
Aggregation with Feature Detection

Shuyang Sun1 Xiaoyu Yue2 Xiaojuan Qi3 Wanli Ouyang4 Victor Prisacariu1 Philip Torr1
1University of Oxford 2Centre for Perceptual and Interactive Intelligence

3University of Hong Kong 4The University of Sydney

Abstract

Aggregating features from different depths of a network
is widely adopted to improve the network capability. Lots of
modern architectures are equipped with skip connections,
which actually makes the feature aggregation happen in all
these networks. Since different features tell different seman-
tic meanings, there are inconsistencies and incompatibili-
ties to be solved. However, existing works naı̈vely blend
deep features via element-wise summation or concatena-
tion with a convolution behind. Better feature aggregation
method beyond summation or concatenation is rarely ex-
plored. In this paper, given two layers of features to be
aggregated together, we first detect and identify where and
what needs to be updated in one layer, then replace the fea-
ture at the identified location with the information of the
other layer. This process, which we call DEtect-rePLAce
(DEPLA), enables us to avoid inconsistent patterns while
keeping useful information in the merged outputs. Experi-
mental results demonstrate our method largely boosts multi-
ple baselines e.g. ResNet, FishNet and FPN on three major
vision tasks including ImageNet classification, MS COCO
object detection and instance segmentation.

1. Introduction
Representation learning is considered to be the engine

for most applications in the field of computer vision. By
stacking basic blocks with different connectivities, deep
networks can be designed for various tasks, e.g. image clas-
sification [15, 18, 46, 34, 35, 16, 48, 25, 7, 45], object de-
tection [20, 34] and semantic segmentation [30].

Deep networks [15, 18, 34, 20, 30, 46] that fuses fea-
tures from different depths have benefited many applica-
tions in computer vision. It is often the case that features
from deeper layers are better geared towards the final pre-
diction because they contain high-level semantics harvested
from large contextual region. However, recent works have
found that there may be information loss when forward-
propagating data throughout the network [15, 13, 18]. Thus
skip connections [15] or dense connections [18] were pro-

𝐗

𝐘

RPN

ROI 
Pool

ROIs

𝐘 in ROIs 

Filling

Figure 1: Brief description of DEPLA. Given an identity
feature X and a candidate feature Y, our method could first
locate where and what need to be updated in the identity
feature X, and then migrate the information from the can-
didate feature Y using the learnt locations.

posed to consecutively fuse features from previous layers
to prevent such loss of information and better leverage the
capacity of the network. The above facts indicate that the
features at all depths are crucial for building up a network
with better performance.

Existing methods [15, 18, 20, 46, 22] however largely
focus on features of which layers should be combined, and
paid little attention to how to combine them. To the best of
our knowledge, state-of-the-art backbones [28, 36] for fea-
ture extraction still follow the conventional design in [15].
They use either the element-wise sums to fuse the features
together, or a concatenation/convolution [18]. However, as
the semantic meaning of different features may vary, net-
work activation at the same position but on different feature
maps may capture very different information. The afore-
mentioned element-wise sum or concatenation cannot dis-
cover the inconsistency or the incompatibility between fea-
tures during the feature aggregation. A method that can
identify which location to aggregate is needed.

In this study, we aim to address this problem by design-
ing a pipeline that can learn to detect the most appropriate
part of feature for aggregation. As shown in Figure 1, we
reformulate the entire feature aggregation process as a two-
stage process. Specifically, we first detect where to update,
then aggregate the selected locations using the detected fea-

1527



tures. With our detect-then-aggregate design, the informa-
tion retained in the summarized features is only related to
the feature within the ROIs, skipping the irrelevant and in-
consistent patterns outside the ROIs. The features related to
the ROIs of one layer will be finally merged into the features
of another layer by Back-Filling Network (BFN). We name
the entire module as DEtect-rePLAce (DEPLA) according
to the process.

We choose to embed our network into the current preva-
lent ResNet [15], SE-ResNet [17], FishNet [34] and the
Feature Pyramid Network [20] to evaluate our method for
short-range, long-range and multi-scale feature aggregation.
Experimental results on ImageNet [8] and COCO [21] show
that, by simply inserting our module into these baselines,
our approach can steadily boost their accuracy on major
vision tasks, including image classification, object detec-
tion and instance segmentation. Notably, when embedded
in ResNet, our method can outperform all other ResNet-
based counterparts compared under similar computational
complexity.

2. Related Works
Deep Network Architecture Design. The success on

the challenge ILSVRC [8] of AlexNet [19] signalled the
resurgence of the deep learning era. However, sequen-
tial connected networks like [32, 35] soon meet the bot-
tleneck of depth. In order to solve this problem, He et
al. [15, 44] introduced residual learning that sums up the
features within the same resolution into deep networks to
enable networks to be extremely deep. An alternative ap-
proach to solve this problem is to densely concatenate the
layers in the same stage [18]. As a combination, DPN [5] in-
tegrates both the connectivity of the DenseNet and ResNet.
Recent works follow further improve the design of [15] by
adjusting the hyper-parameters like height, width, and bot-
tleneck ratio. All these works propose to aggregate features
via a element-wise summation or concatenation.

