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Abstract
Recent studies show that convolutional neural networks

(CNNs) are vulnerable under various settings, including ad-
versarial attacks, common corruptions, and backdoor at-
tacks. Motivated by the findings that human visual sys-
tem pays more attention to global structure (e.g., shapes)
for recognition while CNNs are biased towards local tex-
ture features in images, in this work we aim to analyze
whether “edge features” could improve the recognition ro-
bustness in these scenarios, and if so, to what extent? To an-
swer these questions and systematically evaluate the global
structure features, we focus on shape features and pro-
pose two edge-enabled pipelines EdgeNetRob and Edge-
GANRob, forcing the CNNs to rely more on edge features.
Specifically, EdgeNetRob and EdgeGANRob first explicitly
extract shape structure features from a given image via an
edge detection algorithm. Then EdgeNetRob trains down-
stream learning tasks directly on the extracted edge fea-
tures, while EdgeGANRob reconstructs a new image by re-
filling the texture information with a trained generative ad-
versarial network (GANs). To reduce the sensitivity of edge
detection algorithms to perturbations, we additionally pro-
pose a robust edge detection approach Robust Canny based
on vanilla Canny. Based on our evaluation, we find that
EdgeNetRob can help boost model robustness under differ-
ent attack scenarios at the cost of the clean model accu-
racy. EdgeGANRob, on the other hand, is able to improve
the clean model accuracy compared to EdgeNetRob while
preserving the robustness. This shows that given such edge
features, how to leverage them matters for robustness, and
it also depends on data properties. Our systematic studies
on edge structure features under different settings will shed
light on future robust feature exploration and optimization.

∗indicates equal contributions. Our code is available at https://
github.com/Eric-mingjie/Shape-Robustness

1. Introduction
Convolutional neural networks (CNNs) have been stud-

ied extensively [17], and have achieved state-of-the-art per-
formance in many learning tasks [7, 11, 14, 21, 31, 38, 44,
48, 49, 52, 66, 67, 69]. However, different from the hu-
man cognition system, recent works have shown that CNNs
are vulnerable to adversarial attacks [4, 5, 19, 40, 40–
42, 51, 58–62], where imperceptible perturbation can be
added to the test data to tamper the predictions. Different
from adversarial examples where test data is manipulated,
data poisoning or backdoor attacks, where training data is
manipulated to reduce model’s generalization ability, have
also been proposed [9, 33]. In addition, recent studies show
that CNNs tend to learn spurious statistical features instead
of high level abstraction, making it fail to generalize under
common corruptions (e.g. fog and snow) [22]. For each of
these settings, different robust algorithms have been pro-
posed to solve them independently. For instance, adver-
sarial training based methods [19, 39, 47] are proposed to
improve the robustness against adversarial attacks but are
inefficient to backdoor attacks; spectral signature [54] is
designed for defending against backdoor attacks while re-
mains vulnerable to adversarial attacks and common cor-
ruptions. Given existing studies on human visual systems,
in this paper we aim to ask: Is it possible to learn seman-
tically meaningful structure features to simultaneously im-
prove the robustness of DNNs under different settings in-
cluding adversarial attacks, backdoors, and common cor-
ruptions?

To improve the general robustness of CNNs under dif-
ferent attacks, recent studies explore the underlying cause
of their vulnerability. Ilyas et al. [25] attributes the exis-
tence of adversarial examples to the non-robust but highly-
predictive features. They suggest to train a classifier only on
“robust features” which contain the necessary information
for recognition and are insensitive to small perturbations.
In addition, Baker et al. [2] and Geirhos et al. [16] have
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shown that human recognition relies mainly on global ob-
ject shapes rather than local patterns (e.g. textures), while
CNNs are more biased towards the latter. Geirhos et al. [16]
creates a texture-shape cue conflict, such as a cat shape with
elephant texture, and feeds it to a CNN model trained with
IamgeNet and human respectively. While human can still
recognize it as a cat, CNN incorrectly predicts it as an ele-
phant. Landau et al. [32] have also shown that the shape of
objects is the most important cue for human object recogni-
tion.

