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Abstract

We introduce Task Switching Networks (TSNs), a
task-conditioned architecture with a single unified en-
coder/decoder for efficient multi-task learning. Multiple
tasks are performed by switching between them, perform-
ing one task at a time. TSNs have a constant number of pa-
rameters irrespective of the number of tasks. This scalable
yet conceptually simple approach circumvents the overhead
and intricacy of task-specific network components in ex-
isting works. In fact, we demonstrate for the first time
that multi-tasking can be performed with a single task-
conditioned decoder. We achieve this by learning task-
specific conditioning parameters through a jointly trained
task embedding network, encouraging constructive interac-
tion between tasks. Experiments validate the effectiveness
of our approach, achieving state-of-the-art results on two
challenging multi-task benchmarks, PASCAL-Context and
NYUD. Our analysis of the learned task embeddings fur-
ther indicates a connection to task relationships studied in
the recent literature.

1. Introduction
The very concept of computer vision is to automatically

perform the tasks that a human visual system can do. Even
artificial neural networks (ANNs) were also designed as an
inspiration from the biological nervous system, such as the
human brain. As opposed to the most successful ANNs,
the brain and its visual cortex can perform multiple tasks
– such as object, parts, and boundary detection or depth
and orientation prediction – without any difficulty. Be-
ing able to perform multitude of such tasks has allowed
humans to efficiently conduct complex activities. In the
very spirit, real-world applications like autonomous driving,
healthcare, agriculture, manufacturing, cannot be addressed
by merely seeking for the perfection on solving individual
tasks. It goes without saying that a system capable of per-
forming multiple tasks not only has potential of being ef-
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Figure 1: Solutions for multi-task learning. (a) Every
task is solved by training an individual network, i.e., us-
ing an independent encoder-decoder pair for each task. (b)
General multi-task solutions are built on sharing the en-
coder and maintaining separate decoders for each task. (c)
Task-conditional (TC) multi-task solutions [15, 24] are built
on sharing partial parameters of the encoder (task-specific
modules also exist), and using separate decoders for each
task. (d) In the proposed Task Switching Networks (TSNs),
all parameters of a single encoder-decoder pair are shared,
and a small task embedding network C facilitates switching
between different tasks. Best viewed in color.

ficient in memory usage, computation, and learning speed,
but it may also benefit from complementary tasks.

To tackle multi-task learning (MTL), different solutions
have been proposed. Encoder-based methods [18, 27, 23]
focus on the encoder, by enhancing the representation
capability of architectures so that both shared and task-
specific information can be encoded, while decoder-based
approaches [47, 44] explore techniques mainly on the de-
coder part, to better refine the encoder features for specific
tasks. Optimization-based methods [6, 17, 37] explicitly
target on task interference or negative transfer issue from
optimization perspective, by re-weighting the loss or re-
ordering the task learning. In general, these methods fol-
low the structure as Fig. 1 (b). Recently, another direc-
tion for MTL emerged, termed task-conditional (TC) multi-
tasking [24, 15], shown in Fig. 1 (c). They perform sepa-
rate pass within the MTL model and activate a set of task-
specific modules for each task. The task-specific modules
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are used to adapt the network for corresponding tasks. As
this setting has many practical use cases [15, 24], our pro-
posed TSNs also follow it and execute one task each time.

Despite that promising results are achieved, the existing
methods [44, 24, 15] do not scale well with the number
of tasks since they require a large number of task-specific
parameters (modules). This can be seen in Fig. 1 (b) and
(c), where task-specific decoders or modules (in the en-
coder) scale with the number of tasks. Additionally, even
though task-specific modules minimize adverse interactions
amongst tasks, they also minimize positive interactions, i.e.,
inductive bias [5]. Motivated by these, we propose Task
Switching Networks (TSNs). TSNs share all parameters
among all tasks and do not require any task-specific mod-
ules (parameters). Hence, our network is simple and has
constant size independent of the number of tasks, while still
enabling task interactions. We argue that our motivation is
also consistent with the widely accepted view in neurobiol-
ogy, that the visual cortex does not have separate modules
for different tasks [20, 26].

