learning ability of the networks. Formally,
denote the interpolation ground-truth X ∈ Rn×3×T

′

, where
n is the number of joints and T

′
represents the number
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of frames. When we obtain the predicted 3D interpolation
skeleton X̂ , the training loss function can be defined as:

LItep =
1

nT ′

n∑
i=1

T
′∑

t=1

∥X̂i,:,t −Xi,:,t∥22, (3)

Finally, we train the networks on two tasks jointly (mo-
tion consistency and continuity). The total objective func-
tion can be formulated as follows:

Ltotal = λ1Ltriplet + λ2LNCE + λ3LItep, (4)

where λ1, λ2 and λ3 are three weight hyper-parameters.

4. Experiments
To verify our approach, we perform extensive exper-

imental evaluations of our formulation on four datasets.
First, since the NTU60-RGBD dataset [30] is the most com-
monly used dataset, we conduct several ablation studies
on it to examine the contributions of the proposed method
based on the recognition performance. Then, to find out
whether the encoder f(·; θ) can learn good representation
features for skeleton sequences with self-supervision, we
complete other experiments under different settings.

4.1. Datasets

NTU60-RGBD [30]: This dataset contains 56,000 ac-
tion clips in 60 action classes. There are 25 joints for each
subject in the skeleton sequences. The original paper of the
dataset recommends two benchmarks: 1) cross-subject (X-
Sub) benchmark with 40,320 and 16, 560 clips for training
and evaluation; 2) cross-view (X-View) benchmark 37, 920
and 18, 960 clips. Training clips in this setting come from
the camera views 2 and 3, and the evaluation clips are all
from the camera view 1.

NTU120-RGBD [20]: The dataset contains 114,480 ac-
tion samples in 120 action classes. The original paper of
the dataset recommends two benchmarks: (1) cross-subject
(X-sub) benchmark: the 106 subjects are split into training
and testing groups. Each group contains 53 subjects. (2)
cross-setup (X-setup) benchmark: training data comes from
samples with even setup IDs, and testing data comes from
samples with odd setup IDs.

Kinetics-Skeleton [12]: It is a large data set for human
action analysis in 400 classes. The dataset is divided into
a training set (240,000 clips) and a validation set (20,000
clips). Since only raw video clips are provided, skeleton
data can be obtained by estimating joint locations on certain
pixels with OpenPose toolbox [2] and each sample consists
of 18 body joints.

PKUMMD [21]: PKU Multi-Modality dataset is a new
large scale benchmark for human action understanding. It

contains almost 20, 000 action instances and 5.4 million
frames in 52 action categories. Each sample consists of
25 body joints. This dataset consists of two parts and it
is also split into cross-subject (X-sub) and cross-view (X-
view) subset.

4.2. Implementation Details

Training. Our network is built upon the PyTorch library.
We use stochastic gradient descent (SGD) as the optimiza-
tion strategy. The learning rate is initially set to 0.1 with
momentum of 0.9, and the weight decay is set to 0.0001.
The parameters in our method are set by experience as λ1

= 1, λ2 = 1 and λ3 = 1. The temperature factor τ is set as
0.5 and the interpolation rate l is 2. We set γ = 0.15 and
K = 6536 for memory bank size. For the Kinetics-Skeleton
dataset, the batch-size is 256 and for the other three datasets,
the batch-size is 64. Since we adopt three different network
architectures [49, 32, 17] to conduct the experiments, we
strictly follow other settings in the original paper including
the total training epochs, the decline of learning rate in a
different epoch, and the data pre-processing. All the exper-
iments are conducted with 4 TITANX GPUs.

Settings. (1) Self-supervised pre-training: compared to
train from scratch and randomly initialize the weights of
network, we initialize the encoder with the learned weights
from self-supervised tasks and then learn the classifier for
action recognition. (2) Semi-supervised: The encoder is
pretrained with unlabeled data, then trained with the classi-
fier using a very small percentage (i.e. 5%-10%) of training
labeled data. (3) Fine-tuning: The encoder is pretrained
with unlabeled data on a larger dataset, where the pre-
trained weights are used as the initialization and are further
refined on the target downstream task (small dataset).

