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Abstract

We recover high-frequency information encoded in the
shadows cast by an object to estimate a hemispherical pho-
tograph from the viewpoint of the object, effectively turn-
ing objects into cameras. Estimating environment maps is
useful for advanced image editing tasks such as relighting,
object insertion or removal, and material parameter esti-
mation. Because the problem is ill-posed, recent works
in illumination recovery have tackled the problem of low-
frequency lighting for object insertion, rely upon specular
surface materials, or make use of data-driven methods that
are susceptible to hallucination without physically plausi-
ble constraints. We incorporate an optimization scheme
to update scene parameters that could enable practical
capture of real-world scenes. Furthermore, we develop a
methodology for evaluating expected recovery performance
for different types and shapes of objects.

1. Introduction

Consider a small object sitting on a desk in your living
room. The object is illuminated by light sources from all
directions—this includes direct sources such as the sun or
overhead lights, but also indirect sources, like the foliage
outside that scatters sunlight through your window. The ap-
pearance of the object and the surface that it rests upon re-
sults from the complex interaction between the incident il-
lumination and the geometry and material properties of the
object and the desk. In this paper we ask the question—if
the geometry and material properties of the observed scene
are known, how well can we reconstruct the incident illumi-
nation pattern?

If we assume that the illumination sources are distant rel-
ative to the size of the observed object, then we can repre-
sent this illumination as a hemispherical photograph taken
from the perspective of the object. Thus, by using our

Figure 1. (Top) Observing the area around a small, bunny-shaped
object (top-left), can we recover occluded viewpoints only visible
from the bunny’s perspective? (Bottom) Given the surface geom-
etry of an object (bottom-left), we estimate the incident illumina-
tion, and in some cases, the unknown diffuse albedo of the surface
surrounding the object.

knowledge about an object to accurately estimate the illu-
mination incident upon it, we effectively turn the object into
a camera.

In this paper, we primarily make use of shadows cast by
an object onto nearby surfaces. Cast shadows are particu-
larly easy to interpret when an object is illuminated from a
single direction. For example, one can immediately deter-
mine the position of the sun by looking at a sundial. Esti-
mating the illumination incident from all directions simul-
taneously is more challenging, and is a linear but ill-posed
inverse problem.
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Prior methods are commonly limited to controlled cap-
ture methodologies. Some rely upon object’s shading or
specular highlights and thus require the bidirectional re-
flectance distribution function (BRDF) or precise surface
normal information. Our method relies on cast shadows
and requires only the shape of the object and the shape and
albedo of the shadowed surface. Previous works that utilize
cast shadows require planar objects that cast shadows onto
planar surfaces. We aim to support complex 3D objects in
a general framework applicable to most natural objects and
scenes.

We require partial reconstruction of the visible scene sur-
face, such as from a stereo camera pair, or utilize known
object geometry and relative camera orientation. Our esti-
mates are performed by jointly optimizing for scene param-
eters using this partial set of views to approximate the ray
transport matrix. Once we have estimated the ray transport
matrix, further estimates only require a single photograph
of the scene.

1.1. Contributions

* Recover high-frequency environment map from object
shadows that does not require a special setup, specular
object, or low-frequency assumptions

* Propose a practical technique for approximating the
light transport of an arbitrary object in a natural set-
ting from a restricted set of partial viewpoints

* Demonstrate a strategy for solving the inverse problem
“in the wild” for a scene with unknown surface mate-
rial and using just a single photograph.

* Examine the structure of the ray transport matrix to
determine feasible regions of reconstruction and assess
the object-camera performance

2. Related Work
2.1. Incident Illumination Estimation

Environment map estimation techniques usually require
specific capture setups [13], or seek approximations useful
for downstream tasks [21, 44]. Sato et al [34] were one of
the first to define the problem of approximating illumination
from shadows of objects on diffuse surfaces. Later work
has emphasized the use of sharp shadow boundaries from a
few bright sources for mixed reality applications or relight-
ing, [17, 26, 14, 46] rather than extended sources. Other
approaches include the use of custom probes for recovering
lighting useful for scene shading [8, 7].