More specifically, our task-switching networks solve
multiple tasks by switching between them – performing
one task at a time, and follows a task-conditional single-
encoder-single-decoder architecture. As shown in Fig. 1
(d), the task switching is accomplished by employing a
small network to learn task-specific embeddings from task
encodings, and the behaviour of the decoder is adapted by
conditioning it on those embeddings. In practice, we con-
dition only the decoder (U-Net), in a hope that the encoder
learns the concept of ‘thought space’ [36] as it is forced to
be task-agnostic. This way, the encoder features can also be
reused to efficiently perform multiple tasks in series, which
is not possible in encoder-based conditioning [24, 15].

Interestingly, the task embedding network offers some
insight into the relationships between tasks. During train-
ing, a latent embedding for each task is learned together
with its corresponding mapping to the conditioning parame-
ters in each decoder layer. Though there are still many open
questions in the study of task relationships and multi-task
learning [40], we observe that the structure of our task em-
beddings resemble the task relationships reported in [48].

To summarize, in this work we study multi-task net-
works without task-specific parameters, and investigate the
behaviour with regards to efficiency, optimization, and ac-
curacy. We state our key contributions as follows.

• We introduce Task-Switching Networks, an efficient
yet simple architecture for multi-task learning.

• We demonstrate that conditioning a single shared de-
coder can outperform multi-decoder methods even on
heterogeneous tasks such as segmentation and regres-
sion.

• We adopt a small embedding network to learn task

conditioning, facilitating optimization and offering in-
sights into relationships between tasks.

2. Related Works
Multi-task learning (MTL). MTL is concerned with learn-
ing multiple tasks simultaneously, while exerting shared
influence on model parameters. The potential benefits
are manifold, and include speed-up of training or infer-
ence, higher accuracy, better representations, as well as
lower parameters or higher efficiency. A comprehensive
survey on architectures, optimization and other aspects of
MTL can be found in [7]. Many MTL methods per-
form multiple tasks by a single forward pass, using shared
trunk [18, 3, 23, 43, 22, 8], cross talk [27], or prediction
distillation [47, 50, 51, 44] architectures. A recent work of
MTI-Net [44] follows this direction and proposes to utilize
the task interactions between multi-scale features. Another
stream of MTL methods are based on task-conditional net-
works [15, 24], which perform a separate forward pass and
activate some task-specific modules as well as shared mod-
ules, for each task. As mentioned in [15], this setting is
useful for many real-world setups. Hence, we follow this
direction and propose TSNs. In stark contrast to condition-
ing the shared encoder, as done in [24, 15, 31, 2, 52, 41],
we instead learn an unconditioned encoder, and condition
only one single unified decoder for all tasks. To the best
of our knowledge, our network is the first MTL method
that does not require task-specific branching to multiple de-
coders, but rather shares all network parameters and a single
conditional unified decoder for all tasks.
Conditioning strategy. In the context of MTL, [41] pro-
pose a heuristic masking of features to induce partially
shared subnetworks for each task. On the other hand, fea-
tures can be modulated by introducing task-specific pro-
jections [52], residual adapters [31, 32], attention mech-
anisms [24] or parametrized convolutions [15], while the
original backbone network is shared among all tasks. Moti-
vated by the successful application of adaptive normaliza-
tion strategies in the context of domain adaptation [21],
image generation [4, 16], style transfer [13], and super-
resolution [46], we explore task-conditioned affine projec-
tions after instance normalization (IN) [42] for MTL. In-
spired by the style-based generator of [16], the affine pa-
rameters are generated from a latent vector representing
a desired task. Note that a concurrent work of [30] pro-
poses a new task of CompositeTasking by fusing tasks spa-
tially (pixel-wise), based on task-conditioned BatchNorm
(BN) [14].
Task relationships and embedding. Knowledge on the
relationships between tasks is crucial for many aspects of
machine learning, including multi-task, transfer, or meta-
learning. Including the seminal study by Zamir et al. [48],
many recent works shed light on such task relationships for
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transfer learning and multi-tasking [10, 38, 39, 9, 49] by
means of computation. Based on the assumption that tasks
can be meaningfully taxonomized, this structure can be
represented using task embeddings in a high-dimensional
space. Nevertheless, such embeddings are mostly explored
in meta-learning literature [1, 35, 19], and very little from
the multi and transfer learning perspective [49]. Note that
the task embeddings [1, 35, 19] of meta-learning are indeed
inspirational, but using the mechanisms of meta-learning
in the context of MTL is however not straightforward, be-
cause they are based on fundamentally different assump-
tions. We believe it is worth studying the connection of task
relationships, embeddings, and multi-task learning in more
detail [7], and we see our work as a step in this direction.

