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Abstract

In order to train 3D gaze estimators without too many
annotations, we propose an unsupervised learning frame-
work, Cross-Encoder, to leverage the unlabeled data to
learn suitable representation for gaze estimation. To ad-
dress the issue that the feature of gaze is always intertwined
with the appearance of the eye, Cross-Encoder disentangles
the features using a latent-code-swapping mechanism on
eye-consistent image pairs and gaze-similar ones. Specif-
ically, each image is encoded as a gaze feature and an eye
feature. Cross-Encoder is trained to reconstruct each im-
age in the eye-consistent pair according to its gaze fea-
ture and the other’s eye feature, but to reconstruct each
image in the gaze-similar pair according to its eye feature
and the other’s gaze feature. Experimental results show
the validity of our work. First, using the Cross-Encoder-
learned gaze representation, the gaze estimator trained with
very few samples outperforms the ones using other unsu-
pervised learning methods, under both within-dataset and
cross-dataset protocol. Second, ResNet18 pretrained by
Cross-Encoder is competitive with state-of-the-art gaze es-
timation methods. Third, ablation study shows that Cross-
Encoder disentangles the gaze feature and eye feature.

1. Introduction
Gaze indicates where someone is looking toward. It

serves as one of the cues in understanding human desires,
intents and states of mind. 3D gaze estimation retrieves
the direction of the line from an observer’s eye to a sight.
Automatically estimating gaze direction show potential ap-
plications in psychological research [22], human-computer
interaction [26], driver distraction detection [1], and other
areas. Recently, significant efforts have been devoted to de-
veloping non-intrusive gaze direction estimator based on fa-
cial or eyes images. Specially, the growing strength of Con-
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Figure 1. (a) The mutual information between the auto-encoder
learned representation and the eye’s identity or the gaze. (b) Disen-
tangled gaze features and eye features learned by Cross-Encoder.
The images of the same eye from different frames have consistent
eye features. The images of the two eyes from one frame have
similar gaze features.

volutional Neural Network (CNN) [11] makes it relatively
easy to deal with some practical problems in gaze estima-
tion like head pose variations, eye occlusions, and variable
eye shapes [7, 8, 31, 38, 40].

Despite its representational power, a well-performed
CNN-based method is usually trained on sufficiently large
and diverse labeled data. However, acquiring precise gaze
labels is difficult. The gaze direction could not be mea-
sured directly, but be measured by complicated setups and
computations according to the geometry [20, 41]. The lim-
ited access to labeled data hinders the development of gaze
estimation methods. When trained on a small amount of
monotonous annotated samples, supervised learning meth-
ods are easy to overfit the training data and preserve features
that do not represent the gaze. The redundant and unrelated
features lead methods to perform poorly on data beyond the
training ones.
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Various unsupervised or self-supervised learning strate-
gies are proposed and show potentials in addressing the is-
sue of scarce annotations [4, 6, 29]. Most of them focus
on learning a representation for relatively general purposes,
e.g., image classification [4], object detection [9], segmen-
tation [28]. However, these representations and methods are
not the best for gaze estimation. It is also controversial that
a universal representation exists for all the tasks.

Learning a good representation for gaze is non-trivial be-
cause the features of gaze direction are always intertwined
with those of what the eye looks like. Fig. 1(a) illustrates
the mutual information between the top 10 principal compo-
nents of the unsupervised features learned by auto-encoder
and the eye-identity or the gaze. The eye-identity is defined
as the distinguishing shape and appearance of an eye. The
left and the right eye of a same person have different eye-
identities. As can be seen, if we learn representations from
eye images in an unsupervised way without any priors, the
learned features are more related to the eye-identity than to
the gaze. To our knowledge, Yu and Odobez [37] are the
first to learn gaze-specific representation without annota-
tions. Unlike their work, which leverages the gaze redirec-
tion task and ignores the intertwined factors, we explicitly
disentangle the features of gaze and those of what makes
the eye look like the eye, in an unsupervised manner.