Recently, Jiddi et al [ 8] demonstrated illumination esti-
mation using both specular paths and shadow information.
Specular paths are a useful cue for estimating incident il-
lumination [16, 31] potentially “in the wild,” but suitable
surfaces must be present in the scene.

Data-driven techniques have been used to estimate in-
cident illumination for a database of objects [43]. Large
datasets have been used to train deep neural networks to
predict incident illumination in natural scenes [15, 23] for
augmented reality applications or learning illumination for
portrait relighting [24]. Spatially varying illumination esti-
mation has been demonstrated using RGBD images [5] and
photographs [15], but these models do not enforce physical
plausibility.

Our work builds on existing methods for estimating il-
lumination from shadows, with a particular focus on arbi-
trary illumination conditions, such as extended sources, and
scenes with unknown albedo.

2.2. Inverse Rendering

Recently, several data-driven approaches have been pro-
posed to learn a mapping between reference photographs
and scene parameters [32] [2, 9] directly. These learned
mappings typically incorporate a differentiable rendering
module to serve as conditioning during training [2, 9, 19,

].

Volumetric scene representations have been proposed for
spatially varying lighting estimation [38]. Similarly, im-
plicit neural representations have shown impressive results
for inverse rendering tasks [28, 37], but estimates the un-
mixed product of material reflectance and lighting.

Recently, practical implementations of differentiable
path tracing for the rendering of mesh-parameterized ge-
ometries have been developed [25], as well as a reparam-
eterization that makes use of modern autodifferentiation
techniques [30, 27].

Demonstrations of de-rendering have typically been used
for re-lighting or 3D reconstruction tasks and are less fo-
cused on “image-like” illumination estimates.

2.3. Occlusion Assisted Imaging

Early occlusion-based non-line-of-sight (NLoS) ap-
proaches make use of specific scene features such as ac-
cidental cameras or pinspecks [I1, 42]. More recently,
some different capture methodologies have been proposed
for time-of-flight based approaches [33], blind deconvolu-
tion in intensity-based NLoS [29, 35, 45, 41], and the re-
covery of light fields [4]. Critically, these works have shown
reconstructions from calibrated planar surfaces. The use of
the deep image prior has been proposed to approximate the
ray transfer matrix [!], but assumed planar hidden scenes
and did not investigate realistic high dynamic range hidden
scenes.

Bouman and Seidel [0, 36] each demonstrated how the
occlusion of light at a flat edge enables the reconstruction
of 1D projected views of a scene hidden around a corner.
Other approaches have utilized active sources to illumi-
nate hidden objects [20, 39, 10]. Visual deprojection [3]
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is a learning-based approach to estimate 2D scenes from
1D projections, and like other learning-based approaches,
is limited to specific scene setups and has not been shown
to work on novel and diverse scenes. Our method supports
the use of objects with arbitrary shape, and does not require
planar or one-dimensional masks or planar, calibrated relay
surfaces.

3. The Object Camera

A perspective camera separates the radiance of light rays
that travel through a particular point in space. A pinhole
camera’s aperture separates rays such that each sensor posi-
tion receives light from a unique direction. In our proposed
setting, a chosen object forms the camera’s “aperture” and
the surrounding visible surface forms the sensor. Given an
image of this object and the shadows that it casts, we hope
to “see” what the object can see from its own perspective.

3.1. Inverse Rendering Problem

Inverse rendering is an analysis by synthesis approach,
where we optimize the parameters of a forward light trans-
port model until the rendered images closely resemble the
measured image. In general, the inverse rendering prob-
lem is extremely ill-posed: there are some combinations of
different scene parameters that render very similar looking
images. As such, additional information is required in the
form of priors or additional images to resolve ambiguities.