3. Problem Formulation
We begin by formally introducing the multi-task learning

problem from the perspective of network architecture. In
our formulation we consider sequential multi-tasking, i.e.
solving one task per forward pass, as done in recent MTL
techniques [24, 15]. First, we are going to give a formal
definition of multi-task networks and data sets.

Definition 3.1 (Multi-task network) Given a set of tasks
T to be performed on images X = [0, 1]

h×w×3. For the
sake of simplicity, let the output type Y = [0, 1]

h×w×c be
equal for all tasks. We define fθ : X×T → Y to be a multi-
tasking network with parameters θ, that performs one given
task τ at a time on a given image. Further, let Fθ be the set
of all multi-tasking networks with parameter set θ.

Definition 3.2 (Multi-task data set) Let us denote a multi-
task data set as Dτ ={(In,yτn)}N , with tasks τ ∈ T , and
yτn as the ground-truth associated to task τ for image In.

Now we can define our goal for MTL as finding a multi-
task network with a small set of parameters, that is able to
solve all tasks with an accuracy that is close to or better than
a single-task baseline. We measure the achievement of this
goal by means of the relative performance drop.

Definition 3.3 (Relative performance drop) Given a met-
ric mτ to evaluate the performance for task τ , we de-
fine the relative performance drop from a baseline mb

τ as

∆τ (mτ ,m
b
τ ) = sτ

mτ−mbτ
mbτ

, where sτ ∈ {−1, 1} indicates
if higher values are better, or vice versa.

We can now formalize our problem statement as follows.

Problem 3.4 (Parameter-efficient MTL) Given a valida-
tion set of labelled images DT for tasks set T , with corre-
sponding loss functions `τ , and expected validation losses
¯̀S
τ of single-task baselines, we wish to find a multi-tasking

network with the least number of parameters, while bound-
ing the relative performance drop by ∆τ , as follows.

min
f∈Fθ ,θ

|θ|,

s.t. E
(I,yτ )∼Dτ

[`τ (f(I, τ),yτ )] ≤ (1 + ∆τ )¯̀S
τ ,

∀τ ∈ T .

(1)

While this is fundamentally a problem of architecture
search that could be solved using neural architecture
search [11] or combinatorial optimization [40], we instead
develop our solution from an analysis of shared parameters.

With slight abuse of notation, we aim to learn a function
f(In,θs,θτ , τ) = yτn, for all n ∈ [1, N ] and τ ∈ T . Here,
θs denotes the shared parameters across all tasks, while θτ
represents the task-specific parameters. Let θ denote the
total parameters for T (|T |) tasks, given by

θ = θs ∪
⋃
τ∈T

θτ . (2)

In addition to learning task-specific conditioning param-
eters, existing MTL methods [31, 2, 15, 24] also learn one
or more task-specific convolution layer(s) after branching
out to their respective output head. This is also necessary to
cater for the output types of different tasks. For the simplic-
ity of analysis, we assume that the number of parameters for
all tasks is a constant, and we have the condition,

|θs ∪ θτ | ≈ c,∀ τ ∈ T . (3)

Combining Eq. 2 and Eq. 3, we get

|θ| = Tc− (T − 1)|θs|. (4)

From Eq. 4, it is obvious that the total number of parame-
ters for a MTL approach with T tasks is inversely correlated
with the number of shared parameters |θs|. In the extreme
case of single-task setting, where each task is solved by an
individual network, without sharing any parameters across
tasks, the total parameters are given by |θ| = Tc. Hence,
existing approaches seek to increase the number of shared
parameters θs, while reducing task interference [18, 52, 24]
and maintaining the performance for all tasks. In this paper,
we pursue a challenging goal: sharing as many parts of the
network as possible across all tasks, up to the point that all
parameters are shared, and the network becomes indepen-
dent of the number of tasks T ,

θτ = ∅, ∀ τ ∈ T ⇒ c = |θs| = |θ|. (5)

Next, we explain our solution to achieve this goal.