To this end, we propose an unsupervised learning frame-
work to learn disentangled gaze feature and eye feature
from eye images. The key component is an auto-encoder-
like architecture, dubbed as Cross-Encoder. It is trained
with two types of paired images simultaneously: Paired
images of the same eye or with similar gaze directions.
Fig. 1(b) shows the intuition of our method. As can be
seen, we select the same right (or left) eyes of a subject
from different frames to constitute the eye-consistent pairs.
For the gaze-similar pair, we use the right and left eyes of
the subject in one frame, because when someone is looking
at a distant object, the gaze direction of the two eyes are
nearly parallel [27]. Cross-Encoder aims at encoding eye’s
identity information in the eye feature and gaze information
in the gaze feature. Our contributions are summarized in
three folds. 1) We propose a simple and effective unsuper-
vised representation learning method called Cross-Encoder.
It disentangles the representation by reconstructing the im-
ages according to switched features. 2) We learn unsu-
pervised gaze-specific representation using Cross-Encoder
by introducing two strategies to select the training pairs.
3) Extensive experiments demonstrate the advantage of the
learned gaze representation and validate the effectiveness of
each component in Cross-Encoder.

2. Related Work
Gaze estimation methods: Gaze estimation includes

2D gaze estimation and 3D gaze estimation. 2D gaze es-

timation attempts to infer a fixation point on a 2D plane,
e.g., a screen. However, different devices result in different
relative position of the 2D plane to the camera. Therefore,
2D gaze estimation is hard to generalize to new devices. 3D
gaze estimation aims at predicting a line of sight in the 3D
world regardless of devices. To estimate the gaze, geomet-
ric based methods and appearance based methods were pro-
posed. As detailed in Kar et al. [19], the former requires
special hardware like NIR LEDs and IR LEDs, whereas
the latter only needs images taken by ordinary RGB cam-
eras. Thus, the appearance-based methods attracts more and
more researchers. Our work focuses on learning gaze rep-
resentation for appearances-based 3D gaze estimation.

Early works on appearances-based gaze estimation fo-
cus on designing gaze features from eye images(e.g., the
eye landmark [2] and the iris shape [25]), and then use the
extracted features to train gaze estimators by off-the-shelf
methods (e.g., Principal Component Analysis [36], Support
Vector Machine [3]). Recent deep learning methods train
the representation and gaze estimator in an end-to-end man-
ner and achieve promising performance [7,10,30,31,33,35,
38, 40]. Gaze estimation also benefits from varied sources
beyond the eyes’ images. For example, Zhang et al. [40]
used an attention block to extract the most gaze-related in-
formation from the whole face. Cheng et al. [8] correct
the asymmetric performance of the left and the right eye
using an evaluation network. Note that the “asymmetric”
here refers to the performance rather than the physical dif-
ference, thus not conflicting our assumption that the left and
the right eye share similar gaze. Cheng et al. [7] predicted
a coarse gaze direction from face image and corrected it by
two eye images. At the same time learning from side infor-
mation, recent methods learned redundant information that
was mixed in the features as well.

Some works make efforts to eliminate the influence of
factors other than gaze. Zhang et al. [38] reduced the in-
fluence of head pose by normalizing the eyes images ac-
cording to the rotating a virtual cameras [33]. Deng et
al. [10] explicitly learned head poses, gaze directions in dif-
ferent coordinate systems, and the transformation between
them. Park et al. [30] disentangled the features of appear-
ance, head pose, and gaze by using an auto-encoder to re-
construct an image of a same person under different head
pose with different gaze. Although promising performance
is achieved by reducing irrelevant information, the methods
require supervisions other than gaze.

Unsupervised representation learning: Unsupervised
representation learning aims to learn a representation with-
out access to labeled data. Many novel unsupervised repre-
sentation learning methods were proposed, e.g., deep clus-
tering [4] and contrastive learning [6] [12]. However, these
methods focus on learning general visual features from im-
ages and videos. Most of them show good performance on
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image classification [4], object detection [9], semantic seg-
mentation [28].