To illustrate the problem, consider a scene with a sin-
gle object on a flat surface that has an arbitrary albedo and
diffuse surface reflectance. We aim to reconstruct an im-
age from the object’s perspective, represented by the set
of rays extending from the center of the object to a dis-
tant hemisphere. If we consider only direct illumination,
the observed radiance from a scene point, x, can be written
as follows:

Lo(z,w,) = p(x) /Q Vi(x,w;)Li(w;)(w; - n)dw;, (1)

where L, is the radiance observed by the camera at sur-
face position x with surface normal n, p is the spatially
varying diffuse albedo, V' is the visibility of the surround-
ing hemisphere, parameterized by w;, as seen from surface
point x, and L; is the radiance of every incident ray from the
surrounding hemisphere. We note that L; forms an image of
the incident illumination from the perspective of the object.
We assume that the illuminating hemisphere is sufficiently
far away that we only need to know w;. This illumination
model is often referred to as an environment map.

If p and V' are known, solving for L; is a linear inverse
problem. Concretely, if we discretize these spatially varying
functions, with incident illumination vector x correspond-
ing to illumination directions sampled over the environment

Figure 2. Given a known surface geometry and shadow surface
albedo, we estimate the environment map illumination using a sin-
gle observed image by solving Eq. 3. For easier viewing, basic
tonemapping was applied to all images using gamma correction
with clipping (v = 2.2, image normalized such that the sun is
clipped).

map, and y the pixels of the corresponding image, we can
write the above equation in matrix form, where “©®” is the
Hadamard product:

y = diag(p)(V © C)x = Ax, @

Where p is a M x 1 vector of diffuse albedos, V is a
M x N matrix, C is a M x N matrix of the cosine factors,
and x is a N x 1 vector of unknown illumination radiance.
Combining factors, we obtain a linear system of equations
represented by the matrix A, where A = diag(p)(V ©
C). We can therefore solve for the environment map, x, by
minimizing the mean squared error: ||Ax — y||3.

3.2. Solving for Incident Illumination

Overview of Approach Rather than decompose the ma-
trix explicitly for every scene as in Eq. 2, we make use of a
modern rendering framework to represent the more com-
plex structure of the model matrix, A. Since we model
the incident illumination using an environment map, we can
generate the rows of A by rendering an image for each illu-
mination source in the discretized environment map.

Our inverse rendering problem is composed of two steps:

1. Render the approximate light transport matrix using
estimated scene parameters

2. Estimate illumination or albedo by solving the corre-
sponding linear system

The scene parameters we estimate at step 1 are the cam-
era extrinsic parameters, scene surface mesh, and diffuse
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surface albedo. These parameters could be known a priori,
or obtained using some other 3D reconstruction methodol-
ogy such as photogrammetry.

Rendering the Ray Transport Matrix We utilize the
Mitsuba 2 [30, 27] path tracer to render the ray transport
matrix. Each column in the A matrix is associated to an in-
dividual pixel in our environment map, and consists of the
image that is rendered when only that single environment
map pixel is lit. The rendered images are the columns of
A: A; = fo(xi) where x;[i] = 1 and x;[j] = 0 when
i # j. fo(x) represents the Mitsuba 2 rendering pipeline
given scene parameters 6. In our case, 6 are the surface
geometry mesh data and uv texture maps with correspond-
ing diffuse albedo or other material parameters. We map
x to the texture data used by the environment map emitter,
where image pixels correspond to latitude and longitude in
spherical coordinates.

Jointly Solving for Illumination and Albedo With
known surface geometry and material parameters, we can
solve for the incident illumination. We write the illumina-
tion recovery problem as the solution to a linear system,
where the rows of the model matrix, A, are comprised of
rendered images for each component (e.g. ray) of the illu-
mination model. Since AT A is not necessarily well con-
ditioned, we add spatial smoothness and L2 regularization,
such that we aim to minimize the following objective:

argmin [|Ax —y|[3 + A|[Dx|[3 + A [[x[13
s.t. x>=0,

where D is the spatial difference operator and Ag, A\,
are regularization parameters controlling spatial smooth-
ness and L2 regularization respectively.

Typically, the estimated albedo of the shadow surface is
unavailable or not accurate enough to obtain good results.
We found that jointly estimating albedo and illumination
was essential to make our model robust to poor initialization
of mesh albedo, due to occasional artifacts in the surface
texture produced by photogrammetry. Given a ray transfer
matrix, A’, rendered using Mitsuba with or without an ex-
isting albedo texture map, we augment our forward model
with a per-pixel scaling factor as a proxy for diffuse albedo:
A = diag(p)A’.