Long-Range Feature Aggregation in Deep Networks.
Apart from aggregating features of the same resolution,
DLA [46] concatenates the information from different
sources together. U-Net [30] also proposes to concatenate
features from the low-level to the high-level for medical im-
age segmentation, which also achieved great success in that
field. FishNet [34] as a versatile backbone preserves fea-
tures by concatenation and then let them refine each other
through a simple residual block [15]. To obtain better fea-
tures for object detection, Feature Pyramid Networks (FPN)
[20] fuse both the transformed features from the top-down
lateral convolutions and the bottom-up weighted pyramid
through a simple sum operation. Based on FPN, several
extensive works [11, 41, 22, 26] explore new possibility
on connectivity between scales. Some works like [23] dis-
cuss the problems in feature’s magnitude, which now could

be solved by applying normalization onto the merged fea-
tures. To summarize, all these networks directly merge the
features from variant depths without any guidance, which
causes noise and useful fragments will not be distinguished.

Attention Models. Our method can be also regarded as
a variant of the attentive models. Attention has been proven
to be effective in many application in the field of deep learn-
ing [17, 38, 9, 39, 6, 42, 4]. By calculating and applying a
context-based encoding summarized from a specific dimen-
sion of the feature itself, all these methods are named as self
attention models. Works including SENet [17], A2Net [4]
and GloRe [6] explore how to gather and learn the encod-
ings on channel dimension, resulting in less redundancy and
imbalance among channels. The non-local neural networks
[42] and Attention Augmented networks (AA) [2] integrate
a transformer-like [38] structure into CNN and associate
the pixel-wise information of a feature map. SAN [49] is
a novel architecture that only learns to extract features from
images with attention modules and adopts a patch-based lo-
cal relative attention module to replace the convolution ker-
nels defined in conventional CNNs. All these models are
complementary to our method as they are designed for self-
refinement, while we aim at aggregating features from two
different layers.

3. Aggregation with Feature Detection
The inputs of our DEPLA module are two feature maps

X and Y from two layers. Here, X ∈ RC1×H×W is called
the identity feature and Y ∈ RC2×H×W is called the can-
didate feature. C1 and C2 respectively denote the num-
ber of channels for X and Y. The goal of DEPLA is to
use the candidate feature Y to refine the identity feature X
and produce the aggregated feature. As shown in Figure 2,
the DEPLA module can be roughly divided into three sub-
modules: the soft Region Proposal Network (SoftRPN),
Soft ROI Pooling, and Back-Filling Network (BFN). First,
SoftRPN detects where the features should be aggregated
and produces the RoI Maps M. Then, soft ROI Pooling
summarizes feature map Y into a compact RoI-wise fea-
ture Z based on the ROI maps M. Further, BFN back-fills
the summarized feature Z to corresponding learnt spatial
locations. The output of BFN is finally aggregated with the
identity feature X.

3.1. Soft Region Proposal Network

As shown in Figure 2, the Soft Region Proposal Network
(SoftRPN) takes the identity feature X as input and outputs
a set of ROI maps M with size L×D ×H ×W , where
H × W is the spatial size and L represents the number of
ROI groups. Each ROI group contains D candidate ROI
maps for each channels. The value at each location implies
how likely this location is going to be replaced by features
from Y.

528



𝐗
C1 × H ×𝑊

1 × 1, L × D,
Conv

𝐒𝐨𝐟𝐭𝐑𝐏𝐍

D × H ×W D × H ×W

…

𝐌: L × ROI Maps

So
ftm

ax

𝐘
C2 × H′ ×W′

1 × 1, C2
′ × D

Conv

…

Z: L × C2
′ ROI 

Features

ROI
Pool

U
p
sam

p
le

1 × 1, C1
Conv

Back
Fill

…

Fused Features,
C2
′ × H ×W

𝐘’
C2
′ × D × H′ ×W′

Figure 2: Overview of the DEPLA module. The whole process can be divided into three parts: (1) The identity feature
X is fed into SoftRPN to determine where and what features in X need to be updated by the candidate feature Y. (2) The
generated ROI maps M are then fed into the soft ROI Pooling to extract the corresponding features from Y and output the
summarized features Z. (3) The summarized features Z from soft ROI Pooling are processed by the Back Filling Network
(BFN). “1× 1, L×D Conv” represents a convolution layer with kernel size (1× 1) and number of output channels (L×D).
The symbol

⊕
represents element-wise summation. Blocks with dashed boundary represent optional operations.

To generate these ROI maps M, we feed X to a 1 × 1
convolution layer to produce score maps M̃. When the spa-
tial sizes of X and Y are different, we will apply a bilinear
up-sampling layer to the smaller one to align their spatial
sizes. A Softmax operation with temperature T is applied
to the reshaped 2D score maps M̃ ∈ R(L×D)×(H×W ) to
yield the confidence of each pixel as Equation (1), where
a higher value implies a higher probability of the pixel be-
longing to a ROI.

