
iMAP: Implicit Mapping and Positioning in Real-Time

Edgar Sucar1 Shikun Liu1 Joseph Ortiz2 Andrew J. Davison1

1Dyson Robotics Lab, Imperial College London
2Robot Vision Lab, Imperial College London

{e.sucar18, shikun.liu17, j.ortiz, a.davison}@imperial.ac.uk

Abstract

We show for the first time that a multilayer perceptron

(MLP) can serve as the only scene representation in a real-

time SLAM system for a handheld RGB-D camera. Our net-

work is trained in live operation without prior data, build-

ing a dense, scene-specific implicit 3D model of occupancy

and colour which is also immediately used for tracking.

Achieving real-time SLAM via continual training of a

neural network against a live image stream requires sig-

nificant innovation. Our iMAP algorithm uses a keyframe

structure and multi-processing computation flow, with dy-

namic information-guided pixel sampling for speed, with

tracking at 10 Hz and global map updating at 2 Hz. The

advantages of an implicit MLP over standard dense SLAM

techniques include efficient geometry representation with

automatic detail control and smooth, plausible filling-in of

unobserved regions such as the back surfaces of objects.

1. Introduction

A real-time Simultaneous Localisation and Mapping

(SLAM) system for an intelligent embodied device must in-

crementally build a representation of the 3D world, to en-

able both localisation and scene understanding. The ideal

representation should precisely encode geometry, but also

be efficient, with the memory capacity available used adap-

tively in response to scene size and complexity; predictive,

able to plausibly estimate the shape of regions not directly

observed; and flexible, not needing a large amount of train-

ing data or manual adjustment to run in a new scenario.

Implicit neural representations are a promising recent

advance in off-line reconstruction, using a multilayer per-

ceptron (MLP) to map a query 3D point to occupancy or

colour, and optimising it from scratch to fit a specific scene.

An MLP is a general implicit function approximator, able

to represent variable detail with few parameters and with-

out quantisation artifacts. Even without prior training, the

inherent priors present in the network structure allow it to

make watertight geometry estimates from partial data, and

Figure 1: Room reconstruction from real-time iMAP with

an Azure Kinect RGB-D camera, showing watertight scene

model, camera tracking and automatic keyframe set.

plausible completion of unobserved regions.

In this paper, we show for the first time that an MLP

can be used as the only scene representation in a real-time

SLAM system using a hand-held RGB-D camera. Our

randomly-initialised network is trained in live operation and

we do not require any prior training data. Our iMAP system

is designed with a keyframe structure and multi-processing

computation flow reminiscent of PTAM [11]. In a tracking

process, running at over 10 Hz, we align live RGB-D obser-

vations with rendered depth and colour predictions from the

MLP scene map. In parallel, a mapping process selects and

maintains a set of historic keyframes whose viewpoints span

the scene, and uses these to continually train and improve

the MLP, while jointly optimising the keyframe poses.

In both tracking and mapping, we dynamically sample

the most informative RGB-D pixels to reduce geometric

uncertainty, achieving real-time speed. Our system runs

in Python, and all optimisation is via a standard PyTorch

framework [20] on a single desktop CPU/GPU system.

16229

By casting SLAM as a continual learning problem, we

achieve a representation which can represent scenes effi-

ciently with continuous and adaptive resolution, and with a

remarkable ability to smoothly interpolate to achieve com-

plete, watertight reconstruction (Fig. 1). With around 10 -

20 keyframes, and an MLP with only 1 MB of parameters,

we can accurately map whole rooms. Our scene represen-

tation has no fixed resolution; the distribution of keyframes

automatically achieves efficient multi-scale mapping.

We demonstrate our system on a wide variety of real-

world sequences and do exhaustive evaluation and ablative

analysis on 8 scenes from the room-scale Replica Dataset

[29]. We show that iMAP can make a more complete scene

reconstruction than standard dense SLAM systems with

significantly smaller memory footprint. We show com-

petitive tracking performance on the TUM RGB-D dataset

[30] against state-of-the-art SLAM systems.

To summarise, the key contributions of the paper are:

• The first dense real-time SLAM system that uses an

implicit neural scene representation and is capable of

jointly optimising a full 3D map and camera poses.

• The ability to incrementally train an implicit scene net-

work in real-time, enabled by automated keyframe se-

lection and loss guided sparse active sampling.

• A parallel implementation (fully in PyTorch [20] with

multi-processing) of our presented SLAM formulation

which works online with a hand-held RGB-D camera.

2. Related Work

Visual SLAM Systems Real-time visual SLAM systems

for modelling environments are often built in a layered man-

ner, where a sparse representation is used for localisation

and more detailed geometry or semantics is layered on top.