As pointed out in [36], we also observed that adding a
pixel-wise scaling term to emulate the diffuse albedo resid-
uals seemed to make the illumination estimates more robust.
As such, given the ray transport matrix rendered using Mit-
suba, A’, we can solve for the per-pixel scaling term. Since
the albedo term is fixed under changing illumination con-
ditions, it is advantageous to write the following objective

for L observed images, yj, and the associated environment
map, Xj.
Thus, we minimize the following objective:

argmin Y _ ||diag(A'x1)p — y1l[3 + Al |Gopl[3
? I 4
st. 0<p<1,

where G is the linear inverse operator: G = (A’ A’ +
A-I)"LA’". This is similar to the regularization term used
in [36], and discourages albedo estimates that can be easily
reconstructed using the ray transport matrix, such as cast
shadows.

In practice, we solve for the albedo term, p, and each en-
vironment map, X;, separately. We solve Equations 3 and 4
using damped Newton’s method, with update steps in the
direction of x* and p*, defined below.

The unconstrained minimum solution of Equation 3, x*,
satisfies the linear equation, with R = AD'D + \.I:

(A’ diag(p)*A’ + R)x" = (diag(p)) © A) Ty (5)
Similarly for the p* and Equation 4:

MGG+ diag(A'x)?)p" =y10 > Al'xy (6)
l l

Equations 5 and 6 can be solved efficiently using a linear
solver. With x* and p*, we alternately update p'*! and
x'*T1 until convergence using a damped Newton step with
damping factor -, applying a projection H after each step:

P =Ho(p' +(p" — p"))
Xt+1 :HO,oo(Xt + ,Y(X* _ Xt))
Where H is a simple clipping operator, with min <
Hmin,max(’) S max.

(M

Combining Multiple Images While this work evaluates
data from a single camera pose, our framework can be ap-
plied to P camera poses each with L illumination condi-
tions as described below.

Multi-Illumination For a static camera with L differ-
ent illumination conditions, we solve for each x{* environ-
ment map separately. Updating the albedo scaling factor, p,
only requires one solution once each environment map, xj,
is computed.

Multi-Viewpoint If there are P viewpoints, we find x*
by solving a larger system of equations, by stacking the light
transport matrix associated with each camera pose, A, and
observed images y,. We estimate a single environment
map while incorporating information from all viewpoints.
To find pp, for each camera, the set of yp, Ay are used to
solve each pp* separately.
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Figure 3. Given a ray transport matrix computed assuming all surface albedo are one, and 3 images with unknown surface albedo or
illumination, we estimate both using the update procedure described in Equation 7. Three different texture maps are shown, the observed

images are rendered with global illumination.

4. Implementation

Image Capture For all of our experiments, we capture
a single “target image”, y, using a DSLR camera (Canon
EOS Rebel T5). For alignment to the object, we use a
photogrammetry pipeline that includes structure from mo-
tion, mesh generation, and surface albedo estimation. In
some of our real experiments, we use the known geome-
try. For the ground truth environment map, we photograph
a chrome ball with exposure bracketing for high-dynamic-
range (HDR).

Rendering System For all experiments, we performed
the rendering computations on a single Nvidia RTX 2080.
Ray transport matrices took between 200-300 seconds
(scene dependent) to render 2048 total images with envi-
ronment map textures sized 32x64. Results in Fig. 3 con-
verged in about 5 iterations (~25 secs/iter) running on the
CPU.

4.1. Synthetic Results

Realistic HDR Environments We rendered the ray trans-
port matrix with known geometry and albedo for the black
albedo bunny supported by a white planar surface. Each
row of the ray transport matrix was rendered using 32 bit
floats with 768 samples per pixel (spp). Observed images
were rendered with 25.6k spp using freely available high
dynamic range (HDR) probe images of real environments.'.
We show the effect of renders with fewer spp and larger
variance in the supplement, as well as an analysis of addi-
tive noise.