4. Method
In this section, we first present the proposed task switch-

ing networks in detail. We further explain task embedding
learning using our network.
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Figure 2: Task Switching Network overview. Our network performs multi-tasking by switching between tasks using a
conditional decoder. Following U-Net [33], our encoder takes the image In and extracts features Fi at different layers. As
second input, our network takes a task encoding vector vτ , selecting task τ to be performed. A small task embedding network
C maps each task to a latent embedding lτ , that conditions the decoder layers along the blue paths, using moduleA [16]. The
output is computed by conditioning and assembling encoder features Fi and decoder featuresOi in a bottom up fashion.

4.1. Task Switching Network

As laid out in the introduction, we design our Task
Switching Networks on the premise that all network pa-
rameters should be shared, in order to provide an efficient
solution to Problem 3.4. However, as illustrated in Fig. 1,
parameter sharing in MTL techniques in literature are lim-
ited to the encoder and parts of the decoder, and omit the
potential of sharing the complete decoder. Moreover, state-
of-the-art methods [24, 15] switch tasks by activating task-
specific modules. To avoid such additional parameters for
each task, we introduce task switching, by taking a task con-
dition as an additional input to the network. To this end, we
associate each task τ with a task-condition vτ ∈ Rd.

The input to our model therefore is a pair of image and
task-encoding vector, i.e., (In,vτ ), which represents con-
ducting task τ on image In. Our backbone encoder takes
the image In and extracts features Fi at different layers. A
small task embedding network C with a few fully connected
layers maps each task to a latent embedding lτ , that is used
to condition the decoder layers using a module similar to
StyleGAN [16]. The output is then computed by condition-
ing and assembling encoder features Fi and decoder fea-
turesOi bottom-up along the feature pyramid.

In our discussion, the dense prediction tasks (i.e., edge
detection, and semantic segmentation) are considered if not
specifically stated, following [24, 15]. In the following, we
describe the architectural details of our network.

4.1.1 Network Architecture

As shown in Fig. 2, our network is based on a simple U-
Net architecture [33]. The encoder is a ResNet-based [12]
backbone pre-trained on ImageNet [34], following existing
MTL approaches [24, 15]. Let layer 1 denote the first con-

volution layer with kernel size of (7 × 7), and layer 2 to
layer 5 represent conv2 x to conv5 x (notation in [12]) of
the backbone, respectively. The outputs of layer 1 to layer
5 are F1 to F5. From layer j to layer j + 1, the spatial
resolution of the encoder feature maps is reduced by half.

For the decoder, we follow a similar structure as U-
Net [33], collecting features from layer 5 to layer 1. Specif-
ically, at layer j (j ≤ 4), the corresponding feature maps
Fj from the encoder first pass through a conditional con-
volution module A, then concatenate the features (after up-
sampling) from layer j + 1, and finally pass through an-
other instance of A. For the highest layer (j = 5), the fea-
ture maps go through module A only once since there is no
higher layer. As shown in Fig. 2, module A transforms in-
put features to new features based on the embedding vector
lτ , representing the specific task. Let Oj be the output of
the decoder from layer j, which is given by

Oj =

{
A([U(Oj+1),A(Fj , lτ )] , lτ ), for j ≤ 4,
A(Fj , lτ ), for j = 5

, (6)

where [·, ·] denotes the concatenation of two features ten-
sors along the channel dimension and U(·) is a upsampling
operation, which is omitted in Fig. 2 for simplicity.

The output feature O1 from decoder layer 1 has the
same resolution as the original image and is passed to a
convolution layer to make predictions for different tasks.
As discussed previously, different tasks can either share a
common convolution layer (i.e. a single head shared by all
tasks), or have separate convolution layers (different heads
for different tasks). In the interest of avoiding task-specific
parameters, we opt for the choice that a single head is used
by all tasks. To this end, we simply choose the number
of output channels as the largest number channels needed
for different tasks. Take PASCAL-Context [28] (the most
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popular benchmark in MTL) as an example, the number of
output channels needed among edge detection, parts seg-
mentation, semantic segmentation, normals, and saliency
detection are 1, 7, 21, 3, and 1, respectively. So we choose
21 output channels, which fits for semantic segmentation.
For other tasks, we simply conduct adaptive average pool-
ing along the channels to obtain the predictions matching
the corresponding tasks. The elegance of sharing a head
across tasks is that exactly a single and neat network is used
to solve all tasks. Our experiments in fact support this ap-
proach, since we found that sharing one head performs com-
petitively to using separate head for different tasks.