However, here we work in the ‘dense SLAM’ paradigm pi-

oneered in [18, 17] where a unified dense scene represen-

tation is also the basis for camera tracking. Dense repre-

sentations avoid arbitrary abstractions such as keypoints,

enable tracking and relocalisation in robust invariant ways,

and have long-term appeal as sensor-agnostic, unified, com-

plete representations of spaces.

Some approaches in dense SLAM explicitly represent

surfaces [8, 37], but direct representation of volume is desir-

able to enable a full range of applications such as planning.

Standard representations for volume using using occupancy

or signed distance functions are very expensive in terms of

memory if a fixed resolution is used [17]. Hierarchical ap-

proaches [6, 34, 24] are more efficient, but are complicated

to implement and usually offer only a small range of level

of detail. In either case, the representations are rather rigid,

and not amenable to joint optimisation with camera poses,

due to the huge number of parameters they use.

Machine learning can discover low-dimensional embed-

dings of dense structure which enable efficient, jointly op-

timisable representation. CodeSLAM [1] is one example,

but using a depth-map view representation rather than full

volumetric 3D. Learning techniques have also been used to

improve dense reconstruction but require an existing scan

[5] or previous training data [21, 36, 2].

Implicit Scene Representation with MLPs Scene repre-

sentation and graphics have seen much recent progress on

using implicit MLP neural models for object reconstruction

[19, 14], object compression [33] novel view synthesis [15],

and scene completion [27, 3]. Two recent papers [35, 39]

have also explored camera pose optimisation. But so far

these methods have been considered as an offline tool, with

computational requirements on the order of hours, days or

weeks. We show that when depth images are available,

and when guided sparse sampling is used for rendering and

training, these methods are suitable for real-time SLAM.

Continual Learning By using a single MLP as a master

scene model, we pose real-time SLAM as online contin-

ual learning. An effective continual learning system should

demonstrate both plasticity (the ability to acquire new

knowledge) and stability (preserving old knowledge) [22,

7]. Catastrophic forgetting is a well-known property of neu-

ral networks, and is a failure of stability, where new experi-

ences overwrite memories.

One line of work on alleviating catastrophic forgetting

has focused on protecting representations against new data

using relative weighting [10]. This is reminiscent of classic

filtering approaches in SLAM such as the EKF [28] and is

worth future investigation. Approaches which freeze [23]

or consolidate [25] sub-networks after training on each in-

dividual task are perhaps too simple and discrete for SLAM.

Instead, we direct our attention towards the replay-based

approach to continual learning, where previous knowledge

is stored either directly in a buffer [13, 22], or compressed

in a generative model [12, 26]. We use a straightforward

method where keyframes are automatically selected to store

and compress past memories. We use loss-guided random

sampling of these keyframes in our continually running

map update process to periodically replay and strengthen

previously-observed scene regions, while continuing to add

information via new keyframes. In SLAM terms, this ap-

proach is similar to that pioneered by PTAM [11], where a

historic keyframe set and repeated global bundle adjustment

serve as a long-term scene representation.

3. iMAP: A Real-Time Implicit SLAM System

3.1. System Overview

Figure 2 overviews how iMAP works. A 3D volumet-

ric map is represented using a fully-connected neural net-

work Fθ that maps a 3D coordinate to colour and volume

6230

T
ra

ck
in

g

P
ro

ce
ss

M
a

p
p

in
g

P
ro

ce
ss

RGB-D
Image

Keyframe Set

Implicit
Network

Tracked
Pose

Tracking

Is Keyframe?

- Yes

Joint

Optimisation

I, D T

Add
Keyframe

<latexit sha1_base64="AX/jZ4RZsdHWeQ2suUnrAy8Ajl0=">AAAD5HicfVJLb9NAEN42PEp4tXBCXFbk0lZWFFcVHFCkCnqAQ0WRWloptqL1emIv2YeZXZMUy+IHcERcuXEFiX/Dv2HdphJOJebi8ew3r++bpJDCusHgz8pq59r1GzfXbnVv37l77/76xoN31pTI4ZgbafA0YRak0HDshJNwWiAwlUg4SaYvm/eTj4BWGH3kzgqIFcu0mAjOnA+N1x9FEiYuql4HdD+gRzRCkeUuqsdivN4b9AfnRq864cLpkYUdjjdWf0ep4aUC7bhk1o7CncLFFUMnuIS6G5UWCsanLIMqQ1bkgs8DOpHwQQfUsaSUDH1g5p8mImvjmbIuVwH1X8Vc7vEwd9yoogUbSXAOsGAFYEAVw0zo4aD/VOi4ysAocHjWTkjMHNKANvRZXaoEEFI/sswMCt9wpz32SLEpoDEqrjjTHOTyq8sXewRyElcHQnuSD9G0d7FlwlnR8N+On6cbI207nBgz9VXtMngKfoD2BFXuJUaEyRK2lE6gmbWjl4y3d4B5YbBRLX1fWufpWUoS0091txvtg5cY4cCP/Ma3ZM7gdhV5whWb117yLAoa739AoS+B3vMlNcy8oIrpdDviAv3JpKMwrqKm5ejyxoebPGfYb3634qpL/7FImxRGNvfiDy/ygxTZLBBaA1K/wrA5R3peYItWvbB+Xtf+ysPlm77qnOz0w91+GL7d7e29WBz8GnlMnpBNEpJnZI+8IofkmHDymfwgP8mvDnS+dL52vl1AV1cWOQ9Jyzrf/wL9s01x</latexit>