To learn a task-related representation, efforts were made
on separating the unsupervised representations into target
parts. Locatello et al. [24] stated that unsupervised dis-
entangling is impossible if there is no inductive bias, e.g.,
special model architecture or prior knowledge for the data.
Many works used paired training data and exploited the
prior relations between the pairs to learn disentangled rep-
resentations [5, 17, 18]. Jha et al. [18] disentangled the fea-
tures into two complementary parts, by alternatively apply-
ing cycle-consistency on one part and reconstructing the in-
puts from the switched features. Chen et al. [5] disentangled
features of information which is provided with similarity la-
bels between two images in a pair, by modeling probability
of the similarity. Jakab et al. [17] transferred landmark fea-
tures into explicit heatmaps of one image and concatenated
them with appearance feature of another image for recon-
struction. Li et al. [23] disentangled the representation of
facial actions and head motions by learning how to warp
the source image to the target ones that only one factor is
changed. Yu et al. [37] is the first, to our best knowledge, to
learn gaze-specific representation in a self-supervised learn-
ing manner. They took advantages of gaze redirection task
and trained the method on paired eye’s images of the same
subject. Although Yu et al. [37] have acquired simple and
effective gaze representation, their method has some limi-
tations. It requires the input pairs to be with similar head
poses and to be strictly aligned. Rather than aligning the
inputs by extra components, the proposed Cross-Encoder
randomly choose two images of the eyes from a subject to
get a usable gaze feature.

3. Method
We propose an unsupervised learning framework to ex-

tract gaze-specific representation, which excludes the inter-
twined irrelevant information that has negative effects on
gaze estimation. Below, we first introduce a novel Cross-
Encoder architecture as the main component with a latent-
code-swapping mechanism. Then, we use Cross-Encoder
to learn disentangled gaze feature and eye feature by intro-
ducing two strategies to choose the training pairs, i.e., the
eye-consistent pair and the gaze similar pair.

3.1. Cross-Encoder

A conventional auto-encoder encodes the input into a
vector-like embedding, according to which the decoder re-
constructs the input. To disentangle the embedding, the
Cross-Encoder modifies the conventional auto-encoder by
separating the embedding into two parts and taking two
paired images as the input. Then, the Cross-Encoder en-
codes each image into two features called the shared fea-
ture and the specific feature. Each image is reconstructed

E D

E D

share share

Figure 2. Architecture of the Cross-Encoder. The input images
Ii and Ij are encoded as [di, si] and [dj , sj ], respectively. The
Cross-Encoder is forced to reconstruct Ii and Ij when si and sj
are switched. Therefore, di and dj are expected to encode the
differences between Ii and Ij , and si and sj are expected encode
the shared feature.

according to its specific feature and the other’s shared fea-
ture.

Fig. 2 illustrates the proposed Cross-Encoder architec-
ture. As can be seen, a pair of training images Ii and Ij are
fed into the weight-shared encoder E, and are encoded as
features [di, si] and [dj , sj ], respectively. We suppose that
di and dj are the specific features that encode the differ-
ences between the input Ii and Ij , i.e., the shape. si and sj
encode the shared features of the inputs, i.e., the texture. In
the conventional auto-encoder, the input Ii is reconstructed
from [di, si]. In Cross-Encoder, since si and sj are consis-
tent, Ii is reconstructed according to di and sj . Similarly,
Ij is reconstructed according to dj and si.

If the two features were disentangled, the shared features
si and sj should convey nothing about the specific features
di and dj , and vice versa. To ensure the former, we train
the Cross-Encoder by minimizing the loss function

L =
∑
(i,j)

∥Ii − Îi∥1 + ∥Ij − Îj∥1 + αR, (1)

where (Ii, Ij) are the selected training pairs. Îi and Îj de-
note the reconstruction of Ii and Ij . The first two items are
the reconstruction loss that force the reconstructed images
to be pixel-wise consistent to the original ones. If si and sj
were different, the reconstructed images would be inconsis-
tent to the original ones. The item R = ∥(Ii − Îi)− (Ij −
Îj)∥1 is the residual loss that regularizes the two residu-
als between the reconstructed and the original images to be
similar. It further prevents the Cross-Encoder to encode the
difference between the input pair into the shared features si
and sj . α is a coefficient that balances the importance of the
reconstruction loss and residual loss.

Although little information about the differences is en-
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Figure 3. Unsupervised gaze presentation learning framework using Cross-Encoder. The encoder and decoder are updated using both the
input pairs with the same eye (left) and the input pairs with similar gaze (right). On the left, the eye features are switched during the
reconstructing. On the right, the gaze features are switched.

coded in si or sj , it is not ensured that the specific feature
di and dj convey no shared information. There exists a
degenerative solution that the encoder keeps all the infor-
mation in di or dj and leaves some noises in si and sj . To
address this issue, we propose to train the Cross-Encoder
with a complementary pair of inputs simultaneously. In the
new pair, the shared information becomes the difference.
Considering the example in Fig. 2, the complementary pair
could be a pair of slashed circle and solid circle, where the
shared information is the shape and the difference is the tex-
ture. Thus, for the new pair, d should be the shared feature
and s should be the specific feature. By minimizing a simi-
lar loss as in (1), we ensure that feature d does not convey
the information that should be in s.