Mi,j =
exp (M̃i,j)∑H×W

l exp (M̃l

T )
, (1)

where M ∈ [0, 1](L×D)×(H×W ) represents the ROI maps.
M is also the output of SoftRPN after reshaping to L×D×
H×W . The hyper-parameter T controls the distribution of
the confidence values. When T becomes lower, the confi-
dence distribution will become sharper, making the area of
the activated ROI smaller.

But the regions with low confidence scores contribute
little to aggregating features in the following step of Soft
ROI Pooling. Therefore, low-confidence ROIs will have a
low influence during the feature aggregation.

3.2. Soft ROI Pooling

The aim of Soft ROI Pooling is to summarize the in-
formation from the candidate features Y using the posi-
tional clues M learnt from SoftRPN. As shown in Figure
2, the module taking the following two inputs: 1) the ROI
maps M of size (L × D) × H × W , which is the out-

put of SoftRPN; and 2) the transformed candidate feature
Y′ ∈ RC′

2×D×H×W , which is transformed from Y by a
1× 1 convolution. The output is the summarized ROI-wise
features Z ∈ RL×C′

2 which captures what our method be-
lieves to be the most useful parts in Y′ for aiding X during
the feature aggregation. In this way, the inconsistent pat-
terns in Y′ that do not lie in ROIs are ignored and hence
have low influence on feature aggregation.

As shown in Figure 3, we mask the feature Y′ using the
ROI maps M as: 1) each D × H × W feature from Y′ is
element-wisely multiplied with each D×H×W confidence
map M; and 2) each element-wisely multiplied result of
size D×H ×W are summed into a scalar that contains the
summarized feature that aggregates the information from all
H × W spatial locations and D ROIs. For the L groups
of ROI maps and C ′

2 groups of features, there are L × C ′
2

summarized features as the output of the Soft ROI Pooling.
With the element-wise multiplication, only confident ROIs
contribute to feature summarization while those identified
to be less useful with lower confidences in the ROI maps
will be less counted.

3.3. Back Filling Network (BFN)

Equipped with the summarized ROI-wise feature Z, we
design a back-filling operation to map Z back into appropri-
ate spatial locations of the identity feature X such that the
feature aggregation can be finalized.

To merge Z into X, one can simply add the summarized
feature to all pixels of X, however, this ignores the fact that
the summarized features Z are relevant to the ROIs and can

529



… …

D × H ×WD × H ×W

…

M: L × ROI Maps 

D × H ×WD × H ×W

…

Y′: C2
′ × Candidate 
Features 

Masking Pooling

Pooling

…

Z: L × ROI 
Features

L × C2
′

Channel
1

Masking

Sum

Channel
D

Figure 3: Soft ROI Pooling. Element-wise multiplication
between the ROI maps generated from SoftRPN and the
transformed candidate feature Y′ are used for selecting fea-
tures from ROIs. Features for each group of ROI maps M (a
ROI group containing D ROI maps) and each group of can-
didate features will be summed up to a single scalar. There
are L groups of ROI maps and C ′

2 groups of transformed
candidate features Y′. Therefore, the output is L×C ′

2 sum-
marized features.

be only useful for aggregation at suitable locations of X.
To achieve this goal, we design a Back-Filling Network
(BFN) to generate a set of heatmaps which projects the
summarized features back to the suitable spatial locations.
Similar to the soft ROIs, each location of these back-filling
heatmaps has a confidence value indicating how likely the
summarized features from Y will be set here. Information
from Z are repeated over the spatial dimensions of the back-
filling heatmaps, and are multiplied with the confidence at
each location so that the information from the summarized
features are placed at appropriate locations, which are fur-
ther refined by a 1×1 convolution layer and combined with
the identity feature X to produce the final output of the
DEPLA module. We propose two strategies to generated
the back-filling heatmaps, namely, Plain BFN and Adaptive
BFN, which are elaborated as follows.

Plain BFN. As shown on the top of Figure 4, Based on
the confidence maps of ROIs M (output of SoftRPN), we
generate the back-filling heatmaps B ∈ [0, 1]L×H×W using
one convolution layer followed by softmax normalization.
Note that the Softmax operation is applied on the spatial di-
mension. Another 1×1 convolution is applied here to trans-

…

L, Conv Softmax

…

𝐗
C1 × H ×W

C2
′ , Conv

𝐙: L × C2
′

𝐙: L × C2
′

Softmax

C2
′ , Conv

L,Conv C2
′ , Conv

…

𝐁: L × Back-
Filling Heatmaps

…

𝐁: L × Back-
Filling Heatmaps

C2
′ , Conv

H ×W H ×W

H ×W H ×W

𝐗
C1 × H ×W

Figure 4: Back-Filling Network (BFN). The back-filling
heatmap is generated in this network for guiding the L×C ′

2

summarized features (in orange) to the appropriate spatial
locations. The guidance is achieved by multiplying the
back-filling heatmap with the summarized feature. Top:
plain BFN that learns to generate the back-filling heatmaps
only based on the confidence maps of ROIs. Bottom: Adap-
tive BFN that calculates the back-filling heatmaps accord-
ing to the affinity between the identity features X and the
summarized features.