{I,D, T}
i

<latexit sha1_base64="HN0CGi6HkFtx4Sr8ZpKBJUzDG0I=">AAAD0XicfVJLb9NAEN4mPEp4tXDkYpFLW1lRHFVwQJEqQIhLRUCERIqtaL2e2Ev2YWbXJMWKhLhy4wq/gn/Dv2GdJhJOJebi8ew3r++bOBfc2G73z16jee36jZv7t1q379y9d//g8MEHowtkMGRaaBzH1IDgCoaWWwHjHIHKWMAonr+o3kefAQ3X6r29yCGSNFV8xhm1LjR+NQ1tBpZOD9rdTndt3lUn2DhtsrHB9LDxO0w0KyQoywQ1ZhL0chuVFC1nAlatsDCQUzanKZQp0jzjbOl7MwGflO9ZGheCogss3NOMp3U8lcZm0vfcV1KbOTwsLdMyr8EmAqwFzGkO6HuSYspVv9t5wlVUpqAlWLyoJ8R6CYnvVVwZVcgYEBI3skg1ctewVx97IukcUGsZlYwqBmL31WabPXwxi8pzrhyjA9T1XUwRM5pXZNfj63SthamHY63nrqrZBc/BDVCfoMycnogw28EWwnLUi3p0y3h9B1jmGivVko+FsY6enSQ+/7JqtcKX4CRGOHcjv3EtqdV4UoaOcEmXKyd5GvqV9z8gV1ug81xJBQsnqKQqOQkZR3cyySSIyrBqOdkedP+IZRQ71e9xVLa8fyxUOoGJyZz4/ct8P0G68LlSgJ5boV+do7cucOyV7WD1bLVyVx7s3vRVZ9TrBKedIHh72j57vjn4ffKIPCZHJCBPyRl5TQZkSBgR5Af5SX413zWXza/Nb5fQxt4m5yGpWfP7X7ojRxs=</latexit>

Fθ

Figure 2: iMAP system pipeline.

density (Section 3.2). Given a camera pose, we can render

the colour and depth of a pixel by accumulating network

queries from samples in a back-projected ray (Section 3.3).

We map a scene from depth and colour video by incre-

mentally optimising the network weights and camera poses

with respect to a sparse set of actively sampled measure-

ments (Section 3.6). Two processes run concurrently: track-

ing (Section 3.4), which optimises the pose from the cur-

rent frame with respect to the locked network; and mapping

(Section 3.4), which jointly optimises the network and the

camera poses of selected keyframes, incrementally chosen

based on information gain (Section 3.5).

3.2. Implicit Scene Neural Network

Following the network architecture in NeRF [15], we use

an MLP with 4 hidden layers of feature size 256, and two

output heads that a 3D coordinate p = (x, y, z) to a colour

and volume density value: Fθ(p) = (c, ρ). Unlike NeRF,

we do not take into account viewing directions as we are not

interested in modelling specularities.

We apply the Gaussian positional embedding proposed

in Fourier Feature Networks [32] to lift the input 3D coor-

dinate into n-dimensional space: sin(Bp), with B an [n×3]
matrix sampled from a normal distribution with standard

deviation σ. This embedding serves as input to the MLP

and is also concatenated to the second activation layer of

the network. Taking inspiration from SIREN [27], we al-

low optimisation of the embedding matrix B, implemented

as a single fully-connected layer with sine activation.

3.3. Depth and Colour Rendering

Our new differentiable rendering engine, inspired by

NeRF [15] and NodeSLAM [31], queries the scene network

to obtain depth and colour images from a given view.

Given a camera pose TWC and a pixel coordinate [u, v],
we first back-project a normalised viewing direction and

transform it into world coordinates: r = TWCK
−1[u, v],

with the camera intrinsics matrix K . We take a set of N

samples along the ray pi = dir with corresponding depth

values {d1, · · · , dN}, and query the network for a colour

and volume density (ci, ρi) = Fθ(pi). We follow the strati-

fied and hierarchical volume sampling strategies of NeRF.