3.2. Unsupervised Gaze Representation Learning

The feature of gaze is intrinsically intertwined with those
of the eye identity. To make the features about the gaze and
the eye identity be separately encoded into two embeddings,
we train the Cross-Encoder using dual input pairs: the eye-
consistent pair of the same eye, and the gaze-similar pair
with similar gaze.

Figure 3 illustrates the unsupervised gaze presentation
learning framework using Cross-Encoder. The parameters
of the encoder and decoder are updated using two types
of input pairs simultaneously. As can be seen, the eye-
consistent pair (Ii, Ij) are selected as images of the same
eye from the same person in different video frames. Note
that here the left and the right eye are not considered as the
same eye. Each image is encoded as the gaze feature (yel-
low rectangle) and the eye feature (green rectangle). Since
the two images are of the same eye, their eye features ei
and ej should be consistent. Thus, we could reconstruct
the input pair according to their own gaze feature and the
switched eye feature. The gaze-similar pair (Ii, Ik) are the
images of the two eyes from the person in one video frame.

Because when someone is looking at a distant object, the
gaze direction of two eyes are nearly parallel [27], we as-
sume that the gaze features gi and gj are close in the feature
space. Thus, we could reconstruct the input pair according
to their own eye feature and the switched gaze feature. One
may argue that apart from the eye’s deformable shape (en-
coded in eye feature) and gaze (encoded in gaze feature),
other environmental factors such as illumination would af-
fect the eye’s appearance on the images. However, this issue
is not crucial. First, to avoid strong illumination factors, we
turn the images to gray scale and perform histogram equal-
ization. Furthermore, the dimension of the gaze feature
can be sightly extended to tolerate environmental changes
among frames. This would not affect performance as can
be seen in the experiment.

Mathematically speaking, we train the Cross-Encoder
for gaze representation by minimizing

L =
∑

(i,j)∈E

∥Ii −D(gi, ej)∥1 + ∥Ij −D(gj , ei)∥1 + αRE

+β
∑

(i,k)∈G

∥Ii −D(gk, ei)∥1 + ∥Ik −D(gi, ek)∥1 + γRG ,

(2)
where E is the set of pairs with the same eyes and G is the
set of pairs with similar gaze. D(gi, ej) denotes the recon-
structed image according to gaze feature gi and eye feature
ej . RE and RG are the residual losses for the two pairs re-
spectively. α, β, γ are the coefficients to balance the items.
Considering that the gaze are similar but not equivalent for
the pairs in G, β and γ are smaller than 1 and α, respectively.

4. Experiments
We thoroughly evaluated Cross-Encoder through its

learned representation and the pre-trained model, by com-
paring them with the-state-of-the-art methods on public
datasets. We analyze the disentangled features and discuss
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Table 1. Angular errors (mean±std) of 100-shot gaze estimation within Columbia, UTMultiview and MPIIGaze datasets. GS stands for
gaze-similar pair. dg and de: the dimension of gaze feature and eye feature. For eye feature, gaze feature(no GS pair), gaze feature(no
residual loss) setting, de is 32, dg is 9, 12 and 12 for UTMultiview, Columbia and MPIIGaze respectively. Note that for MPIIGaze, we use
the Cross-Encoder pretrained unsupervisedly on Columbia and only trained for 10 epochs on MPIIGaze.

w/ head pose w/o head pose

methods Columbia UTMultiview MPIIGaze Columbia UTMultiview MPIIGaze

ImageNet-Pretrained ResNet18 12.1±0.1 20.2±0.5 10.6±0.2 11.9±0.2 24.9±0.5 10.6±0.2
auto-encoder 10.5±0.2 18.0±0.5 9.5±0.2 10.6±0.3 18.5±0.5 9.5±0.1
auto-encoder (EFC) 9.2±0.3 13.5±0.3 9.2±0.2 9.4±0.3 22.1±0.5 8.9±0.1
SimCLR [6] 7.2±0.1 12.1±0.2 10.0±0.3 8.2±0.03 21.3±0.7 9.8±0.2
BYOL [12] 9.9±0.1 14.4±0.2 11.1±0.5 10.2±0.03 23.5±0.2 11.0±0.6
Yu et al. [37] 8.95 8.56 - - - -