Given the above observation, natural questions emerge:
Can we improve the robustness of CNNs under different at-
tacks by making it rely more on global shape structure?
What are the conditions that affect such robustness improve-
ment? In this paper, we aim to answer the above questions
by quantitatively evaluating whether the shape structure fea-
tures could improve model robustness under different at-
tacks settings, and how to leverage such features. In par-
ticular, we focus on a specific type of shape representation:
edges (image points that have sharp changes in brightness).
Edge features come with two benefits: 1) it is an effective
way for modelling shape; 2) edges are easy to be captured
in images, with many algorithms [3, 36, 65] available.

To evaluate different ways of leveraging such shape fea-
tures, in this paper we explore two edge feature enabled
pipelines EdgeNetRob and EdgeGANRob. The framework
is shown in Figure 1. As illustrated, the pipeline of EdgeN-
etRob (grey lines) is a simple yet efficient approach which
extracts the structural (edge) information via an edge de-
tection algorithm and then trains the classifier on the ex-
tracted edge features. As a result, EdgeNetRob forces the
CNNs to make predictions solely based on shape informa-
tion rather than texture/color, thus eliminating the texture
bias [16]. Comparing with the adversarial training based
methods, EdgeNetRob is more general and efficient since it
does not need to generate adversarial examples during train-
ing. However, one potential problem for EdgeNetRob is
that the algorithm may decrease the clean accuracy of CNNs
due to the missing texture/color information. Could we refill
the texture/color information based on the extracted edge
features to improve the robustness? To answer this question,
we explore the pipeline EdgeGANRob (blue lines in Fig-
ure 1), which embeds a generator to refill the texture/colors
based on extracted edge information.

To extract the edge information, we first leverage two
standard edge detection algorithms: Canny [3] and a
network-based detection algorithm, RCF [36]. However,
our results show that by simply applying these edge detec-
tion algorithms to EdgeNetRob, the models are still vulner-
able to sophisticated adaptive attacks. Thus, we propose a
robust edge detection algorithm, s Robust Canny. We show
Robust Canny is able to significantly improve the robustness
of EdgeNetRob and EdgeGANRob.

We evaluate EdgeNetRob and EdgeGANRob on four

datasets with clear edge information (Fashion MNIST,
CelebA), and unclear or complicated edge information
(CIFAR-10, Tiny-ImageNet) among different attack set-
tings (e.g., adversarial attacks, common corruptions, and
backdoor attacks). Our results show that edge features
are able to improve the model robustness under these set-
tings. The clean accuracy could be improved by refilling
the texture information on the extracted edges via GANs
on datasets with clear edge information. However, for
datasets with complicated or less clear edge information,
the clean accuracy can barely be improved by only refill-
ing the texture information and further studies are required.
We believe this work will open new directions for under-
standing shape features and designing more robust struc-
tural features to improve the model robustness against dif-
ferent attacks. Please find more visualization results on the
anonymous website: https://sites.google.com/
view/edge-robustness.

The main contributions of this paper are as follows: (i)
We propose two shape feature enable pipelines EdgeN-
etRob and EdgeGANRob to evaluate whether the shape-
based feature could improve the model robustness under
different adversarial scenarios, including adversarial at-
tacks, common corruption, and backdoor attacks. (ii) We
propose a robust edge detection algorithm Robust Canny
to improve the robustness of edge detection against sophis-
ticated adaptive attacks. (iii) We conduct comprehensive
experiments under various settings with different datasets.
We show that such shape structure features can indeed im-
prove model robustness under different adversarial scenar-
ios, while sometimes at the cost of sacrificing certain clean
accuracy depending on data properties.

2. Related work
Adversarial attacks Adversarial examples are the clean
images perturbed by carefully designed perturbations to
mislead machine learning models. These could be viewed
as worst-case analysis of the models robustness. A wide
range of methods against adversarial examples have been
proposed [34, 50], among which many are shown to be not
robust against adaptive attacks [1, 6]. The gradient obfus-
cation has been identified as a common pitfall for defense
methods [1], thus suggested that defense methods should
be evaluated against sophisticated adaptive attacks [6]. The
current effective defense methods are based on adversarial
training [19, 39].
Common corruptionsDifferent from adversarial examples,
Common Corruptions proposed by Hendrycks and Diet-
terich [22] aim to measure the model’s generalization by
using the unseen corruptions. They consist of 15 types of
algorithmically generated corruptions including noise, blur,
weather and digital categories. Current DNNs are vulnera-
ble to these corruptions.
Backdoor attacks Backdoor attack [8, 20] is a type of
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Figure 1: Overview of the edge feature enabled pipelines. EdgeNetRob directly feeds the output of an edge detector to the
classifier; while EdgeGANRob refill the edge images with texture information to reconstruct a new instance for prediction.