Volume density is transformed into an occupancy prob-

ability by multiplying by the inter-sample distance δi =
di+1 − di and passing this through activation function oi =
1 − exp(−ρiδi). The ray termination probability at each

sample can then be calculated as wi = oi
∏i−1

j=1(1 − oj).
Finally, depth and colour are rendered as the expectations:

D̂[u, v] =

N
∑

i=1

widi, Î[u, v] =

N
∑

i=1

wici. (1)

We can calculate the depth variance along the ray as:

D̂var[u, v] =

N
∑

i=1

wi(D̂[u, v]− di)
2. (2)

3.4. Joint optimisation

We jointly optimise the implicit scene network parame-

ters θ, and camera poses for a growing set of W keyframes,

each of which has associated colour and depth measure-

ments along with an initial pose estimate: {Ii, Di, Ti}.

Our rendering function is differentiable with respect to

these variables, so we perform iterative optimisation to min-

imise the geometric and photometric errors for a selected

number of rendered pixels si in each keyframe.

The photometric loss is the L1-norm be-

tween the rendered and measured colour values

e
p
i [u, v] =

∣

∣

∣Ii[u, v]− Îi[u, v]
∣

∣

∣ for M pixel samples:

Lp =
1

M

W
∑

i=1

∑

(u,v)∈si

e
p
i [u, v]. (3)

The geometric loss measures the depth difference e
g
i [u, v] =

∣

∣

∣Di[u, v]− D̂i[u, v]
∣

∣

∣ and uses the depth variance as a nor-

malisation factor, down-weighting the loss in uncertain re-

gions such as object borders:

Lg =
1

M

W
∑

i=1

∑

(u,v)∈si

e
g
i [u, v]

√

D̂var[u, v]
. (4)

We apply the ADAM optimiser [9] on the weighted sum

of both losses, with factor λp adjusting the importance given

to the photometric error:

min
θ,{Ti}

(Lg + λpLp) . (5)

Camera Tracking In online SLAM, close to frame-rate

camera tracking is important, as optimisation of smaller dis-

placements is more robust. We run a parallel tracking pro-

cess that continuously optimises the pose of the latest frame

with respect to the fixed scene network at a much higher

frame rate than joint optimisation while using the same loss

and optimiser. The tracked pose initialisation is refined in

the mapping process for selected keyframes.

6231

3.5. Keyframe Selection

Jointly optimising the network parameters and camera

poses using all images from a video stream is not computa-

tionally feasible. However, since there is huge redundancy

in video images, we may represent a scene with a sparse set

of representative keyframes, incrementally selected based

on information gain. The first frame is always selected to

initialise the network and fix the world coordinate frame.

Every time a new keyframe is added, we lock a copy of our

network to represent a snapshot of our 3D map at that point

in time. Subsequent frames are checked against this copy

and are selected if they see a significantly new region.

For this, we render a uniform set of pixel samples s and

calculate the proportion P with a normalised depth error

smaller than threshold tD = 0.1, to measure the fraction of

the frame already explained by our map snapshot:

P =
1

|s|

∑

(u,v)∈s

✶





∣

∣

∣
D[u, v]− D̂[u, v]

∣

∣

∣

D[u, v]
< tD



 . (6)

When this proportion falls under a threshold P < tP (we

set tP = 0.65), this frame is added to the keyframe set. The

normalised depth error produces adaptive keyframe selec-

tion, requiring higher precision, and therefore more closely

spaced keyframes, when the camera is closer to objects.

Every frame received in the mapping process is used in

joint optimisation for a few iterations (between 10 and 20),

so our keyframe set is always composed of the selected set

along with the continuously changing latest frame.

3.6. Active Sampling

Image Active Sampling Rendering and optimising all

image pixels would be expensive in computation and mem-

ory. We take advantage of image regularity to render and

optimise only a very sparse set of random pixels (200 per

image) at each iteration. Further, we use the render loss to

guide active sampling in informative areas with higher de-

tail or where reconstruction is not yet precise.

Each joint optimisation iteration is divided into two

stages. First, we sample a set si of pixels, uniformly dis-

tributed across each of the keyframe’s depth and colour im-

ages. These pixels are used to update the network and cam-

era poses, and to calculate the loss statistics. For this, we

divide each image into an [8×8] grid, and calculate the aver-

age loss inside each square region Rj , j = {1, 2, · · · , 64}:

Li[j] =
1

|rj |

∑

(u,v)∈rj

e
g
i [u, v] + e

p
i [u, v], (7)

where rj = si ∩Rj are pixels uniformly sampled from Rj .

We normalise these statistics into a probability distribution:

fi[j] =
Li[j]

∑64
m=1 Li[m]

. (8)

Figure 3: Image Active Sampling. Left: a loss distribution

is calculated across an image grid using the geometric loss

from a set of uniform samples. Right: active samples are

further allocated proportional to the loss distribution.