4.3. Ablation Study

To explore the learning features of our proposed method,
we apply them to three different backbone networks under
the setting of self-supervised pre-training to study the effec-
tiveness. More details are illustrated in the following.
The effect of pretext losses. As shown in Table 1, com-
pared with training from scratch, using different pretext
tasks for self-pretraining can help to boost the action recog-
nition performance. Specifically, as for motion consistency
pretext task, using Ltriplet only works better than LNCE

only. This because we use other video clips as negative
pairs, there still exists many artificial cues [14] to distin-
guish two videos for the networks to solve the task, which
will lead to poor learning representations. When we com-
bine these losses, we can further promote the networks per-
formance, which verifies that it can learn more deep motion
representations as we mentioned in Sec.3.1. As for motion
continuity pretext task, by only employing LItep also can
help the three backbone networks to improve different de-
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Pre-training settings NTU60 X-sub NTU60 X-view

ST-GCN 2S-AGCN AS-GCN ST-GCN 2S-AGCN AS-GCN

w/o pre-training 81.5 88.5 86.8 88.3 95.1 94.2
w/ Ltriplet only 82.3+0.8 89.2+0.7 87.6+0.8 89.2+0.9 95.9+0.8 94.9+0.7

w/ LNCE only 81.8+0.3 89.0+0.5 87.2+0.4 88.7+0.4 95.7+0.6 94.5+0.3

w/ LItep only 82.5+1.0 89.3+0.8 87.6+0.7 89.4+1.1 95.9+0.8 95.0+0.8

Ltriplet + LNCE 82.6+1.1 89.4+0.9 88.0+1.2 89.5+1.2 96.0+0.9 95.1+0.9

Ltriplet + LNCE + LItep (ours) 83.0+1.5 89.7+1.2 88.4+1.6 89.7+1.4 96.3+1.2 95.5+1.3

Table 1. Exploration of different pre-training settings on the NTU60-RGBD dataset. All models are pre-trained on the NTU60-RGBD
dataset itself except for the w/o pre-training setting.

Positive Negative NTU60 X-sub NTU60 X-view

S-changed M-jittered 81.9 88.6
S-changed V-transformed 81.7 88.7

- M-shuffled 81.8 88.6

S-changed M-shuffled 82.3 89.2

Table 2. Exploration of different operations of constructing mo-
tion pairs on the NTU60-RGBD dataset. All the methods are pre-
trained on NTU60-RGBD itself with ST-GCN [49] backbone. S,
M and V denote speed, motion and view, respectively.

Methods NTU60 X-sub NTU60 X-view

Direct reconstruction 82.0 88.8
Specific rate interpolation 82.5 89.4

Table 3. Exploration of different motion continuity modeling op-
erations on the NTU60-RGBD dataset. All the methods are pre-
trained on NTU60-RGBD itself with ST-GCN [49] backbone.

grees in terms of accuracy. When we jointly train the net-
works using three losses together, all three backbone net-
works can achieve the best performance.

The effect of motion consistency pairs. We also reveal the
different operations to break the motion consistency to con-
duct negative pairs for learning. Among them, M-jittered
and V-transformed mean we randomly jitter the skeleton
(e.g., add some noise to disturb the skeleton joints ) and
transform the coordinates frames of the skeleton points, re-
spectively. As shown in Table 2, from which we can con-
clude that S-changed positive pairs and M-shuffled negative
pairs are effective for the networks to learn the intrinsic mo-
tion representations.

The effect of specific interpolation. The results in Table 3
demonstrate that compared to direct reconstruction, specific
rate interpolation achieves better performance and it can
drive the networks learn more critical representations. As
aforementioned, up-sampling interpolation can help the net-
works predict and simulate the relationship between adja-
cent frames, which can model the temporal continuity of the

t=4

Interpolation：

Target frames：

t=12 t=20 t=28 t=36

Figure 4. The interpolation skeleton action sample from the motion
continuity modeling module with ST-GCN [49] backbone. We
present the action “play with phone / tablet” in the NTU60-RGBD
dataset. Both the interpolated motions and the ground-truth target
are shown.

motions. Although our self-supervised learning method is
not specifically designed for interpolating the human skele-
ton, however, as shown in Figure 4, our interpolation results
are basically in line with expectations. Through this self-
learning strategy, we can make the encoder extract higher
semantic representation features.