Cross-Encoder (proposed)
- eye feature 12.8±0.1 15.5±0.4 9.8±0.1 12.6±0.2 31.9±0.3 9.7±0.1
- gaze feature (no GS pair) 7.6±0.1 10.6±0.3 8.2±0.1 8.5±0.2 17.2±0.6 8.1±0.2
- gaze feature (no residual loss) 6.7±0.1 7.4±0.1 7.2±0.2 7.4±0.1 8.2±0.2 7.2±0.2
- gaze feature (dg=9,de=32) 6.7±0.1 7.7±0.3 8.1±0.2 7.6±0.1 8.8±0.2 8.0±0.2
- gaze feature (dg=12,de=32) 6.6±0.1 8.0±0.2 7.5±0.1 7.3±0.1 8.9±0.2 7.6±0.2
- gaze feature (dg=15,de=32) 6.4±0.1 8.0±0.2 7.5±0.2 7.1±0.1 9.2±0.2 7.3±0.2
- gaze feature (fg=12, fe=16) 6.7±0.1 7.6±0.2 7.2±0.2 7.4±0.2 8.6±0.2 7.2±0.1
- gaze feature (fg=12, fe=64) 6.5±0.1 7.8±0.2 7.5±0.2 7.2±0.1 8.9±0.1 7.4±0.1

the effectiveness of the feature switching mechanism, two
types of input pairs, feature dimension, and residual loss.

4.1. Experimental settings
Implementation details: We implemented the Cross-

Encoder using PyTorch. In our experiments, we used
ResNet18 [13] as the encoder, and four DenseNet [15] de-
convolution blocks as the decoder. It is worth noting that
the encoder and decoder can be of any other architecture.
The eyes images were cropped according to the detected fa-
cial landmarks [14] around the eyes. All input images were
gray scale and were histogram equalized to eliminate the
illumination effects. We trained Cross-Encoder on one TI-
TAN RTX GPU, using Adam [21] optimizer for 200 epochs.
The learning rate was 0.0001. In each batch, the two types
of training pairs were half and half. For the eye-consistent
pair, we randomly selected a subject’s right or left eyes from
two random frames of a clip. For the gaze-similar pair, we
randomly selected a frame and crop the subject’s two eyes.

Datasets: We evaluated the methods on public gaze
datasets Columbia Gaze [32], UTMultiview [33], and MPI-
IGaze [41]. All of the datasets contain various head pose
and gaze directions. Columbia Gaze(C) consists of 6000
face images from 56 subjects. UTMultiview(U) consists of
64000 face images from 50 subjects. We used the real world
part of UTMultiview in our experiments. MPIIGaze(M)
contains 213659 images of 15 subjects and were collected
in front of the screen of a laptop in daily life. 5-fold, 3-fold,
and leave-one-out cross validation evaluation was used for
Columbia, UTMultiview, and MPIIGaze respectively. We

Table 2. Mean angular errors of 100-shot gaze estimation under
cross-dataset settings.

C U M

supervised
- trained on C - 10.84 8.35
- trained on U 7.19 - 8.11
- trained on X 5.67 8.79 7.28

unsupervised
- Yu et al. [37](trained on U) 8.82 - -

Cross-Encoder
- trained on C - 9.79 8.32
- trained on U 7.48 - 9.09
- trained on X 7.76 10.30 9.04
- trained on X, T, and F 7.09 9.58 8.20

also used XGaze [39], TabletGaze [16], and FreeGaze as the
unsupervised data, ignoring their annotations, XGaze(X)
was collected from 18 high-resolution Canon 250D digital
SLR cameras when the subjects were looking at the points
on a screen. We used the 756540 images of 80 subjects
in the traing set of XGaze. TabletGaze(T) was collected
when the subjects were watching the Tablet with 4 differ-
ent poses. We sampled 171971 images in 817 videos of 51
subjects. FreeGaze(F) is a self-collected dataset with 138
Asians looking around freely in front of 4 cameras. It con-
sists of 867808 images.

4.2. Evaluation of the learned representation
We evaluated the learned representation by a few shot

gaze estimation task, as in [37], under both within-dataset
and cross-dataset setting.
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Table 3. Angular errors (mean±std) of 50/200-shot gaze estima-
tion within Columbia ,UTMultiview and MPIIGaze datasets.