We use this distribution to re-sample a new set of ni · fi[j]
uniform samples per region (ni is the total samples in each

keyframe), allocating more samples to regions with high

loss. The scene network is updated with the loss from ac-

tive samples (in camera tracking only uniform sampling is

used). Image active sampling is illustrated in Fig. 3.

Keyframe Active Sampling In iMAP, we continuously

optimise our scene map with a set of selected keyframes,

serving as a memory bank to avoid network forgetting. We

wish to allocate more samples to keyframes with a higher

loss, because they relate to regions which are newly ex-

plored, highly detailed, or that the network started to forget.

We follow a process analogous to image active sampling

and allocate ni samples to each keyframe, proportional to

the loss distribution across keyframes, See Fig. 4.

Bounded Keyframe Selection Our keyframe set keeps

growing as the camera moves to new and unexplored re-

gions. To bound joint optimisation computation, we choose

a fixed number (3 in the live system) of keyframes at each

iteration, randomly sampled according to the loss distribu-

tion. We always include the last keyframe and the current

live frame in joint optimisation, to compose a bounded win-

dow with W = 5 constantly changing frames. See Fig. 4.

all registered keyframes current frame

RGB

Image

Depth

Image

Loss

Distribution

0.27

0.21
0.18

0.120.14
0.08

Figure 4: Keyframe Active Sampling. We maintain a loss

distribution over the registered keyframes. The distribution

is used for sampling a bounded window of keyframes (red

boxes), and for allocating pixel samples in each.

6232

4. Experimental Results

Through comprehensive experiments we evaluate

iMAP’s 3D reconstruction and tracking, and conduct a

detailed ablative analysis of design choices on accuracy

and speed. Please see our attached video demonstrations.

4.1. Experimental Setup

Datasets We experiment on both simulated and real se-

quences. For reconstruction evaluation we use the Replica

dataset [29], high quality 3D reconstructions of real room-

scale environments, with 5 offices and 3 apartments. For

each Replica scene, we render a random trajectory of 2000

RGB-D frames. For raw camera recordings, we capture

RGB-D videos using a hand-held Microsoft Azure Kinect

on a wide variety of environments, as well as test on the

TUM RGB-D dataset [30] to evaluate camera tracking.

Implementation Details For all experiments we set the

following default parameters: keyframe registration thresh-

old tP = 0.65, photo-metric loss weighting λp = 5,

keyframe window size W = 5, pixel samples |si| = 200,

positional embedding size n = 93 and sigma σ = 25, and

32 coarse and 12 fine bins for rendering. 3D point coordi-

nates are normalised by 1
10 to be close to the [0, 1] range.

In online operation from a hand-held camera, streamed

images which arrive between processed frames are dropped.

For the experiments presented here every captured frame is

processed, running at 10 Hz. We recover mesh reconstruc-

tions if needed by querying occupancy values from the net-

work in a uniform voxel grid and then running marching

cubes. Meshing is for visualisation and evaluation purposes

and does not form part of our SLAM system.

4.2. Scene Reconstruction Evaluation

Metrics We sample 200, 000 points from both ground-

truth and reconstructed meshes, and calculate three quan-

Figure 5: Reconstruction and tracking results for Replica

room-0 along with registered keyframes.

Figure 6: iMAP (left) manages to fill in unobserved regions

which can be seen as holes in TSDF fusion (right).

titative metrics: Accuracy (cm): the average distance be-

tween sampled points from the reconstructed mesh and

the nearest ground-truth point; Completion (cm): the aver-

age distance between sampled points from the ground-truth

mesh and the nearest reconstructed; and Completion Ratio

(<5cm %): the percentage of points in the reconstructed

mesh with Completion under 5 cm.

The ability to jointly optimise a 3D map along with cam-

era poses gives our system the capacity to build full globally

coherent scene reconstructions as seen in Fig. 1 and 7, and

accurate camera tracking as shown in Fig. 5. The robustness

and versatility of iMAP is demonstrated on a wide variety

of real world recordings, through the reconstructions in Fig.

9 and 8 that show its ability to work at scales from whole

rooms to small objects and thin structures.

We compare scene reconstructions from iMAP with

TSDF fusion [4, 17], which is representative of fusion-

based dense SLAM methods. To isolate reconstruction, we

use the camera tracking produced by iMAP for TSDF fu-

sion. The most significant advantage of our implicit repre-

sentation is the ability to fill in unobserved regions as shown

in Figs. 7 and 8. iMAP achieves on average a 4% higher

completion ratio across all 8 Replica scenes as seen in Ta-

ble 1, with an improvement of 11% in office-3.

Memory consumption for iMAP and TSDF fusion with

different configuration settings is shown in Table 2. With

default values of 2563 voxel resolution in TSDF fusion

and 256 network width in iMAP, our system can represent

scenes with a factor of 60 less memory usage while obtain-

ing similar reconstruction accuracy as seen in Table 1.