In the following, we describe the two key components of
task switching networks, that facilitate the conditioning.
Conditional Convolution Module. The goal of this mod-
ule (block A in Fig. 2) is to adjust feature representations
from the encoder – that are shared by all tasks – to new
features that serve the desired task. As mentioned above,
to conduct task τ , the corresponding task-condition vector
vτ is transformed by the embedding network C to obtain
the task-specific latent vector lτ , which is then passed to
module A, inspired by [16]. Let x ∈ R1×c1×h×w denote
the input feature to module A, where c1, h and w repre-
sent number of channels, height and width of the feature
map, respectively. Module A then works as follows. First,
x is processed by a convolution layer x̂ = x ∗W with fil-
ter weights W , generating x̂ ∈ R1×c2×h×w. At the same
time, lτ is transformed by two fully connected layers with
weight matrices Wγ ∈ Rd×c2 and Wβ ∈ Rd×c2 , to form
the normalization coefficients γ ∈ R1×c2 and β ∈ R1×c2 ,
for the subsequent AdaIN. For feature x̂, AdaIN performs
the normalization following,

AdaIN(x̂, β, γ) = γ
(x̂− µ)√

σ2
+ β, (7)

where β and σ2 are the mean and variance of x̂, which
are statistics computed according to instance normaliza-
tion [42]. In summary, module A performs the operation

A(x, lτ ) = lτWγ
(x ∗W − µ)√

σ2
+ lτWβ . (8)

Task embedding network. Recall that each task is associ-
ated with a unique task-condition vector vτ ∈ Rd, and the
TSNs switch between tasks by feeding different vτ to the
task embedding network C, shown in the left of Fig. 2. The
embedding network C : Rd → Rd learns to embed the task
τ in a latent space lτ = C(vτ ), from which the AdaIN coef-
ficients of Eq. 7 are generated for each module A. In prin-
ciple, there are many choices for the initialization of these
vectors. Specifically, we investigate embedding dimensions
d, with orthogonal vτ (binary vector) given by

Table 1: Task switching performance. Our TSNs perform
competitively with single tasking and multi-tasking base-
lines, with substantially smaller model sizes. Optimal per-
formance is observed when all parameters are shared via
our task embedding module (INs+TE).

Method Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓ # params
Single-task 71.3 64.3 55.3 16.3 62.9 - 88.7M

Multi-decoder 72.2 55.4 55.5 16.8 59.1 4.32 43.9M

Ours (BNs) 71.6 55.9 54.1 16.7 60.0 4.38 17.7M
Ours (INs) 70.7 62.8 54.6 16.8 63.1 1.43 17.7M

Ours (INs+TE) 70.6 64.2 55.0 16.3 63.3 0.30 18.3M

vᵀ
τ1vτ2 =

{
d
T
, if τ1 = τ2

0, otherwise
, vτ1,τ2 ∈ Rd, (9)

and Gaussian random vectors vτ ∼ N (0d, diag(1d)) [16].
The results are reported in §5.1.

5. Experiments
Overview . Following existing works [24, 15], we focus our
MTL experiments on dense prediction tasks. In particular,
we use the PASCAL-Context [28] dataset, which contains a
total of 10,103 images, for the five tasks of edge detection
(Edge), semantic segmentation (SemSeg), human parts seg-
mentation (Parts), surface normals (Normals), and saliency
detection (Sal). We further evaluate and compare our ap-
proach on the NYUD dataset [37], which is comprised of
1,449 images of indoor scenes and comes with annotations
for the four tasks of edge detection, semantic segmentation,
surface normals, and depth estimation (Depth).
Evaluation metric. We use standard evaluation metrics,
following [24, 15, 45]. Specifically, to evaluate the predic-
tive performance for each task, we use the optimal dataset
F-measure (odsF) [25] for edge detection, mean intersec-
tion over union (mIoU) for semantic segmentation, human
parts segmentation, and saliency, mean error (Error) for
surface normals, and root mean square error (RMSE) for
depth. In order to compare to a multi-task approach m, we
average the relative performance drop (see Definition 3.3),
with respect to the single-task baseline b over all tasks:
∆m = 1

T

∑
τ∈T ∆τ (pm,τ , pb,τ ), where pm,τ and pb,τ are

the metrics for task τ for the multi-task method m and for
single-task baseline b, respectively.
Network configuration. We employ the ResNet-18 back-
bone with the architecture introduced in §4.1 for all of our
experiments, unless stated otherwise. The task embedding
network C contains 8 fully connected layers of width d. Our
method is implemented in PyTorch [29] and experiments
were conducted on NVIDIA GPUs.