poisoning attack [45] by injecting a backdoor pattern into
training data. As a result, the trained models will predict
a test instance with the backdoor pattern as the specific tar-
get. Tran et al. [54] has proposed to detect poisoned training
data by using tools from robust statistics. Liu et al. [35] pro-
poses an approach to protect models from backdoor attacks
via neuron pruning.

Although the above methods achieve the improvement of
the robustness individually, none of them could not simul-
taneously improve the robustness under different attacks in-
cluding adversarial attacks, common corruptions and back-
door attacks. In this work, we propose a single method
to improve the robustness under different attacks including
adversarial attacks, common corruptions and backdoor at-
tacks.
Semantically robust features. Recent work has high-
lighted a connection between recognition robustness and ro-
bust features. For image recognition, [2, 16] shows that
CNNs rely more on textures than global shape structure,
while humans rely more on shape structure than detailed
texture. [27] uses visualization methods and finds that ad-
versarially robust models tend to capture global structure of
the objects. [25] argues that there exists non-robust features
in natural images which are highly predictive but not inter-
pretable by human. These work shows that it is possible to
improve the robustness of CNNs by learning from robust
structural features. However, they did not directly identify
which features are robust. In this work, we propose to ex-
plicitly use edge as a robust feature proxy to evaluate .

3. Edge Feature Enabled Pipelines
To evaluate the robustness of edge features, we introduce

two edge-based pipelines EdgeNetRob and EdgeGANRob.
Both pipelines first extract the edge information and then
train the classifier based on either the edge images or GAN
filled images. In this section, we first introduce a simple but
efficient algorithm EdgeNetRob: We use the edge image
extracted by standard edge detection algorithms, but find
that these edge detection algorithms are not robust against

sophisticated adaptive attacks. Thus, we propose a robust
edge detection algorithm, Robust Canny. We then introduce
EdgeGANRob, which refills the texture information of the
extract edge image with a trained GAN. Finally, we describe
three settings for robustness evaluation.

3.1. EdgeNetRob

EdgeNetRob consists of two stages: First, we exploit an
edge detection method to extract edge maps from an image,
and then a standard image classifier fθ(·) is trained on the
extracted edge maps. Formally, denoting the edge extrac-
tor function as e(·), the EdgeNetRob pipeline aims to solve
the following problem: minθ E(x,y)∼D [L (fθ (e(x)) , y)]
where D represents the underlying data distribution and L
denotes the loss function (e.g., cross-entropy loss). EdgeN-
etRob forces the decision of CNN to be solely based on
edges, thus making it less sensitive to local textures. Com-
pared with the adversarial training-based methods [39, 68],
EdgeNetRob is simple, efficient, and scalable which could
be applied to large-scale datasets. However, despite the sim-
plicity and efficiency of EdgeNetRob, it may degrade the
performance of CNNs over clean test data given that the
texture/color information is missing. We will provide de-
tailed discussion about this tradeoff in Section 4.

3.2. Robust Edge Detection

Based on our analysis, the vanilla edge detection algo-
rithm such as Canny and RCF could be vulnerable against
adaptive attacks given that they are both end to end mod-
els. For instance, Cosgrove and Yuille [12] finds that neural
network based edge detectors such as HED [65] can fail
easily when facing adversarial perturbation. Though tradi-
tional edge detection methods such as Canny [3] is intrin-
sically robust since they output binary edge maps, as illus-
trated in Figure 2 (first row), when we apply a sophisticated
adaptive attack based on a differentiable proxy of Canny
and generate adversarial perturbation, the output of Canny
edge detector can become noisy and incorrect. Thus, in this
section we propose a robust edge detection algorithm name
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Robust Canny to improve the robustness of vanilla Canny
by truncating the noisy pixels in its intermediate stages.