To solve Equation 5, each ray transport matrix requires

Thttps://hdrihaven.com

approximately 500 MB of memory. We found that recon-
structions took a few seconds on our machine using an Intel
Xeon Silver 4210 CPU with 256GB RAM. As we see in
Figure 2, we achieve reconstructions of the HDR environ-
ment maps with a reasonable recovery of the relative inten-
sity of the bright sources.

Unknown Albedo and Illumination Conditions In prac-
tical scenarios, the surface albedo of an object may be un-
known. We can overcome poor estimates of the surface
albedo by jointly recovering the albedo and illumination. In
Figure 3, we separate the albedo and illumination for three
different textured versions of the bunny under a bright mov-
ing illumination source. Our initial ray transport matrix is
generated using an all-white albedo for both the bunny and
shadow surface. Upon initializing the albedo and environ-
ment map to all ones, we apply the update scheme in Equa-
tion 7 with v = 0.9 for 20 iterations. We notice that the
first update quickly resolves the albedo, but it often takes
an additional iteration before the environment maps begin
to converge. While both Equation 5 and Equation 6 can be
solved in one step, we found it useful to reduce the learning
rate such that the projection operator could enforce the con-
straints without collapsing the environment map solution to
all zeros.

Failure Cases We found that HDR environment maps
with extreme dynamic range can pose a challenge for re-
construction. In Figure 2, the bright sun has a radiance of
~ 10000 : 1 compared to the sky. Our approach attempts to
estimate the HDR scene, but primarily resolves the brightest
sources and ignores the detail in darker areas of the scene.
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Figure 4. An object of known shape (a bunny) is placed in a controlled illumination environment. [llumination patterns are displayed on an
LCD display placed above the object, and a camera observes the shadows that the object casts onto a flat surface. From this single image
we produce an estimate of the illumination pattern seen by the object. A chrome ball is used to collect ground truth data in the object’s

position for each test pattern.

When the environment map is clipped, producing a low-
dynamic range (LDR) scene (only possible in simulation),
our method is able to recover finer details. While we did not
investigate further in this work, encouraging the recovery of
darker regions is challenging because any HDR compres-
sion added to the output of the forward model would make
it nonlinear. Similarly, since our method relies on tiny vari-
ations in the observed scene, our method is susceptible to
errors in the HDR capture process.

The recovered albedo maps contain minor artifacts re-
sembling the shadows in the observed images. We unsuc-
cessfully applied a wide range of values for the regular-
ization proposed in [36]. However, diverse and extended
sources help reduce the appearance of these artifacts, but
that may be due in part to the softer shadows cast by these
objects. We were able to estimate convincing albedo us-
ing environment maps of real scenes, but the associated es-
timated environment maps often contain “retro-reflection”
artifacts along the retro-reflective direction from the cam-
era to object. These artifacts only appear after the first few
iterations of projected gradient descent, and so reasonable
results are achieved using early stopping. We show addi-
tional results in the supplement highlighting these failure
modes.

Gradient Descent Baseline We compared our method
in Table 1 to a stochastic gradient descent (SGD) base-
line by minimizing reconstruction error using Mitsuba
2’s auto-differentiation capabilities. We update both the
scene albedo and environment map using Mitsuba 2’s
Adam optimizer, with learning rate 0.01. For the multi-
illumination/unknown albedo scenes, the recovered albedo
using Mitsuba 2+Adam was slightly better in terms of
RMSE, but remained quite noisy, reducing SSIM. We be-
lieve Mitsuba 2’s improved albedo estimation is due to the

fact that our linear diffuse albedo model does not account
for global illumination. As such, applying our proposed
method to quickly solve the linear approximation and then
fine-tuning for non-linear effects using a differentiable ren-
derer is a promising direction for future work.