5.1. Ablation study

Study on module sharing. We compare our method with
various baselines in Table 1. All approaches use the same
network architecture and are trained with the same hyper-
parameters, to ensure fair comparisons. The details of all
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(a) Zamir et al. [48] (b) Ours (c) Dwivedi et al. [10] (d) Song et al. [39]

Figure 3: Task embedding relationships. We analyse the similarity of our task embeddings after training our network with
20 tasks on a small subset of the Taskonomy dataset [48]. The hierarchical clustering of task affinities from our learned
embeddings (b), reveals an interesting similarity to the relationships found by the compared methods (a,c,d).

Table 2: Impact of task embedding strategy. The de-
signed task embedding is robust against different choices
for the task encoding vτ , as well as for the dimensionality
d of the embedding network C.

Type d Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓

Orthogonal

50 70.8 63.6 55.2 16.3 63.4 0.32
100 70.6 64.2 55.0 16.3 63.3 0.30
150 70.5 64.3 54.9 16.3 63.2 0.38
250 70.5 63.8 54.8 16.4 63.1 0.75

Gaussian
50 70.8 64.1 55.1 16.3 63.0 0.30

100 70.3 63.2 54.4 16.5 63.1 1.22
150 70.7 63.6 54.8 16.3 63.4 0.44

Table 3: Impact of network architecture. The designed
task embedding is robust against various backbones.

Backbone Method Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓

ResNet-18
Single-task 71.3 64.3 55.5 16.3 62.9 -

Ours 70.6 64.2 55.0 16.3 63.3 0.30

ResNet-34
Single-task 72.7 68.6 58.7 16.0 64.4 -

Ours 71.8 67.6 58.0 16.1 64.3 0.99

ResNet-101
Single-task 74.2 70.7 62.1 15.8 65.0 -

Ours 73.3 70.9 61.0 15.9 64.5 0.93

considered baselines are as follows. Single-task means that
each task is trained with an individual network, shown in
Fig. 1 (a). Multi-decoder represents a simple multi-task
solution where encoder is shared but decoders are task-
specific. We further compare to our architecture without
the task embedding (TE) network, by using task-specific
batch-(BNs), and instance (INs) normalizations. We see
that the Multi-decoder model, sharing a common encoder
but using different decoders does not perform well, which
is consistent with MTL literature [15]. Moreover, it has a
large number of parameters (43.9 millions). Task-specific
BNs on the other hand performs only slightly worse than
Multi-decoder, with a substantially smaller model size. In-
terestingly, Task-specific INs performs much better than
Task-specific BNs. The results for Task-specific BNs and
INs show that simply adapting features to different tasks
by affine transformation in the decoder is able to give rea-
sonable performance for multi-task learning. Our method,
with the task embedding network to jointly learn the (affine
transformation) coefficients for AdaIN, outperforms task-
specific INs by 1.13% in terms of average performance drop

∆m. It demonstrates that learning the normalization coef-
ficients jointly through the task embedding is better than
learning them separately for each task. We also observed
that during training, our method converges much faster than
Task-specific INs and BNs. Moreover, our method only in-
creases the size of the model by a small margin, because the
task embedding network C in our model is very small.
Task embedding network. We study the impact of two
different choices for the task-condition vector vτ , as de-
scribed in §4. The results are shown in Table 2. For or-
thogonal encodings, we observe that the performance of
our method is robust towards the embedding dimensional-
ity d, while perfoming best at d = 100. Gaussian encod-
ings perform equally well as the orthogonal counterpart for
dimensionality below 100, and tends to be slightly worse
above. We conjecture that under Gaussian encoding, the
distance between task-condition vectors for two tasks is ran-
dom (close or far), which is not desirable. However, this
study demonstrates that our conditioning is robust towards
these hyper-parameters. In our experiments, we choose or-
thogonal encoding with a dimension of 100 for PASCAL-
Context dataset (5 tasks). For NYUD dataset (4 tasks), we
use dimension of 120 (divisible by 4).
More network architecture. Following [24, 15], we study
the robustness of our method against more network ar-
chitectures (ResNet-34 and ResNet-101). The results are
shown in Table 3. As expected, the absolute performance
on all tasks improves when using larger networks. Fur-
thermore, our method performs closely to the correspond-
ing single-task baselines for different backbones. Note that
single-task baselines have 5 times more parameters than
ours. The fact that our approach achieves similarly low av-
erage performance drop (∆m%) across various networks,
demonstrates its robustness and effectiveness in reducing
negative interference between tasks.