AE(EFC) simCLR BYOL ours

50 C 11.1±0.3 8.1±0.04 10.8±0.1 7.0±0.2
U 14.9±0.5 14.4±0.5 15.1±0.5 8.8±0.4
M 9.8±0.2 10.7±0.4 11.9±0.4 8.5±0.2

200 C 7.8±0.1 6.3±0.02 9.4±0.03 6.2±0.1
U 11.9±0.3 11.0±0.3 14.1±0.2 7.3±0.2
M 8.8±0.1 9.2±0.3 10.4±0.4 7.3±0.1

Within-dataset evaluation: We compared the represen-
tations of the ImageNet-pretrained ResNet18, the vanilla
auto-encoder with the same encoder and decoder architec-
tures as Cross-Encoder, the only previous self-supervised
gaze representation learning method (Yu et al. [37]), two
recent popular contrastive learning methods SimCLR [6]
and BYOL [12], and variations of the proposed Cross-
Encoder. Auto-encoder with equal feature constraint, Auto-
encoder(EFC), forces the features to be equal by adding
a constraint(L1 loss) under the auto-encoder framework.
Given a pair of inputs, EFC encodes each input into two
features. Instead of swapping the to-be-consistent features,
EFC forces the to-be-consistent feature to be equal by min-
imizing the L1 loss on them.

Table 1 shows the mean and standard deviation of an-
gular errors of 100-shot gaze estimation within Columbia,
UTMultiview and MPIIGaze datasets. In each fold, we first
trained Cross-Encoder using the unlabelled training sets.
Then, we trained the gaze estimator according to 100 ran-
dom training samples with labels and repeated for 10 times
to show the mean and standard deviation. Since head poses
can affect gaze estimation, we reported the results with and
without head pose information. We listed Yu et al. [37] as
one with head pose because the head pose is necessary when
they regressed the gaze. For other methods, in the w/ head
pose setting, the representation was regarded as the concate-
nated head pose and the learned gaze feature.

In Table 1, the Cross-Encoder-learned gaze feature out-
performs other representations on varied datasets and set-
tings. Pretrained ResNet18 is the worst because its features
are learned for image classification. Cross-Encoder sur-
passes auto-encoder, because the auto-encoder-learned rep-
resentation preserves all the information to reconstruct the
eyes’ image, including gaze-irrelevant information. Sim-
CLR [6] and BYOL [12] methods focus on learning general
visual features rather than representation specially for gaze
estimation, which results in their poor performance. Com-
pared with Yu et al. [37], Cross-Encoder achieved consis-
tent improvements with different settings of feature dimen-
sion on two datasets. Rather than directly concatenating the
features to head pose, Yu et al. [37] incorporated the head
pose information to normalize the input images and to trans-
form the regressed gaze vector from the camera coordinate

Table 4. Mean angular errors of Cross-Encoder and the state-of-
the-art methods on Columbia and UTMultiview datasets.

Columbia UTMultiview

Yu et al. [37] 3.42 5.52
Park et al. [31] 3.59 -
Zhang et al. [38] - 5.9
Wang et al. [35] - 5.4
Cross-Encoder(proposed) 3.52 4.81

system to head coordinate system. Thus, they explicitly
eliminated the influence of head pose. Although without
concatenating with head pose or transforming to head pose
coordinating system, the proposed Cross-Encoder can get
lower MAEs than [37] and is simpler than [37].

We also show 50/200-shot performance in Table 3,
where Cross-Encoder consistently outperforms the others.
It indicates that Cross-Encoder is more stable with the num-
ber of few-shot samples than other methods.

Cross-dataset evaluation: To investigate the learned
features’ generalization ability, we used different datasets
to train the representation and conduct the 100-shot
gaze estimation. We compared the supervised features
of ResNet18 trained on three public gaze estimation
dataset(i.e., Columbia, UTMultiview, XGaze), the state-of-
the-art unsupervised gaze representation [37], and the unsu-
pervised gaze features by Cross-Encoder trained on differ-
ent datasets. To see the power of unlabeled data, the union
of datasets (XGaze, TabletGaze, and FreeGaze) was also
used unsupervisedly to train Cross-Encoder. Table 2 shows
the mean angular errors of 100-shot gaze estimation under
cross-dataset settings. Note that the representation is con-
catenated with the head pose. 5-fold, 3-fold, leave-one-out
evaluation protocols were used on Columbia, UTMultiview,
and MPIIGaze, respectively.