Specifically, there are 6 stages in our proposed Robust
Canny: (1) Noise reduction: A Gaussian filter is applied to
smooth the image. (2) Gradient computation: We apply the
Sobel operator [29] to compute the gradient magnitude and
direction at each pixel from the smoothed images. (3) Noise
masking: We reduce the noise in the presence of adversarial
perturbations by thresholding the gradient magnitudes by
a level α. (4) Non-maximum suppression (NMS): An edge
thinning step is taken to deblur the output of the Sobel oper-
ator. Gradient magnitudes that are not at a maximum along
the direction of the gradient are suppressed (set to zero).
(5) Double threshold: Apply lower and upper thresholds
(θl, θh) for the gradient magnitude after NMS, and pixels
are then mapped to 3 levels: strong, weak, and non-edge
pixels. (6) Edge tracking by hysteresis: Edge pixels are de-
tected by searching for strong pixels, or weak pixels that are
connected to other strong pixels.

We could observe that we have modified the vanilla
Canny algorithm by adding a noise masking stage after
computing the image gradients. Later in Figure 2, we show
that the gradient computation stage is sensitive to input per-
turbations. Thus, we set all gradient magnitudes lower than
a threshold α to zero to mitigate the perturbation noise. By
adding a truncation operation, it is expected that adversar-
ial noise on the gradient map with small magnitude will be
reduced in early stages without affecting the quality of fi-
nal edge maps. In addition to the masking operation, we
find that the parameters of Canny (e.g. standard deviation of
gaussian filter σ, thresholds θl, θh) also affect the robustness
level. Specifically, we notice that larger σ and higher thresh-
olds θl, θh result in higher robustness due to the stronger
smoothing and pruning effects. This, however, comes at
the cost of clean accuracy drop, as larger σ leads to blur-
rier images and higher θl, θh may eliminate useful informa-
tion in the output edges. To obtain a robust edge detector,
we should carefully choose its parameters (e.g., σ, θl, θh).
More details are provided in the experiment section.

3.3. EdgeGANRob

As EdgeNetRob may decrease the clean accuracy due
to the loss of texture information, here we propose Edge-
GANRob, which embeds a generative model to refill the
texture/colors for the edge images generated by EdgeN-
etRob as shown in Figure 1, and therefore improve clean
accuracy. The core component of EdgeGANRob is the re-
filling network, for which we use an inpainting Genera-
tive Adversarial Network (GAN) [18]. Next, we describe
how we train the inpainting GAN in EdgeGANRob. Recall
that the task of generating color images from edge maps
is well defined under the image-to-image translation frame-
work (pix2pix) [26]. We train our inpainting GAN with two
steps: first, we follow the common setup of pix2pix [26, 56]

to train a conditional GAN using the following objective
function: (we use G and D to denote the generator and dis-
criminator networks.)

min
G

max
D

Lgan = min
G

(
λadv max

D
Ladv + λFMLFM

)
(1)

where Ladv,LFM denote the adversarial loss [18] and fea-
ture matching loss [28] with λadv and λFM controlling their
relative importance. Second, since we hope the classifier
to achieve high accuracy over the generated RGB images,
we jointly fine-tune the trained GAN obtained from the first
stage along with the classifier, using the following objective
function: (θ is the parameters of the classifier.)

min
G,θ

(
max
D

Lgan + λclsLcls

)
(2)

where Lcls represents the classification loss of generated
images by inpainting GAN. Note that in the first step we do
not include classification loss to help GAN generate more
realistic and diverse images, after which it would be easy to
fine-tune the classifier jointly.

3.4. Rationale of Shape Features for Robustness

Here we will discuss the intuition for why shape struc-
tured features could help improve model robustness against
different types attacks: (i) adversarial attacks, (ii) com-
mon corruptions, (iii) backdoor attacks. We provide the
rational for leveraging robust edges features to improve
the robustness as below. For adversarial attacks, Edge-
GANRob is expected to improve the robustness as edges
are invariant to small imperceptible adversarial perturba-
tions. Intuitively, consider a ℓ∞ threat model, it is very
challenging for an attacker to make a specific edge pixel
appear/disappear by reversing the magnitude of image gra-
dient with only limited adversarial budget per pixel. When
the test data is under certain corruptions well-preserved
shape structure, leveraging edge features could be helpful
to improve the model’s generalization ability. EdgeGAN-
Rob would work in this case by focusing on shape structure
which makes it less sensitive to changes in test data. Re-
call that in backdoor attacks, an attacker aims to poison the
training data with a specific pattern such that the trained
models can be tricked into predicting a certain class when
the pattern is injected at testing time. Thus, extracting edges
can be viewed as data sanitization to remove malicious pat-
terns, thus rendering potential backdoor attacks ineffective.