4.4. Evaluation

Self-supervised pre-training. We compare our method
termed as MCC (Motion Consistency and Continuity) with
the state-of-the-art unsupervised learning methods. Be-
sides, we directly apply the latest existing SSL techniques
in the video domain to skeleton data. As shown in Table 4,
our MCC achieves the best results on all backbone networks
over three datasets. This shows that our proposed method
allows the network to learn the latent feature representa-
tions of the motions and it can boost the performance of
skeleton action recognition without using additional labeled
data for training. In addition, the results also reveal that the
existing SSL strategies are not suitable enough for skele-
ton data, which is in line with the limitations we mention
in Sec.1. Meanwhile, during the training process, we find
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Method Architecture NTU60 NTU120 Kinetics

X-sub X-view X-sub X-setup top-1 top-5

LongT GAN [53] AAAI’2018 Unidirectional GRUs - 49.6* - - - -
MS2L [18]ACMMM’2020 BiGRU 78.8* 81.8* - - - -

VPD [24]ECCV’2020 SeBiReNet - 81.4* - - - -

Clip Order prediction [48]CVPR’2019

ST-GCN 82.1 88.6 76.0 76.8 31.3 53.5
2S-AGCN 89.0 95.8 80.6 82.5 36.8 59.7
As-GCN 87.5 94.9 78.4 80.0 35.6 57.4

Jigsaw puzzle recognition [14]AAAI’2019

ST-GCN 81.8 89.0 76.3 77.1 31.7 53.8
2S-AGCN 88.8 95.4 80.8 82.4 36.6 59.4
As-GCN 87.1 94.6 78.6 79.9 35.8 57.7

pace prediction [1]CVPR’2020

ST-GCN 81.5 88.8 75.8 75.9 31.3 53.6
2S-AGCN 89.2 95.6 80.3 82.1 36.3 59.1
As-GCN 87.3 95.0 78.0 79.8 35.2 57.0

MCC (ours)
ST-GCN 83.0 89.7 77.0 77.8 32.3 54.6

2S-AGCN 89.7 96.3 81.3 83.3 38.1 60.8
As-GCN 88.4 95.5 79.4 80.8 36.4 58.6

Table 4. Comparison with other self-supervised methods on NTU60, NTU120, and Kinetics datasets. (* means our reproduced results.)

Network

NTU-60 NTU-120 Kinetics
5%∼data 10%∼data 5%∼data 10%∼data 10%∼data

X-sub X-view X-sub X-view X-sub X-setup X-sub X-setup top-1 top-5

ST-GCN [49] 38.2 40.4 52.4 56.9 25.3 27.1 37.6 40.1 11.9 28.6
+MCC (ours) 42.4+4.2 44.7+4.3 55.6+3.2 59.9+3.0 29.7+4.4 31.3+4.2 40.7+3.1 43.4+3.3 14.8+2.9 32.2+3.6

2s-AGCN [32] 43.5 49.1 57.2 62.0 29.2 30.8 44.1 48.7 18.6 34.8
+MCC (ours) 47.4+3.9 53.3+4.2 60.8+3.6 65.8+3.8 33.8+4.6 35.1+4.3 47.0+2.9 51.8+3.1 21.3+2.7 37.9+3.1

AS-GCN [17] 41.1 44.7 55.7 59.5 27.4 28.9 41.2 44.6 17.1 33.7
+MCC (ours) 45.5+4.4 49.2+4.5 59.2+3.5 63.1+3.6 31.6+4.2 32.9+4.0 44.9+3.7 47.8+3.2 20.2+3.1 37.5+3.8

Table 5. Evaluation of semi-supervised results on NTU60, NTU120 and Kinetics dataset with 5%, 10% labels of training data. “+ MCC”
indicates training the network by initializing the self-supervised pre-trained weights of our proposed method.

that the network initialized with self-supervised pre-trained
weights can speed up the convergence to reach the desired
accuracy, which can help us train our models in the limited
time. It’s worth mentioning that we evaluate, for the first
time, the learned representations of the 3D skeleton on 3
mainstream and challengeable datasets (NTU60, NTU120,
Kinetics), which demonstrates the effectiveness and gener-
ality of our method.

Semi-supervised training. In some cases, there is very lit-
tle labeled data that we can use, which makes it difficult for
us to train the data-driven network models. As shown in
Tabel 5, when we use a small amount of data (i.e., 5%, 10%
of data) to train from scratch, the accuracy of the model
will drop sharply. After we adopt the self-supervised pre-
trained weights, it is noticeable that we can gain a signifi-
cant boost among all the network structures compared with
the random initialized models. Specifically, with 5% la-
beled data, the accuracy increases by about 4.3%, and with
10% labeled data, the accuracy increases by approximate
3.5% among the three backbones. Figure 5 below compares

Backbone Pre-train Dataset PKUMMD (Acc.)