In Table 2, we have three observations. First, Cross-
Encoder outperforms the state-of-the-art unsupervised gaze
representation [37]. Second, with the same training data,
supervised features are better than unsupervised ones except
for ones trained by Columbia, as the supervised methods are
easily to overfit the Columbia dataset, which only contains
6000 face images. Third, more training data contributes to
better representation learned by Cross-Encoder. The Cross-
Encoder trained on the union of XGaze, TabletGaze, and
FreeGaze is the best among all unsupervised models, be-
cause it contains the most images and subjects.

4.3. Comparison with the state-of-the-art gaze esti-
mation methods

We further evaluated Cross-Encoder by comparing it
with the state-of-the-art gaze estimation methods, including
three supervised ones [31] [38] [35] and a self-supervised
one [37]. Table 4 shows the mean angular errors of the com-
pared methods on Columbia and UTMultiview datasets. 5-
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on eye-consistent pairs (training set)

on eye-consistent pairs (test set) on gaze-similar pairs (test set)
(a) (b)

(c) (d)
gaze feature (Cross-Encoder)
eye feature (Cross-Encoder)

gaze feature (equal feat. constraint)
eye feature (equal feat. constraint)

auto-encoder

on gaze-similar pairs (training set)

Figure 4. Average cosine similarity of representations between im-
ages in eye-consistent pairs and gaze-similar pairs.

fold and 3-fold evaluation protocols were used one the two
datasets, respectively. We first trained the Cross-Encoder
using the unlabelled training data. Then we put a two-layer
MLP after the encoder to build a gaze estimator on the an-
notated training data. Performance of the estimator on the
test set is reported. The results for other methods were orig-
inally reported by the authors in their papers.

In Table 4, Cross-Encoder achieves competitive per-
formance as the state-of-the-art gaze estimation methods.
Cross-Encoder gets smaller errors than the other methods
on UTMultiview. On Columbia, Cross-Encoder performs
similarly to Park [31] but slightly worse than Yu [37]. The
reason is that Columbia contains much fewer samples than
UTMultiview. Pretraining on a larger amount of data makes
the encoder better captures the distribution of the data.

4.4. Ablation Study
Are the gaze and eye features disentangled? First, we

compared the gaze feature and eye feature in few-shot gaze
estimation task. In Table 1, using the eye feature is much
worse than that using the gaze feature. It indicates that little
information about the gaze is encoded in the eye feature.

Second, we visualized the learned features in the two
types of input pairs. Fig. 5 shows examples of the fea-
tures learned by Cross-Encoder, the vanilla auto-encoder
and auto-encoder(EFC), on both the training set and test set
of Columbia and UTMultiview. For each feature, the x-axis
corresponds to the index of dimension, and the y-axis corre-
sponds to the value. For the images in gaze-similar pair (int
the same column), their Cross-Encoder learned gaze fea-
tures are similar but their eye features have differences. And
vise verse for the images in eye-consistent pairs(in the same
row). It indicates that the Cross-Encoder does encode the
information about gaze in the gaze features and encode what
the eye looks like in the eye features. The auto-encoder-
learned features varies with either different eyes or gaze,
because the information are intertwined in the features.

Third, Fig. 4 plots the averaged cosine similarity of the
learned features between images in pairs. To compute the
averaged similarity, we randomly chose eye-consistent pairs

Columbia 
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Figure 5. Examples of eye images from different datasets and their
eye feature (fe) and gaze feature (fg). In each dataset, the eyes (in
rows) are from the same person but different frames. The eye in
columns are the left one(el) and right one(er) from one frame. êl
and êr are the reconstructed images by Cross-Encoder.

that covered all the subjects. For the gaze-similar pairs, we
used the left and right eyes in every image. It is observed
that neither the gaze nor the eye feature learned by other
methods show differences between the two types of pairs.
Yet, the gaze feature (Cross-Encoder) on gaze-similar pairs
are significantly more similar than those on eye-consistent
pairs. The eye feature (Cross-Encoder) on gaze-similar
pairs are less similar than those on eye-consistent pairs. It
indicates the advantages of Cross-Encoder in disentangling
the gaze and eye features. It is worth noting that the simi-
larities of the eye features are large (more than 0.5) on both
the pairs, the value is even higher than that of gaze fea-
ture on the gaze-similar pair (test). The reason is that in
gaze-similar pair, although the left and the right eye have
different eye-identity, they are of the same person and gain
a moderately large similarity. We also observe that similar-
ity of the gaze feature (Cross-Encoder) drops on the test set
on gaze-similar pairs. The values are nearly 1 for on the
training set, and are around 0.6 and 0.8 on the test set. It is
reasonable because the gazes are not absolutely equivalent,
but are assumed to be similar in our method.