5.2. Comparison to state-of-the-arts

The state-of-the-art comparisons for PASCAL-Context
are shown in Table 4. We compare our method to
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Table 4: Comparison with state-of-the-art. Our TSNs
outperform different multi-decoder methods on PASCAL-
Context, with only a single decoder and substantially fewer
parameters.

Method Edge↑ SemSeg↑ Parts↑ Normals↓ Sal↑ ∆m%↓ # params
Single-task 71.3 64.3 55.5 16.3 62.9 - 88.7M

Series RA [31] 72.0 55.1 54.6 17.0 58.7 5.21 51.7M
Parallel RA [32] 72.1 55.9 55.0 17.0 58.6 4.81 50.8M

RCM [15] 72.3 56.6 55.8 16.7 59.3 3.62 51.7M
Ours 70.6 64.2 55.0 16.3 63.3 0.30 18.3M

Task-conditional (TC) multi-task methods: Series Residual
Adapter (Series RA) [31], Parallel Residual Adapter (Paral-
lel RA) [32], and RCM [15], since these approaches follow
the same direction of MTL as mentioned previously. For
a fair comparison, both Series RA and Parallel RA are im-
plemented in our setting. Performance RCM is obtained
by adapting the official implementation to our setting (U-
Net architecture). We observe that our method achieves the
best performance among those existing methods in terms
of average performance drop, with respect to our single-
task baseline. We report the number of parameters for each
method, and show that our method uses the least parame-
ters among the compared methods. Specifically, our method
outperforms RCM by 3.32% and only uses 18.3M parame-
ters, compared to 51.7M of RCM.

In fact, our main motivation in §3 is driven by efficient
parameter utilization. In Fig. 4, we can see how the number
of parameters |θm| of each method scales with the number
of tasks T . By design, our TSNs have constant parame-
ters irrespective of T . On the other hand, other methods
(RCM, Multi-decoder, etc.) scale linearly with T . For in-
stance, when T = 9, our method still has 18.3M parame-
ters, whereas the 84.0M parameters for RCM and 159.6M
for Single-task make it obvious that these methods are not
applicable in practical cases where many tasks are required
and resources are limited.

We further validate our method in NYUD dataset. The
results are shown in Table 5. Similarly, we observe that our
method outperforms existing approaches by clear margins,
which further demonstrates the general effectiveness of the
proposed task-switching network. The qualitative compar-
isons are shown in Fig. 6.

Table 5: Comparison with state-of-the-art. On the four
tasks of NYUD dataset, our TSNs outperform the compared
methods, with superior parameter efficiency.

Method Edge↑ SemSeg↑ Normals↓ Depth↓ ∆m%↓
Single-task 67.7 26.6 26.2 74.0 -

Series RA [31] 68.5 18.9 29.0 84.1 10.39
Parallel RA [32] 68.5 23.1 29.0 84.2 7.25

RCM [15] 68.7 23.2 28.4 82.1 6.14
Ours 67.9 25.9 26.1 72.7 0.03

Figure 4: Model parameters scaling. While the number of
parameters in TSNs is independent of T , it scales in a linear
fashion for the compared MTL methods.
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Figure 5: Task embedding similarity. We observe that
similar tasks – such as body parts and semantic segmen-
tation in PASCAL-Context (a), or depth and normals in
NYUD (b) – cluster together in the learned embedding
space, while 3D tasks are separated from 2D tasks.