4. Experimental Results

We evaluate the robustness of EdgeNetRob and Edge-
GANRob under different attacks in this section. We also
compare their performance against state of the art baselines
to provide more intuition.
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Figure 2: Visualization of intermediate stages of Vanilla Canny (Upper) and Robust Canny (Lower) on an image randomly
sampled from Fashion MNIST. Results for clean images (Left) and adversarial images (Right) are presented.

4.1. Experimental setup

We conduct comprehensive experiments to evaluate the
robustness of EdgeNetRob and EdgeGANRob under three
tasks (adversarial attacks common corruptions and back-
door attacks) on two types of datasets: (a) dataset with clear
and less ambiguous edge information (Fashion MNIST [63]
and CelebA [37]) ( Figure 3- left), and (b) dataset with
less clear or complicated edge information (CIFAR-10 [30],
Tiny-ImageNet and ImageNet [13]) (Figure 3-right). We do
not choose the MNIST for our study since it is a toy dataset
where strong robustness has been achieved [15, 39]. For
ImageNet, we only evaluate the robustness of EdgeNetRob
as the Edge to Image for ImageNet is still an active research
problem. We leave it as our future work. More details in-
cluding the network architecture and parameters of the ex-
periments can be found in Appendix A.

4.2. Robustness against Adversarial Attacks

We evaluate our methods using the commonly used
ℓ∞ adversarial perturbation constrained on input range
[0, 1] [17, 39, 43, 50, 64]. We use standard perturbation
budget on these datasets as in [43, 46, 50, 53, 57]: ℓ∞
as 25/255 for Fashion MNIST; ℓ∞ as 8/255 for CIFAR-
10, CelebA and 4/255 Tiny ImageNet and ImageNet. We
evaluate our methods in both whitebox and blackbox set-
tings. For whitebox, we evaluate the robustness of edge
feature against the strongest adaptive attack where the at-
tacker has full knowledge about the defense algorithm. The
attacker will attack the whole pipeline of EdgeNetRob (in-
cluding edge extractor and classifier) and EdgeGANRob
(including the edge extractor, generator and classifier). As
Canny edge detector contains the non-differentiable opera-
tions, we measure its robustness against white-box attacks
by using the BPDA attack [1]. This attack requires a differ-
entiable version of Canny. Therefore, we approximate the
non-differentiable operations and provide a differentiable

version in Appendix C. Additionally, for blackbox attack,
we select the gradient free attack, SPSA [55]. We refer the
reader to Appendix B for more details on the attack settings.

Table 1: Comparison of different edge extraction methods
when used for EdgeNetRob on Fashion MNIST

Method Clean Accuracy FGSM PGD-10 PGD-40

RCF 90.15 50.07 3.37 0.18
Canny 88.32 66.98 54.07 39.99

Robust Canny 87.00 79.03 78.53 76.75

4.2.1 Robust Edge Detector

Here we first illustrate why a robust edge detector is needed
against adversarial attacks. We compare the robustness of
three edge detection methods: 1) RCF [36] which uses a
CNN as backbone to generate edge maps; 2) Canny [3]
which is a traditional edge detection algorithm; 3) the pro-
posed robust edge detection algorithm, Robust Canny. To
attack Canny edge detector, we apply the white-box BPDA
attack [1]. We evaluate EdgeNetRob with different edge de-
tectors, and the results on Fashion MNIST are reported in
Table 1. First, we can see that using edges generated by
RCF is not robust, as under strong adaptive attack the ac-
curacy drops near to 0. This result is in accordance with
Cosgrove and Yuille [12], where they show that there exist
adversarial examples for neural network based edge detec-
tors. Second, it can be noticed that adaptive attack (PGD-
40) can reduce the accuracy of Canny based EdgeNetRob
to 39.99% . This also verifies that our adaptive attack cus-
tomized for Canny is strong and valid. We find that Robust
Canny can significantly boost the robustness under strong
adaptive attack: from 39.99% to 76.75%. This shows that
the truncation of values in Robust Canny is effective in re-
ducing the adversarial vulnerability. Thus, for the experi-
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Fashion MNIST CelebA
Clean Adversarial Clean Adversarial