Forth, we visualized the eye features and gaze features in
2-dimensional space using t-SNE [34] in Fig. 6. Each point
denotes the feature of an eye’s image. Different colors de-
note different eye identities. Note that one eye-identity cor-
responds to one eye, which makes the left and the right eye
of a same person has different eye-identities, so the number
of colors are twice the number of subjects. It is observed
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eye feature gaze feature
(a) Columbia training set.

eye feature gaze feature
(b) Columbia validation set.

eye feature gaze feature
(c) UTMultiview training set.

eye feature gaze feature
(d) UTMultiview validation set.

Figure 6. Visualization of Cross-Encoder-learned representation using t-SNE [34]. Each point corresponds to an eye’s image and is colored
by its eye’s identity. Better viewed in color.

that the eye features are clustered by eye identities but the
the clusters are not so obvious for gaze features. The gaze
features are better mixed than the eye features, although a
few person-specific clusters exist. It is worth noting that
despite the imperfect clustering, the Cross-Encoder-learned
gaze feature is effective for gaze estimation.

Cross-Encoder versus equal feature constraint: Since
Cross-Encoder is designed to make the features be similar,
an alternate is to force the features to be equal by adding
a constraint (e.g., L1 loss) under the conventional auto-
encoder framework. We demonstrated the advantage of the
Cross-Encoder over auto-encoder using equal feature con-
straint. First, the constraint-learned gaze features performed
worse than the Cross-Encoder-learned ones in gaze estima-
tion task. In Table 1, the errors of auto-encoder(equal fea-
ture constraint) are much larger than those of the best Cross-
Encoder among all datasets. Second, using equal feature
constraint cannot disentangle the eye features and gaze fea-
tures. As shown in Fig. 5, the constraint-learned gaze fea-
tures and eye features are almost the same in spite of var-
ied gaze and eyes. It is also observed in Fig 4 that the co-
sine similarities of both the two constraint-learned features
are near 1, on both eye-consistent pairs and gaze-consistent
pairs. The possible reason is that it reaches a degenerative
solution which encodes all the input images into two similar
features. The features are enough to reconstruct the original
images by losing subtle information.

Two types of training pairs: It is necessary to use both
eye-consistent pair and gaze-consistent pair. Table 1 shows
a big gap between the performance of the Cross-Encoders
with only eye-consistent pair and with both pairs.

Dimension of the gaze feature and the eye feature: Ta-
ble 1 reports the performance of Cross-Encoders with dif-
ferent gaze feature and eye feature dimensions. The optimal
gaze feature dimensions are 15, 15, and 9 on Columbia,
MPIIGaze and UTMultiview, respectively. Columbia and
MPIIGaze has a larger feature dimension probably because
it has more variance, e.g., subjects who wear glass. The op-
timal eye feature dimension is 16 for MPIIGaze and 64 for
the other two datasets. In general, the differences are subtle
and Cross-Encoder exceeds other methods regardless of the
dimension. This shows that Cross-Encoder is not sensitive
to the dimension of features.

Residual loss: Table 1 reports the performance of Cross-
Encoders without residual loss. Adding the residual loss
improves the performance on Columbia but reduces that on
UTMultiview and MPIIGaze. This might ascribe to the dif-
ferent distribution of the datasets. We concluded that resid-
ual loss is optional and the reconstruction loss is the cutting
edge loss.

5. Conclusions
In this paper, we have presented an unsupervised learn-

ing method to learn a gaze representation. Our key contribu-
tions are to propose an unsupervised representation learning
method Cross-Encoder, and applying it to gaze estimation
by introducing two strategies to select the training pairs. We
conducted experiments to prove the ability and disentangle-
ment of the learned representations, and the performance
of fine-tuned Cross-Encoder. They all show the validity of
our method. Cross-Encoder is a general approach for unsu-
pervised representation learning. Future work can explore
other applications of Cross-Encoder.
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