5.3. Task relationships

Learning a task embedding network jointly with the
MTL objective naturally raises the question, if the learned
task embeddings carry some meaningful information for
task relationships. To analyse this question empirically, we
compute task affinity between two tasks as follows,

A(τi, τj) = 1−
lᵀτi lτj
‖lτi‖‖lτj‖

. (10)

We visualize our found affinities for PASCAL-Context
and NYUD datasets in Fig. 5, together with an illustration
of the hierarchical clustering. We make two interesting ob-
servations. First, there seems to be a clear distinction be-
tween 2D and 3D tasks in the embedding, with depth and
normals being close in NYUD, as well as normals getting
separated from segmentation tasks in both datasets. Second,
in PASCAL, the cluster hierarchy appears to be correlated
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Figure 6: Qualitative results. We compare our model with baseline (Task-specific INs) visually. Task interference is
observed in baseline where detected edges could exist in saliency predictions. Our method resolves this and outperforms the
baseline in high-level tasks such as semantic segmentation, parts, and saliency detection. Best viewed with zooming.

with “semanticness” – connecting first parts and semantic
segmentation, then saliency, edges and finally normals.

We further investigate the task embeddings on the 20
tasks of the Taskonomy [48] dataset, which is intended for
finding task relationships. In Fig. 3, we compare our found
task relationships with the ones established by Zamir et al.,
as well as with two recent methods [39, 10]. Interestingly,
there appears to be a striking similarity between the found
“taskonomies”. Although not perfect, we roughly observe
the trend of 2D and 3D tasks clustering together, as well
as a separation of low level (e.g. denoising, inpainting)
from high level (semantic segmentation, scene classifica-
tion) tasks. Note that our method establishes task rela-
tionships much more efficiently than the compared meth-
ods [48, 39, 10]. Specifically, these approaches need to
have separate models trained for individual tasks (i.e., 20
separate models for 20 tasks). Then the method proposed
in Taskonomy [48] does transfer learning between different
tasks to find the task similarities, while both RSA [10] and
DEPARA [39] conduct pairwise comparisons among deep
features extracted from a certain number of images. How-
ever, our approach only uses a single unified model and ob-
tains the task similarities by simply computing the affinities
between task embeddings.

We hypothesize that our embeddings implicitly transfer
knowledge between tasks in the embedding space, in order
to provide the impressive results of Table 1 and 4. If two
tasks require similar features, it is favorable to share cer-
tain patterns in the conditioning, and therefore be localized
closer together in the embedding space. From experimental
results, we can see that this behaviour is further encouraged
by the limited capacity of the embedding network.

5.4. Discussion

Test-time parameters. In Table 4 and Table 5, we report
the number of parameters of our TSNs. When it comes to
maximizing memory and computational efficency, we can
however convert our task-switching network into a task-
conditioned network, by computing the AdaIN parameters

once and storing them with the model. In that case, the
number of parameters drops from 18.3M to 17.7M, corre-
sponding to the size of our IN baseline in Table 1. From
this perspective, our task embedding can interpreted as a
additional inductive bias for the MTL.
Architecture. We chose the U-Net architecture for simplic-
ity, together with the ResNet-18 backbone to demonstrate
the idea of task switching networks, and its behaviour and
performance with regards to recent MTL methods. The ap-
plication of TSNs principle using other more powerful or
more efficent architectures, backbones, decoders, or condi-
tioning strategies leaves for future work.

6. Conclusion
In this paper, we introduce the first approach for multi-

task learning that uses only a single encoder and decoder
architecture. By design, our Task Switching Networks of-
fer a substantial advantage in terms of simplicity and pa-
rameter efficiency. This is achieved by sharing the com-
plete set of network parameters among all tasks and using
a conditioning network to learn task-specific latent vectors
(embeddings) which then adapt the decoder for correspond-
ing tasks. As demonstrated in our experiments, our pro-
posed task switching strategy improves MTL performance
by learning the task embeddings jointly with all tasks, and
offers a new perspective on multi-task learning through the
lens of task embeddings. Our experiments further vali-
date the utility and efficiency of the proposed framework,
which outperforms state-of-the-art multi-decoder methods
on standard benchmark datasets with much less parameters,
under fair comparisons. We also show interesting findings
on task relationships using the learnt task embeddings. To
conclude, we believe that further investigation into the con-
cept of task embeddings for multi-task learning will be an
interesting topic for future work.
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