⊗
denotes the matrix multiplication,

and all convolutions are with kernel size 1 × 1. Operations
including transpose, reshape etc. are omitted in the figure.

form Z. After the back-filling heatmaps B are obtained, we
need to map the ROI features Z accordingly based on the
location clues given by B. If we regard the set of heatmaps
as a convolution kernel with shape (H × W ) × L, where
H × W represents the spatial kernel size and L represents
the number of channels, the back-filling operation can be
also treated as a de-convolution process with a dynamically
generated kernel B on the transformed Z.

Adaptive BFN. In Plain BFN, the pooled candidate fea-
ture may still have some inconsistency with the identity fea-
ture X as they only contain information about X. There-
fore, we design Adaptive BFN as shown at the bottom row
of Figure 4. We first transform the identity feature X and
also the ROI-wise feature Z into a same latent space with C ′

2

channels using two independent 1 × 1 convolutions. Then
we can generate the back-filling heatmaps by calculating
a dot-product between the two transformed features. With
a softmax operation applied on the spatial dimension, the
back-filling heatmaps B ∈ [0, 1]L×H×W are obtained. The
lateral back-filling operation, which can be regarded as a

530



… … … … … ……

Features in 
the tail part

Features in 
the body part

Residual 
Blocks

Features in
the head part

UR/DR
Block

Fish Tail Fish Body Fish Head

… … …

Figure 5: Overview structure of the FishNet. We insert our
DEPLA module in the UR and DR blocks (rendered in red)
where the feature aggregation happens.

weight layers

DEPLA

𝐗

𝐘

𝐗 BN+ReLU

Figure 6: Integrate DEPLA into residual block

de-convolution operation treating B as the de-convolution
kernel and the transformed Z as the input, is identical to the
one proposed in plain BFN. Ablation studies on these alter-
native designs are conducted in the experimental section.

4. Embedding DEPLA into CNNs
To validate that DEPLA can be generalized to different

feature aggregation approaches, we choose to embed DE-
PLA into ResNet [15], SE-ResNet [17], FishNet [34] and
the Feature Pyramid Network [20] to evaluate DEPLA for
short-range, long-range and multi-scale feature aggregation.

4.1. Integration with ResNet

Here we present how DEPLA can be integrated popular
CNN architectures. We first choose the ResNet [15] as one
of our baselines and reconstruct the ResNet and use DEPLA
module to merge the features with the same resolution but
varied in depths. In this paper, we divide the ResNet into
4 independent stages by their resolution from high to low.
Specifically, we insert the DEPLA module into three resid-
ual blocks of the stage 3 regardless of the depth of the net-
work. The way we integrate DEPLA into the residual block
is shown in 6, where the identity of the residual block serves
as X and the outputs of the residual weight layers serve as
Y. As for the hyper-parameters, we set L=16 C ′

2=16 and

DEPLA

DEPLA

DEPLA

as Y

as X
Backbone

Conv

Conv

Conv

Conv

Figure 7: Integrating DEPLA with FPN. We add the DE-
PLA between every two adjacent scales. The notation Conv
here means 1×1 convolution layer for dimension reduction.

D=4. Temperature of the softmax function is set to 1 as
default for all ResNet-based models.

4.2. Integration with FishNet

We next embed our module into FishNet [34] to study the
effect of DEPLA module in long-range feature aggregation.
FishNet is divided into three parts, including the tail, body,
and head, where long-range feature aggregation is applied
among the three parts to help the network learn multi-scale
representations. As shown in 5, we embed the DEPLA into
the UR and DR-blocks of the FishNet as the low-level and
the high-level features will be aggregated in these blocks.
Typically, features in UR and DR blocks can have about
20-60 convolution layers in between.

4.3. Integration with FPN

We show how DEPLA can be integrated into the Fea-
ture Pyramid Network architecture [20] to study the effect
of DEPLA on multi-scale features for object detection. De-
tails are shown in Figure 7. Since FPN generates features of
all scales for the final prediction, and merges the informa-
tion reversely from the high-level to the low-level, for each
scale, we adopt the feature from the higher level as the can-
didate feature Y, and the feature at the current scale as the
identity feature X. Note that we adopt the adaptive BFN in-
stead of the plain BFN to generate the back-filling heatmaps
in FPN.