ST-GCN

w/o pre-training 48.2
PKUMMD 49.6+1.4

NTU60 X-view 51.8+3.6

NTU60 X-sub 52.7+4.5

NTU120 X-setup 50.5+2.3

NTU120 X-sub 54.5+6.3

Table 6. Exploration of different pre-train datasets for fine-tuning
on PKUMMD Part-II subset.

the skeleton response by using self-supervised learning and
training from scratch when has only 10% Kinetics data. It
can be shown that the model after self-supervised training
learns the connection between each skeleton point more re-
spectable, instead of just remembering a certain skeleton
point or feature for reasoning.

Fine-tuning on downstream tasks. As is common prac-
tice in the image and video fields, they perform self-
supervised pre-training on the large scale ImageNet [28],
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train from scratch

self-supervised learning

Figure 5. The response magnitude of all the joints (white dots) in a
motion sequence in the last layer of ST-GCN [49] backbone. The
Tai-Chi video sequence is selected from a clip of UCF101 [35]
dataset with an interval of 30 frames.

Kinetics [12] datasets, then initialize the network with the
learned weights, and finally train on the small dataset to
validate the transferability of learned representation. First,
we explore the effect of different pre-train datasets for fine-
tuning on downstream tasks (for simplicity, we conduct
comparative experiments on ST-GCN backbone). As shown
in Table 6, when training from scratch, the accuracy of the
network is 48.2%. When we pretrain on the PKUMMD
dataset itself, we can gain the improvement of 1.4%. When
applying the NTU dataset for self-supervised pre-training,
we can significantly improve the accuracy by a large mar-
gin. Among them, the NTU120 X-sub subset brings us a
6.3% boost, which illustrates the benefits of the transfer-
ability of learned representation in the 3D skeleton.

Next, we compare the networks performance with other
methods on the PKUMMD dataset (all the networks are
pre-trained on NTU dataset except for the w/o pre-training
setting). As shown in Table 7, MCC increases the accu-
racy by 6.3%, 6.2% and 5.6% compared with the random
initialized models on three backbone architectures, respec-
tively. Moreover, although the backbones are different, our
method can gain more relative performance boost compared
to LongT GAN [53] (43.1% → 44.8%) and MS2L [18]
(45.7% → 45.8%). By using manual annotation, fully su-
pervised method for fine-tuning can achieve the best perfor-
mance, however, the ground-truth labels are hard to collect
and the results of our SSL method is close to those of the
fully-supervised manner, which shows the benefits of the
discriminative features learned from the proposed method.
Finally, as shown in Figure 6, with the benefit of fine-tuning,
features of Sup + fine-tune presents a more discriminative
distribution than Sup, which shows the compact intra-class
distance and more distinguishable inter-class distance.

5. Conclusion

In this paper, we propose a novel self-supervised learn-
ing method for skeleton-based action recognition. By con-
structing positive and negative pair clips, we encourage the

Sup. Sup. + fine-tune

Figure 6. The t-SNE [39] visualization of the last layer features of
ST-GCN [49] backbone on PKUMMD dataset. (a) Sup is trained
with the supervised objective for the labeled samples from scratch.
(b) Sup + fine-tune is trained by fine-tuning the learned weight
from upstream dataset through self-supervised pre-training.

Method Architecture PKUMMD (Acc.)

LongT GAN [53] unidirectional GRUs 44.8
MS2L [18] BiGRU 45.8

w/o pre-training

LongT GAN 43.1*
MS2L 45.7

ST-GCN 48.2
2S-AGCN 54.6
AS-GCN 52.8

Fully supervised

LongT GAN 48.4*
MS2L 49.8*

ST-GCN 60.5
2S-AGCN 66.8
AS-GCN 65.4

MCC (ours)
ST-GCN 54.5

2S-AGCN 60.8
AS-GCN 58.4

Table 7. Comparison of action recognition transfer learning results
on PKUMMD Part-II subset. (* means our reproduced results.)

network to separate them to learn the intrinsic dynamic mo-
tion consistency information. Skeleton interpolation is fur-
ther exploited to model the continuity of human skeleton
data. Extensive evaluations demonstrate the effectiveness
of our approach. We hope these findings will encourage
more research on 3D skeleton representation learning.
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