When using a real camera, in addition to better comple-

tion our method outperforms TSDF fusion in places where

a depth camera does not give accurate readings as is com-

mon for black objects (Fig. 8d), and reflective or transpar-

ent surfaces (Fig. 6). This performance can be attributed to

6233

room-0 room-1 room-2 office-0 office-1 office-2 office-3 office-4 Avg.

iMAP

Keyframes 11 12 12 10 11 10 14 11 13.37

Acc. [cm] 3.58 3.69 4.68 5.87 3.71 4.81 4.27 4.83 4.43

Comp. [cm] 5.06 4.87 5.51 6.11 5.26 5.65 5.45 6.59 5.56

Comp. Ratio [< 5cm %] 83.91 83.45 75.53 77.71 79.64 77.22 77.34 77.63 79.06

TSDF

Fusion

Acc. [cm] 4.21 3.08 2.88 2.70 2.66 4.27 4.07 3.70 3.45

Comp. [cm] 5.04 4.35 5.40 10.47 10.29 6.43 6.26 4.78 6.63

Comp. Ratio [< 5cm %] 76.90 79.87 77.79 79.60 71.93 71.66 65.87 77.11 75.09

Table 1: Reconstruction results for 8 indoor Replica scenes. We report the highest reached completion ratio in each scene

along with the corresponding accuracy and completion values at that point.

room-1 room-2 office-1 office-2

Ground

Truth

iMAP

TSDF

Fusion

Figure 7: Replica reconstructions, highlighting how iMAP fills in unobserved regions which are white holes in TSDF fusion.

iMAP

TSDF

Fusion

(a) Chair (b) Back of Objects (c) Small Objects (d) Black Chair

Figure 8: Comparative reconstruction results in various real scenes mapped with an Azure Kinect. White holes in the TDSF

fusion results are plausibly filled in by iMAP.

6234

Figure 9: Real-time reconstruction results from iMAP in a variety of real world settings.

iMAP [MB]
Width = 128 Width = 256 Width = 512

0.26 1.04 4.19

TSDF Fusion [MB]
Res. = 128 Res. = 256 Res. = 512

8.38 67.10 536.87

Table 2: Memory consumption: for iMAP as a function of

network size, and for TSDF fusion of voxel resolution.

the photometric loss for reconstruction combined with the

interpolation capacity of the map network.

4.3. TUM Evaluation

We run iMAP on three sequences from TUM RGB-D.

Tracking ATE RMSE is shown in Table 3. We compare

with surfel-based BAD-SLAM [24], TSDF fusion Kintin-

uous [38], and sparse ORB-SLAM2 [16], state-of-the-art

SLAM systems. In pose accuracy, iMAP does not outper-

form them, but is competitive with errors between 2 and 6

cm. Mesh reconstructions are shown in Figure 10. In Fig-

ure 11 we highlight how iMAP fills in holes in unobserved

regions unlike BAD-SLAM.

fr1/desk (cm) fr2/xyz (cm) fr3/office (cm)

iMAP 4.9 2.0 5.8

BAD-SLAM 1.7 1.1 1.73

Kintinuous 3.7 2.9 3.0

ORB-SLAM2 1.6 0.4 1.0

Table 3: ATE RMSE in cm on TUM RGB-D dataset.

4.4. Ablative Analysis

We analyse the design choices that affect our system us-

ing the largest Replica scene: office-2 with three differ-

ent random seeds. Completion ratio results and timings are

shown in Table 4. We found that network width = 256,

keyframe window size limit of W = 5, and 200 pixels

samples per frame offered the best trade-off of convergence

speed and accuracy. We further show in Fig. 12 that active

Figure 10: iMAP reconstruction results for TUM dataset.

Figure 11: Hole filling capacity of iMAP (top) against

BAD-SLAM (bottom).

sampling enables faster accuracy convergence and higher

scene completion than random sampling.

These design choices enable our online implicit SLAM

system to run at 10 Hz for tracking and 2 Hz for map-

ping. Our experiments demonstrate the power of ran-

6235

Default
Width Window Pixels

128 512 3 10 100 400

Tracking

Time [ms]
101 80 173 84 144 74 160

Joint Optim.

Time [ms]
448 357 777 373 647 340 716

Comp. Ratio

[<5cm %]
77.22 75.79 76.91 75.82 77.35 77.33 77.49

Table 4: Timing results for tracking (6 iterations) and map-

ping (10 iterations), running concurrently on the same GPU.