5. Experiments

5.1. Implementation Details on ImageNet

We conduct experiments for image classification on the
ImageNet 2012 classification dataset [31] that includes
1000 classes. There are 1.2 million images for training and
50 thousands images for validation (denoted by ImageNet-
1k val). We implement our method using the popular deep
learning framework PyTorch [27]. We apply two different

531



Model
FLOPS

(G)
Top-1

Acc (%)
ResNet-50 [15] 4.1 76.2
ResNet-101 [15] 7.8 77.4
ResNet-152 [15] 11.6 78.3
SEResNet-50 [17] 4.1 76.9
SEResNet-50++ [33] 4.1 79.4
SEResNet-101 [17] 7.9 77.7
SEResNet-101++ [33] 7.9 81.4
RegNetY-4G [28] 4.0 79.4
RegNetY-4G++ [37] 4.0 80.0
RegNetY-8G [28] 8.0 79.9
RegNetY-8G++ [37] 8.0 81.7
LambdaResNet50 [1] 6.1 79.3
LambdaResNet101 [1] 13.5 81.9
ResNet-50-DEPLA 4.5 80.6
SEResNet-50-DEPLA 4.5 81.3
SEResNet101-DEPLA 8.4 82.1

Table 1: Comparison with other ResNet-based models. ++
means well-tuned re-implementations.

training strategies to take both better performance and fair
comparison into account.
Standard Training Strategy. For naı̈ve implementations,
our training and testing details mainly follow what adopted
in [28], including the 100 epochs training schedule, with
the cosine annealing optimization policy [24], standard data
augmentation e.g. random resized crop and random flip-
ping, label smoothing[7] etc. Note that the results of all
re-implemented baselines in Table 2 are better than those
reported in the original papers.
Better Training Strategy. As lots of works adopt better
training strategy for better performance [43, 12, 17], we also
report the results using the following tricks to the standard
training srtategy:

(1) Longer training schedule with 400 epochs.
(2) Auto-augmentation.
(3) Warming up the learning rate from 0 for 5 epochs.
(4) Label smoothing [7] with smooth factor 0.1.
(5) Mixup training [47].

Note that in this paper, only results for DEPLA-based mod-
els lying in Table 1 are trained using the better training strat-
egy. All other results on ImageNet are trained with standard
training strategy.

5.2. Experimental results on ImageNet

DEPLA outperforms other ResNet-based counterparts.
As shown in Table 1, with better training strategy, the
DEPLA module can achieve 4.4% gain in terms of the
Top-1 accuracy when integrated with the prevalent base-
line ResNet-50. When embedded with the highly compet-
itive baseline SEResNet-50, our method can still achieve

Model
FLOPS

(G)
Top-1

Acc (%)
ResNet-50* [15] 4.1 76.9
SEResNet-50* [17] 4.1 77.5 (+0.6)
AA-ResNet-50[2] 4.1 77.7 (+0.8)
LambdaResNet-50 1[1] 6.1 78.2 (+1.3)
GloRe-ResNet-50 [6] 5.2 78.4 (+1.5)
ResNet-50-DEPLA 4.5 78.6 (+1.6)
SEResNet-50-DEPLA 4.5 79.1 (+2.2)

Table 2: Comparison of attention-based models on Ima-
geNet classification with a ResNet50 architecture trained
under standard training strategy. * indicates our re-
implementation using the standard training strategy. 1 The
FLOPS of LambdaResNet50 is calculated under a smaller
scope size ∥m∥=7 × 7. The default setting in the original
paper will lead to 10G FLOPS.

4.7% gain. We also compare with the SEResNet-50++,
which are well-tuned strong baselines with much better
performance (2% higher than what reported in the origi-
nal paper) using heavy data augmentation and regulariza-
tion [33]. We observe that even when the baselines are
strong, the SEResNet50-DEPLA can still outperform the
improved baseline by a remarkable 1.9%, which makes
it even comparable to SEResNet-101++ with much lower
FLOPS. Notably, SEResNet101-DEPLA can also outper-
form the SEResNet101 by a remarkable 1.7%, which
indicates that DEPLA module is complementary to the
Squeeze-Excitation module.

For the comparison with the state-of-the-art baselines of
the ResNet family under similar model capacity, we com-
pare our model with the latest LambdaResNet and RegNetY
(w/ SE). As shown in Table 1, our ResNet50-DEPLA can
outperform the LambdaResNet50 by a clear 1.3% while
being 1.7G lower in FLOPS. SEResNet50-DEPLA and
SEResNet101-DEPLA can also outperform the correspond-
ing well-tuned RegNet counterparts (RegNetY-4G++ and
RegNetY-8G++) that are also embedded with SE modules.
Concretely, the top-1 accuracy of SEResNet50-DEPLA is
higher than RegNetY-4G++ by 0.6% and SEResNet101-
DEPLA can surpass RegNetY-8G++ by 0.4%. Note that
the key differences between ResNet and RegNet are just the
network hyper-parameters (design space) like width, depth
and bottleneck ratio. It is a promising direction to apply
DEPLA into RegNet architectures for future work.