Image

Canny

CNN

Robust Canny

Reconstucted

CIFAR-10 Tiny ImageNet
Clean CleanAdversarial Adversarial

Image

Robust Canny

CNN

 Combined Edge

Reconstucted

Figure 3: Edges and reconstructed images from four datasets. Row 2-4 represent edges extracted by Canny, CNN and Robust
Canny respectively. For CIFAR-10 and Tiny-ImageNet, the second row shows results of robust Canny and the fourth row
shows results of Combined edge. The last row presents the reconstructed images. Note that adversarial examples generated
against different edge detectors are visually close, and thus we randomly select one of them to show in the first row.

Table 2: Evaluation of adversarial robustness on various
datasets. The results of edge feature enabled pipelines are
shown in grey.

Dataset Method Clean Accuracy FGSM PGD-10 PGD-40

Fashion
MNIST

Vanilla Net 92.88 27.82 1.76 0.48
PGD-training 86.99 78.99 74.79 72.62
EdgeNetRob 87.00 79.03 78.53 76.75
EdgeGANRob 87.14 78.67 76.82 72.69

CelebA

Vanilla Net 98.30 18.67 0.00 0.00
PGD-training 92.75 84.67 82.55 81.31
EdgeNetRob 94.51 87.97 84.36 82.81
EdgeGANRob 95.88 91.06 88.12 84.60

CIFAR-10

Vanilla Net 91.89 6.76 0.00 0.00
PGD-training 76.50 56.55 45.80 44.15
EdgeNetRob 79.21 63.49 45.26 33.08
EdgeGANRob 76.25 62.61 46.72 37.15

Tiny ImageNet

Vanilla Net 58.55 4.10 0.21 0.00
PGD-training 48.10 30.11 23.65 22.31
EdgeNetRob 48.20 39.21 24.52 19.53
EdgeGANRob 44.30 36.22 23.15 13.55

ImageNet

Vanilla Net 76.40 6.50 0.00 0.00
Fast [57] 55.45 39.62 30.48 30.20
EdgeNetRob 64.13 44.10 31.23 22.73

ments later, we will use Robust Canny as the default edge
extractor for EdgeNetRob and EdgeGANRob.

4.2.2 Comparison with Baselines

We compare EdgeNetRob and EdgeGANRob with the
state-of-the-art baseline: PGD adversarial training proposed
in [39] for Fashion MNIST, CIFAR, CelebA and Tiny Im-
ageNet. For Imagenet, we select efficient PGD adversarial
training variant : Fast [57] as the baseline. Note that, the
main goal of this paper is to analyze how useful the edges
features are in terms of improving robustness under differ-
ent attacks, rather than demonstrating they are the most ro-
bust among all individual attack settings.

As shown in Figure 3, we randomly select images from
these datasets and visualize the benign, adversarial images
and their corresponding edge maps based on EdgeNetRob.
We observe that the edge images drawn from Fashion-
MNIST and CelebA have clear edge information for recog-
nition while the edges drawn from CIFAR-10 and Tiny Im-
ageNet are less clear and complicated which are hard to be
recognized. Therefore, in the following part, we analyze
the result by dividing the datasets into two categories: (1)
dataset with clear edge information (Fashion-MNIST and
CelebA) and dataset with less clear or complicated edge in-
formations (CIFAR-10, Tiny-ImageNet and Imagenet)

Next, we show the qualitative and quantitative results
on those two categories in Table 2. For Fashion MNIST
and CelebA, we notice that EdgeNetRob and EdgeGAN-
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Rob lead to a small drop in clean accuracy compared to
the vanilla baseline model due the missing texture informa-
tion. However, when compared with adversarial training ,
both EdgeNetRob and EdgeGANRob surprisingly achieve
a higher clean accuracy. Moreover, we also observe that
the clean accuracy of EdgeGANRob is higher than EdgeN-
etRob on Fashion MNIST and CelebA dataset given more
texture information. It validates the necessity of adding
GANs to close the accuracy gap resulted from directly
training on binary edge images on dataset with the clear
edge information. In terms of adversarial robustness, we
observe that under strong adaptive attacks, EdgeNetRob
and EdgeGANRob still remain comparable robustness com-
pared with PGD adversarial training. Additionally, we also
use the gradient free attack (SPSA) to evaluate the adversar-
ial robustness in blackbox setting. The results are shown in
the Table E of the appendix. We could observe that SPSA
could successfully attack the vanilla model and both Ed-
geNetRob and EdgeGANRob could improve the robustness
and are even higher than PGD adversarial training. It fur-
ther illustrates that our careful designed adaptive attacks are
stronger enough and shows the edge feature indeed achieves
non-trivial robustness.
Table 3: Clean and Robust accuracy of different edge detec-
tion methods on CIFAR-10. The robust accuracy is calcu-
lated using PGD-40.