Default configuration: network width 256, window size 5,

and 200 samples per keyframe. Last row: completion ratio

for Replica office-2.

tP = 0.55 tP = 0.65 tP = 0.75 tP = 0.85

Keyframes 8 10 14 24

Comp. Ratio [<5cm %] 74.11 77.22 76.84 78.03

Table 5: Number of keyframe and completion ratio results

for different selection thresholds in Replica office-2.

domised sampling in optimisation, and highlight the key

finding that it is better to iterate fast with randomly chang-

ing information than to use dense and slow iterations.

Combining geometric and photometric losses enables

our system to obtain full room scale reconstructions from

few keyframes; 13 on average for the 8 Replica scenes in

Table 1. Using more keyframes does little to further im-

prove scene completion as shown in Table 5.

Implicit scene networks have the property of converging

fast to low frequency shapes before adding higher frequency

scene details. Fig. 13 shows network training from a static

camera averaged over 5 different real scenes. The depth loss

falls below 5cm in under a second; under 2cm in 4 seconds;

then continues to decrease slowly. When mapping a new

0 100 200 300 400

4

6

8

10

12

14

16

Training Time (sec)

Acc. (cm)

Without Active Sampling
With Active Sampling

0 100 200 300 400

20

35

50

65

80

Training Time (sec)

Comp. Ratio
(<5cm %)

Without Active Sampling
With Active Sampling

Figure 12: Active sampling obtains better completion with

faster accuracy convergence than pure random sampling.

           













5cm 2cm 1cm 0.75cm

Training Time (sec)

D
ep
th

E
rr
o
r
(c
m
)

Figure 13: Reaching 5cm, 2cm, 1cm and 0.75cm depth er-

ror requires around 1, 4, 20, 43 seconds respectively.

Figure 14: Evolution of level of detail.

scene our system takes seconds to get a coarse reconstruc-

tion and minutes to add in fine details. In Fig. 14 we show

how the system starts with a rough reconstruction and adds

detail as the network trains and the camera moves closer to

objects. This is a useful property in SLAM as it enables live

tracking to work even when moving to unexplored regions.

5. Conclusions

We pose dense SLAM as real-time continual learning

and show that an MLP can be trained from scratch as the

only scene representation in a live system, thus enabling

an RGB-D camera to construct and track against a com-

plete and accurate volumetric model of room-scale scenes.

The keys to the real-time but long-term SLAM performance

of our method are: parallel tracking and mapping, loss-

guided pixel sampling for rapid optimisation, and intelli-

gent keyframe selection as replay to avoid network forget-

ting. Future directions for iMAP include how to make more

structured and compositional representations that reason ex-

plicitly about the self similarity in scenes.

Acknowledgements

Research presented here has been supported by Dyson

Technology Ltd. We thank Kentaro Wada, Tristan Laidlow,

and Shuaifeng Zhi for fruitful discussions.

6236

References

[1] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and

A. J. Davison. CodeSLAM — learning a compact, opti-

misable representation for dense visual SLAM. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 2

[2] Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt,

Julian Straub, Steven Lovegrove, and Richard Newcombe.

Deep Local Shapes: Learning local SDF priors for detailed

3d reconstruction. Proceedings of the European Conference

on Computer Vision (ECCV), 2020. 2

[3] Julian Chibane, Gerard Pons-Moll, et al. Neural unsigned

distance fields for implicit function learning. Neural Infor-

mation Processing Systems (NIPS), 2020. 2

[4] B. Curless and M. Levoy. A volumetric method for build-

ing complex models from range images. In Proceedings of

SIGGRAPH, 1996. 5

[5] Angela Dai, Christian Diller, and Matthias Nießner. SG-

NN: Sparse generative neural networks for self-supervised

scene completion of RGB-D scans. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2020. 2

[6] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram

Izadi, and Christian Theobalt. BundleFusion: Real-time

Globally Consistent 3D Reconstruction using On-the-fly

Surface Re-integration. ACM Transactions on Graphics

(TOG), 36(3):24:1–24:18, 2017. 2

[7] Stephen Grossberg. How does a brain build a cognitive code?

In Studies of mind and brain, pages 1–52. Springer, 1982. 2

[8] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and

A. Kolb. Real-time 3D Reconstruction in Dynamic Scenes

using Point-based Fusion. In Proc. of Joint 3DIM/3DPVT

Conference (3DV), 2013. 2

[9] Diederik P. Kingma and Jimmy Ba. ADAM: A method for

stochastic optimization. In Proceedings of the International

Conference on Learning Representations (ICLR), 2015. 3

[10] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the national academy of sci-

ences, 114(13):3521–3526, 2017. 2

[11] G. Klein and D. W. Murray. Parallel Tracking and Map-

ping for Small AR Workspaces. In Proceedings of the Inter-

national Symposium on Mixed and Augmented Reality (IS-

MAR), 2007. 1, 2

[12] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-

Ortiz, Andrei Stoian, and David Filliat. Generative models

from the perspective of continual learning. In 2019 Interna-

tional Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2019. 2

[13] Davide Maltoni and Vincenzo Lomonaco. Continuous learn-

ing in single-incremental-task scenarios. Neural Networks,

116:56–73, 2019. 2

[14] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy Net-

works: Learning 3D reconstruction in function space. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019. 2

[15] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing scenes as neural radiance fields for view syn-

thesis. In Proceedings of the European Conference on Com-

puter Vision (ECCV), 2020. 2, 3

[16] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: An Open-

Source SLAM System for Monocular, Stereo, and RGB-

D Cameras. IEEE Transactions on Robotics (T-RO),

33(5):1255–1262, 2017. 7

[17] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D.

Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A.

Fitzgibbon. KinectFusion: Real-Time Dense Surface Map-

ping and Tracking. In Proceedings of the International Sym-

posium on Mixed and Augmented Reality (ISMAR), 2011. 2,

5

[18] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM:

Dense Tracking and Mapping in Real-Time. In Proceedings

of the International Conference on Computer Vision (ICCV),

2011. 2

[19] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2019. 2

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An

imperative style, high-performance deep learning library. In

Neural Information Processing Systems (NIPS), 2019. 1, 2

[21] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc

Pollefeys, and Andreas Geiger. Convolutional occupancy

networks. In Proceedings of the European Conference on

Computer Vision (ECCV), 2020. 2

[22] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-

licrap, and Gregory Wayne. Experience replay for continual

learning. In Neural Information Processing Systems (NIPS),

2019. 2

[23] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016. 2

[24] Thomas Schops, Torsten Sattler, and Marc Pollefeys. BAD

SLAM: Bundle adjusted direct RGB-D SLAM. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2019. 2, 7

[25] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki,

Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

canu, and Raia Hadsell. Progress & compress: A scal-

able framework for continual learning. arXiv preprint

arXiv:1805.06370, 2018. 2

[26] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In Neural

Information Processing Systems (NIPS), 2017. 2

[27] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-

6237

tions with periodic activation functions. Neural Information

Processing Systems (NIPS), 2020. 2, 3

[28] R. C. Smith and P. Cheeseman. On the Representation and

Estimation of Spatial Uncertainty. International Journal of

Robotics Research (IJRR), 5(4):56–68, Dec. 1986. 2

[29] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik

Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl

Ren, Shobhit Verma, et al. The Replica Dataset: A digital

replica of indoor spaces. arXiv preprint arXiv:1906.05797,

2019. 2, 5

[30] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A Benchmark for the Evaluation of RGB-D SLAM

Systems. In Proceedings of the IEEE/RSJ Conference on In-

telligent Robots and Systems (IROS), 2012. 2, 5

[31] Edgar Sucar, Kentaro Wada, and Andrew Davison.

NodeSLAM: Neural object descriptors for multi-view shape

reconstruction. In Proceedings of the International Confer-

ence on 3D Vision (3DV), 2020. 3

[32] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan Barron, and Ren Ng. Fourier fea-

tures let networks learn high frequency functions in low di-

mensional domains. Neural Information Processing Systems

(NIPS), 2020. 3

[33] Danhang Tang, Saurabh Singh, Philip A Chou, Christian

Hane, Mingsong Dou, Sean Fanello, Jonathan Taylor, Philip

Davidson, Onur G Guleryuz, Yinda Zhang, et al. Deep

implicit volume compression. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2020. 2

[34] Emanuele Vespa, Nikolay Nikolov, Marius Grimm, Luigi

Nardi, Paul HJ Kelly, and Stefan Leutenegger. Efficient

octree-based volumetric SLAM supporting signed-distance

and occupancy mapping. IEEE Robotics and Automation

Letters, 2018. 2

[35] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and

Victor Adrian Prisacariu. NeRF–: Neural radiance

fields without known camera parameters. arXiv preprint

arXiv:2102.07064, 2021. 2

[36] Silvan Weder, Johannes Schonberger, Marc Pollefeys, and

Martin R Oswald. RoutedFusion: Learning real-time depth

map fusion. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2020. 2

[37] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker,

and A. J. Davison. ElasticFusion: Dense SLAM without a

pose graph. In Proceedings of Robotics: Science and Sys-

tems (RSS), 2015. 2

[38] T. Whelan, J. B. McDonald, M. Kaess, M. Fallon, H. Jo-

hannsson, and J. J. Leonard. Kintinuous: Spatially Extended

KinectFusion. In Workshop on RGB-D: Advanced Reasoning

with Depth Cameras, in conjunction with Robotics: Science

and Systems, 2012. 7

[39] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto

Rodriguez, Phillip Isola, and Tsung-Yi Lin. iNeRF: Inverting

neural radiance fields for pose estimation. arXiv preprint

arXiv:2012.05877, 2020. 2

6238