Comparison under the standard training strategy.
Table 2 exhibits the results comparing DEPLA under the
standard training strategy with other counterparts of the
ResNet family. Note that all the listed results are trained un-
der similar schedule, regularization and data augmentations.
Both ResNet50-DEPLA and SEResNet50-DEPLA can out-

532



Model
FLOPS

(G)
Top-1

Acc (%)
ResNet-50 [34] 4.1 76.9
w/ DEPLA-Plain-BFN 4.5 78.6 (+1.7)
w/ DEPLA-Adaptive-BFN 4.9 78.8 (+1.9)

Table 3: Comparison between the Plain-FRN and the
Adaptive-FRN on ImageNet. We choose Plain FRN due
to the cost-accuracy trade-off.

T Object Detection
APd/APd

S /APd
M /APd

L

ResNet50 w/ FPN [14] - 38.0/21.7/41.4/50.6
w/ FPN-DEPLA 0.2 38.9/23.8/42.7/49.7

0.5 39.1/23.6/42.9/50.4
1.0 39.0/23.5/42.7/49.9

Table 4: Comparison between the FPN and the FPN-
DEPLA with different temperature T . The ROI pooling is
going to be sharper when T becomes lower.

perform all other counterparts and show a clear boost (1.6%
and 2.2%) over the baseline results.

5.3. Plain BFN vs. Adaptive BFN

Shown in Table 3, the adaptive BFN is able to outper-
form the plain BFN by 0.2% on ImageNet. Despite the bet-
ter performance in terms of accuracy, the adaptive BFN has
higher FLOPS compared with the plain BFN. Therefore, we
choose the plain BFN as the final setting when DEPLA is
embedded into ResNet.

5.4. Experimental investigations on MS COCO

We conduct experiments on object detection and instance
segmentation to demonstrate the generalization capability
of DEPLA based on the FPN [20] and FishNet [34]. All
experiments are implemented on mmdetection [3].
Dataset and Evaluation Metrics. Experiments are con-
ducted on the challenging MS COCO [21] dataset. It con-
sists of 115k images for training (train-2017) and 5k images
(val-2017) for validation. We train models on train-2017
and report the results on val-2017. All reported results fol-
low standard COCO-style Average Precision (AP) metrics
which include AP (averaged over IoU thresholds) and APS ,
APM , APL (AP at different scales).
Implementation Details for FPN-DEPLA. We integrate
DEPLA into FPN to study the effect of DEPLA when ap-
plied on multi-scale feature aggregation. When the DEPLA
is embedded into FPN [20], we take 16 images in one batch
for 12 epochs (1x) in the training phase, with the base learn-
ing rate of 0.02. The learning rate is decayed after 8 and 11
epochs by a factor of 0.1. A ResNet-50 is applied before the

FPN for feature extraction. Note that here the ResNet-50
is not integrated with DEPLA. Without loss of generality,
experiments are conducted base on the FPN Mask R-CNN
with ResNet50 [14] as the backbone, we simply replace the
FPN with our FPN-DEPLA to verify the effectiveness of the
FPN-DEPLA module.
Implementation Details for FishNet150-DEPLA.
FishNet-DEPLA is proposed to validate the efficacy of
DEPLA for long-range feature aggregation. The entire
model is first pretrained on ImageNet, and the learning
rate for FishNet-DEPLA is set to 0.015. Sync-batch-norm
is applied here to stabilize the training process. We train
detectors for 24 epochs with an initial learning rate of 0.02,
and decrease it by 0.1 after 20 and 22 epochs respectively.
All other hyper-parameters follow the settings in the
mmdetection [3] if not specifically noted.
DEPLA can be well generalized on multi-scale feature
aggregation for object detection. Table 4 compares our
proposed FPN-DEPLA module with FPN. We observed that
equipped with FPN-DEPLA, Mask R-CNN outperforms its
FPN counterpart by 0.9% with only a small additional com-
putational cost. Considering that only minor changes are
applied to the standard FPN architecture, the improvement
of AP demonstrates the generalization capability of our DE-
PLA module. The improvement in small objects is consid-
erably significant (1.6% - 1.9%), which further proves the
efficacy of the feature aggregation that DEPLA applies.
The effect of the temperature T . As shown in Table 4,
we also conduct experiments to study the effects when dif-
ferent temperature T is applied to soft ROI Pooling defined
in Equation 1. When T is lower, the distribution of heatmap
is closer to a one-hot tensor, and the activated area will
become more restricted, which simulates the max-pooling.
The results shown in Table 4 validates our assumption that
as the AP of small objects comes to be higher when T is
lower.
DEPLA can be well generalized on long-range feature
aggregation for object detection and instance segmenta-
tion. We evaluate the effect of DEPLA when integrated
with FishNet-150 that aggregating features from varying
depths. We insert FishNet150-DEPLA into two frameworks
Faster-RCNN and Mask-RCNN as backbones for object de-
tection and instance segmentation. The experimental re-
sults on object detection are implemented on FPN-based
Faster R-CNN [29]. The lateral connections and top-down
pathway in FPN are attached to the same place as Fish-
Net. Note that here DEPLA is not embedded into FPN
for fair comparison. According to the results shown in Ta-
ble 5, FishNet150-DEPLA obtains a 2.5% absolute AP in-
crease compared with FishNet150, and a 2.0% absolute AP
increase when compared with ResNet-101. Note that our
model is lighter than all models compared in Table 5 except
for FishNet-150.