Edge Detector Clean Accuracy Robust Accuracy

Robust Canny (erobust canny) 67.85 36.31
CNN (ecnn) 87.11 0.82
Combined Edge ( ecombined) 79.21 33.08

Figure 3 (left) show the edges of clean (benign) and ad-
versarial examples among different edge detector (vanilla
canny, cnn-based, robust canny) on Fashion MNIST and
CelebA. We could observe that the edges between benign
and adversarial images are different for the Canny and
CNN-based edge detection algorithms. However, for the
proposed robust canny algorithm, the edges are almost sim-
ilar between benign and adversarial images. These visual-
ization results also indicated the vulnerability of vanilla and
CNN-based edge detectors.

All of these results validate that edge information is a
type of promising feature which could improve the robust-
ness on dataset with clear edge information.

For datasets with unclear or complicated edge informa-
tion such as CIFAR-10, Tiny-ImageNet and ImageNet, we
first see the qualitative results in Figure 3 (right). Note
that as shown in previous paragraph that the edge images
of vanilla Canny are vulnerable and similar to the robust
Canny on clean image, here we do not visualize the edge
of vanilla Canny. Compared with edge extracted by CNN,
we could observe that there is less information for the
edges extracted by Robust Canny. In Table 3, we evalu-

ate EdgeNetRob by using the edge maps extracted by Ro-
bust Canny (erobust canny). It achieves 67.85% clean accu-
racy and 36.31% robust accuracy under adaptive attack with
PGD-40. This result shows that EdgeNetRob is able to
achieve non-trivial robustness compared to vanilla network
(0%) and further indicates the effectiveness of edge feature
to adversarial robustness. We attribute the relatively low
clean accuracy (67.85%) to the quality of edges extracted
by Canny. Additionally, CNN-based edge features (ecnn)
could achieve 87.11% accuracy on clean image yet less ro-
bust (0.82% robust accuracy). The edge features extracted
from robust canny fail to contain enough edge information
while CNN-based edge features have higher quality yet less
robust. It motivates us to combined them together. There-
fore, we propose to use more fine-grained edge features,
Combined Edge, to improve edge quality on the datasets
with less clear or complicated edge information.

Specifically, we use a three-layer CNN to extract edges
and concatenate them with the edges extracted by Robust
Canny (More details of combined edge can be found in Ap-
pendix D). In this setting, we apply EdgeNetRob on the
Combine Edge feature and observe significant improvement
on the clean accuracy as 79.21% while still preserve the
non-trivial robust accuracy as 33.08%. We also apply this
Combined Edge feature to EdgeGANRob and other dataset
with less clear or complicated edge informations (Tiny-
ImageNet and ImageNet). The final results are shown in
Table 2. We could observe that even on the dataset with less
clear or complicated edge information, edge features could
still be used to achieve nontrivial robustness against adver-
sarial attacks. The result of SPSA is shown in the appendix.
It also indicates that edge features are able to achieve non-
trivial robustness.

4.3. Robustness under Common Corruptions

We evaluate EdgeNetRob and EdgeGANRob under
common corruptions [22]. For common corruptions, we
test the models under 15 types of algorithmically gener-
ated corruptions used in [22]. Note that as the main goal
of this paper is to analyze how useful the edges features to
simultaneously improve robustness under different attacks,
rather than they are the most robust among all individual at-
tack settings, we do not compare our results with the STOA
augmentation-based method (e.g Augmix [23] and Deep-
Augment [24]). The results are shown in Table 5. We
can see that EdgeNetRob and EdgeGANRob are able to
increase the robustness against common corruptions com-
pared with the vanilla model on most datasets except Tiny-
ImageNet. We address the potential reason for lower cor-
ruption robustness is due to the low clean accuracy of Tiny-
ImageNet. Overall, the results suggest that robust edge fea-
ture is able to help boost robustness against common cor-
ruptions compared to vanilla network.
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Table 4: Results of EdgeNetRob and EdgeGANRob against backdoor attacks on four datasets. (ASR: attack success rate –
lower value indicates higher robustness) The results of edge feature enabled pipelines are shown in grey