533



Instance Segmentation Object Detection
Mask R-CNN Mask R-CNN Faster R-CNN

Backbone GFLOPS APs/APs
S /APs

M /APs
L APd/APd

S /APd
M /APd

L APd/APd
S /APd

M /APd
L

ResNet-101 [15] 7.8 37.7/20.0/41.3/51.9 42.2/24.4/46.1/55.5 41.1/24.0/44.9/53.7
ResNeXt-101(32× 4d) [44] 8.0 37.8/19.8/41.4/51.9 42.2/23.5/46.1/56.0 41.2/23.9/44.9/54.3
HRNetv2p-W32 [40] 8.3 37.8/20.8/40.9/51.5 42.5/24.7/46.1/55.6 41.4/24.1/44.8/53.6
HRNetv2p-W40 [40] 16.1 38.2/20.5/41.2/52.0 42.8/24.9/46.2/56.2 42.1/24.7/45.7/55.0
Res2Net-101 [10] 8.3 38.7/20.6/42.0/53.2 43.6/24.8/47.2/57.9 43.0/25.0/47.2/56.3
FishNet150 [34] 6.45 37.0/19.8/40.2/50.3 41.5/24.1/44.9/55.0 40.6/23.3/43.9/53.7

FishNet150-DEPLA 7.3 39.4/22.4/42.9/52.6 44.1/27.1/48.0/56.2 43.1/27.0/46.8/55.0

Table 5: Average Precision (%) of instance segmentation and object detection with different backbones on MS COCO val-
2017 . APs

∗ and APd
∗ denote the average precision for segmentation and detection respectively, and AP∗

S , AP∗
M , AP∗

L denote
the AP for small, medium and large objects respectively. The FPN column are integrated with Faster-RCNN [29]. The
GFLOPS are calculated with input size 224 × 224. We show that FishNet-DEPLA is the best at solving the small cases
compared with other backbones.

We further use FishNet-DEPLA as the backbone of
Mask R-CNN. As shown in Table 5, by embedding the
DEPLA into the FishNet-150, the network can remarkably
improve both the mask AP and bbox AP for small ob-
jects (1.4%, 1.3% vs. FishNet and 2.4%, 2.7% vs. ResNet-
101), demonstrating the effectiveness of merging features.
As for the average precision, our FishNet-DEPLA could
achieve higher performance on both tasks compared with
the a series state-of-the-art hand-crafted backbones e.g. HR-
Net [40] and Res2Net [10].
FishNet150-DEPLA shows great performance dealing
with the hard small objects. As shown in Table 5, we can
observe that the FishNet150-DEPLA is particularly good
at finding the hard small cases compared with other back-
bones. Specifically, FishNet150-DEPLA can outperform
FishNet-150, ResNeXt101-(32×4d) by 3% and 3.6% for
object detection when embedded into Mask-RCNN.

Above all, all these experimental results showcase that
DEPLA is also valid and helpful for all major tasks includ-
ing image classification, object detection and instance seg-
mentation. Besides, DEPLA can be successfully applied
onto backbones designed for different purpose, which fur-
ther demonstrates the generalizability of DEPLA.

5.5. Visualization

We visualize feature maps of FishNet150-DEPLA to see
how DEPLA works between the high-level and low-level
features. From Figure 8 we can see that DEPLA can ef-
fectively merge the precise information around the ski pole
from the low-level information to the high-level features.
This demonstrates that DEPLA can selectively find use-
ful features from different layers for aggregation instead of
naı̈vely summing them together.

Y ROI Back-Filling map Fused Feature

Figure 8: Visualization of FishNet-DEPLA. DEPLA mod-
ule migrates the precise information around the ski pole
from the low-level candidate feature Y while ignoring the
noise and inconsistency on the bottom-right corner.

6. Conclusion

In this study, we propose DEtect-rePLAce (DEPLA) that
learns to keep the helpful features while removing those in-
consistent patterns during feature aggregation. Extensive
experiments show that our DEPLA module can be success-
fully integrated with backbones using short-range (ResNet,
SEResNet), long-range (FishNet) and multi-scale (FPN)
feature aggregation. Experiments also show that DEPLA
steadily boost the baseline performance on all three major
visual tasks including image classification, object detection
and instance segmentation. We hope our research could
shed some lights on the problem of feature aggregation.

Acknowledgement. We would like to thank Jiang-
miao Pang and Andrew Gambardella for proofreading
and helpful comments. This work is supported by
the EPSRC Turing AI Fellowship EP/W002981/1, EP-
SRC/MURI grant EP/N019474/1. We would also like
to thank the Royal Academy of Engineering and FiveAI.
Wanli Ouyang is supported by Australian Research Coun-
cil Grant DP200103223, FT210100228, Australian Medical
Research Future Fund MRFAI000085, and SenseTime.

534



References
[1] Irwan Bello. Lambdanetworks: Modeling long-range inter-

actions without attention. In ICLR, 2021. 6
[2] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,

and Quoc V Le. Attention augmented convolutional net-
works. In ICCV, pages 3286–3295, 2019. 2, 6

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 7

[4] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng
Yan, and Jiashi Feng. Aˆ 2-nets: Double attention networks.
In NeurIPS, pages 352–361, 2018. 2

[5] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,
Shuicheng Yan, and Jiashi Feng. Dual path networks. In
NIPS, pages 4470–4478, 2017. 2

[6] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng
Yan, Jiashi Feng, and Yannis Kalantidis. Graph-based global
reasoning networks. In CVPR, 2019. 2, 6

[7] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In CVPR, pages 1251–1258, 2017.
1, 6

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. IEEE, 2009. 2

[9] Jun Fu, Jing Liu, Haijie Tian, Zhiwei Fang, and Hanqing
Lu. Dual attention network for scene segmentation. arXiv
preprint arXiv:1809.02983, 2018. 2

[10] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu
Zhang, Ming-Hsuan Yang, and Philip HS Torr. Res2net: A
new multi-scale backbone architecture. T-PAMI, 2019. 8

[11] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:
Learning scalable feature pyramid architecture for object de-
tection. In CVPR, pages 7036–7045, 2019. 2

[12] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 6

[13] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-
tendra Malik. Hypercolumns for object segmentation and
fine-grained localization. In CVPR, pages 447–456, 2015. 1

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2980–2988. IEEE, 2017.
7

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 1, 2, 5, 6, 8

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 1

[17] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. CVPR, 2018. 2, 5, 6

[18] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens
van der Maaten. Densely connected convolutional networks.
In CVPR, 2017. 1, 2

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NIPS, pages 1097–1105, 2012. 2

[20] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 1, 2, 5, 7

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, pages 740–755. Springer, 2014. 2, 7

[22] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In
CVPR, pages 8759–8768, 2018. 1, 2

[23] Wei Liu, Andrew Rabinovich, and Alexander C Berg.
Parsenet: Looking wider to see better. arXiv preprint
arXiv:1506.04579, 2015. 2

[24] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6

[25] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, pages 116–131, 2018. 1

[26] Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng,
Wanli Ouyang, and Dahua Lin. Libra r-cnn: Towards bal-
anced learning for object detection. In CVPR, pages 821–
830, 2019. 2

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 5

[28] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In CVPR, pages 10428–10436, 2020. 1, 6

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NIPS, pages 91–99, 2015. 7, 8

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241. Springer, 2015. 1, 2

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015. 5

[32] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[33] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon
Shlens, Pieter Abbeel, and Ashish Vaswani. Bottle-
neck transformers for visual recognition. arXiv preprint
arXiv:2101.11605, 2021. 6

535



[34] Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, and
Wanli Ouyang. Fishnet: A versatile backbone for image,
region, and pixel level prediction. In NeurIPS, pages 762–
772, 2018. 1, 2, 5, 7, 8

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, Andrew Rabinovich, et al. Going deeper with
convolutions. In CVPR, 2015. 1, 2

[36] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, pages
6105–6114. PMLR, 2019. 1

[37] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. arXiv preprint arXiv:2012.12877, 2020. 6

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, pages 5998–
6008, 2017. 2

[39] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng
Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.
Residual attention network for image classification. In
CVPR, pages 3156–3164, 2017. 2

[40] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. T-PAMI, 2020. 8

[41] Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian,
Chunhua Shen, and Yanning Zhang. Nas-fcos: Fast neu-
ral architecture search for object detection. In CVPR, pages
11943–11951, 2020. 2

[42] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In CVPR, pages 7794–
7803, 2018. 2

[43] Junyuan Xie, Tong He, Zhi Zhang, Hang Zhang, Zhongyue
Zhang, and Mu Li. Bag of tricks for image classifica-
tion with convolutional neural networks. arXiv preprint
arXiv:1812.01187, 2018. 6

[44] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, pages 5987–5995. IEEE, 2017.
2, 8

[45] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaim-
ing He. Exploring randomly wired neural networks for im-
age recognition. In ICCV, pages 1284–1293, 2019. 1

[46] Fisher Yu, Dequan Wang, and Trevor Darrell. Deep layer
aggregation. arXiv preprint arXiv:1707.06484, 2017. 1, 2

[47] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 6

[48] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In CVPR, pages 6848–6856, 2018.
1

[49] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring
self-attention for image recognition. In CVPR, pages 10076–
10085, 2020. 2

536