Dataset Ratio Backdoor
Pattern

Method
Vanilla Net Spectral Signature EdgeNetRob EdgeGANRob

Clean Acc Pois ASR Clean Acc Pois ASR Clean Acc Pois ASR Clean Acc Pois ASR

Fashion MNIST 20%
Pixel 87.43 94.30 86.23 45.62 83.48 0.12 88.89 0.07

Pattern 87.12 95.22 85.93 52.31 82.21 2.74 88.62 1.28

CelebA 5%
Pixel 98.3 97.2 98.45 64.78 92.8 10.9 94.42 4.59

Pattern 98.0 97.4 97.98 54.23 93.1 12.5 95.49 3.01

CIFAR-10 5%
Pixel 91.87 99.50 91.69 9.83 78.27 9.42 76.12 3.55

Pattern 91.85 99.15 91.60 9.56 77.45 10.31 75.43 3.13

Tiny-ImageNet 10%
Pixel 55.25 75.91 55.74 28.90 43.48 27.26 41.59 25.88

Pattern 55.05 95.93 56.25 67.55 42.72 55.54 41.03 43.72

Table 5: Performance of EdgeNetRob and EdgeGANRob
against common corruptions. The results of edge feature
enabled pipelines are shown in grey

Dataset Method Clean Acc. Common Corruptions Acc.

Fashion
MNIST

Vanilla Net 92.88 61.62
EdgeNetRob 87.00 61.00

EdgeGANRob 87.14 63.14

CelebA
Vanilla Net 98.30 64.96
EdgeNetRob 94.51 68.27

EdgeGANRob 95.88 69.27

CIFAR-10
Vanilla Net 91.89 67.15

EdgeNetRob 79.21 71.73
EdgeGANRob 76.25 68.64

Tiny ImageNet
Vanilla Net 58.52 27.43

EdgeNetRob 48.20 22.60
EdgeGANRob 44.30 21.09

ImageNet
Vanilla Net 76.40 23.30

EdgeNetRob 64.13 25.10

4.4. Robustness against backdoor attacks

Here we evaluate the robustness of edge feature against
backdoor attacks. We use the same backdoor patterns: Pixel
and Pattern as in Tran et al. [54]. Sampled backdoored
images and their edges are shown in Figure A. We ran-
domly choose two source and target class pairs and report
their average performance. Similar to Tran et al. [54], we
select poisoning ratio as 20% for Fashion MNIST, 5% for
CelebA and CIFAR-10 and 10% for Tiny ImageNet . We
compare our method with the vanilla network and the de-
fense method Spectral Signature [54].

The results are presented in Table 4, where we show the
test accuracy on standard test data (‘Clean Acc’) and the at-
tack success rate on poisoned data (‘Pois ASR’ – lower in-
dicates higher robsutness). We observe that our embedding
pattern can successfully attack the vanilla Net with high poi-
soning attack success rate on all datasets. It can be seen

that Spectral Signature can not always achieve high perfor-
mance on Fashion MNIST and CelebA. However, both Ed-
geNetRob and EdgeGANRob consistently obtain low poi-
soning attack success rate among different settings, and
EdgeGANRob achieves the lowest poisoning attack success
rate. Figure A in the Appendix shows the qualitative results
of the backdoored images after edge detection and the re-
constructed images. We can observe that the effect of back-
door patterns can be partially removed by the edge detector.

5. Conclusion
We introduced edge feature enable pipelines together

with a proposed robust feature extractor to evaluate the
model robustness improvement under different attacks. It
shows that the edge enabled pipelines can boost the robust-
ness under different settings including adversarial attacks,
common corruptions and backdoor attacks simultaneously
with minor clean accuracy decrease. Our results highlight
the importance of using shape structural information in im-
proving model robustness and we believe it will inspire
promising directions for future work.
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