Our approach has a number of advantages over gradient
descent. In the simpler case where scene albedo is known,
the loss function in Eq. 3 can be solved exactly in a single
step using a linear solver (~4.5 secs in our CPU numpy im-
plementation). Additionally, once the albedo has been es-
timated, the regularized inverse, (, can be applied to new
measurements to quickly estimate novel illumination with-
out re-computing A. Furthermore, our analysis in Section 5
is made possible by first rendering A. We show in Table 1
that our method converges faster than Adam-+Mitsuba 2.
However, since our method effectively computes the Hes-
sian, AT A, this advantage may not scale to high resolution
environment maps. Regardless, faster low resolution esti-
mates, like the proposed method, would remain useful for
initialization.

4.2. Real-data Results

3D Printed Probes We 3D printed a 5cm tall “Utah
Teapot” and low poly “Stanford Bunny” in black filament
such that the 3D shape of the object is known, but the sur-
face of the object would make it difficult to use any other
cues for incident illumination estimation.

Each object was placed below an LCD panel (43” LG
Desktop Monitor), on a white sheet of computer paper, ap-
proximately one meter away from the display. The shortest
and longest monitor dimensions correspond to a 45 and 90
degree field of view from the perspective of the object re-
spectively. The display was used to show different patterns,
and an image of the object was captured with a known cam-
era orientation, about one meter from the 3D printed object.
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Scene / Method Envmap RMSE Envmap SSIM  Albedo RMSE Albedo SSIM  Compute Time (s)
Multi-illumination ‘“dots” 0.417 0.43 0.286 0.78 327
+L2 0.075 0.62 0.219 0.81 327
+L2+Smooth (ours) 0.075 0.63 0.219 0.81 327
+L2+Smooth+[36] 0.075 0.63 0.218 0.81 338
Grad Descent Baseline (early stop) 0.531 0.41 0.202 0.69 327
Grad Descent 0.501 0.68 0.172 0.73 1434
Known albedo ‘“‘garden” 0.492 0.24 - - 225
+L.2 0.078 0.77 - - 225
+L.2+Smooth (ours) 0.063 0.83 - - 225
Grad Descent Baseline (early stop) 0.294 0.31 - - 225
Grad Descent 0.120 0.57 - - 975

Table 1. Ablation study: Multi-illumination: RMSE/SSIM relative to the known synthetic ground truth for the unknown albedo “dots”
scene computed for 5 iterations for each set of added regularization terms. Known albedo: RMSE/SSIM computed for the HDRI “garden”
scene for a single iteration. The compute times include pre-rendering of the ray transport matrix (220 secs) for the proposed method.
Gradient Descent was stopped early to compare results under similar compute times, corresponding to ~3461 iterations. The learning rate
for Adam, v = 0.01, for the gradient descent baseline was chosen to maximize SSIM after full convergence, which took significantly more
time than the proposed method (+L2+Smooth).

termine the intensity of illumination from a particular di-
rection. In the bottom row we plot the rows of the inverse
operator matrix G = (ATA + R)"'AT (referred to in
[6] as “estimation gain images”’). These rows are correlated
with the input image to estimate the intensity of illumina-
tion originating from a particular direction.

Determining Influential Image Pixels Given a target im-
age measurement, we can quantify the influence that indi-
vidual pixels have on our estimated environment map using
a statistical tool known as Cook’s distance [ 12]. The Cook’s
distance measures the effect that removing a measurement
has on an estimated curve fit, and can be expressed as fol-

Figure 5. Our algorithm implicitly amplifies the edge gradients of fows:

shadows cast from a particular direction. (Top Row) Shadows ren-

dered for point illumination above and to the right, and behind Z M (A‘ s )2 5

and to the left of the bunny-shaped occluder. (Bottom row) Corre- D; = i=1\Y3 ~ Yi(i) _ & { hii ] (8)
sponding rows of regularized inverse operator. ps? ps? [ (1 — hy)?

Here §; denotes the re-projected curve fit (that is, the
image rendered using our environment map estimate &) ob-

Reconstructions are shown for each test pattern in Figure 4.
Figure 4 shows cropped and centered environment maps

with each side corresponding to a 79 degree field of view.
There are some apparent distortions in the reconstructions,
such as a missing corner in Figure 4(e). We also produced
reconstructions using much higher environment map resolu-
tions (up to 256 x 512) and higher input image resolutions,
but found they did not produce significantly improved re-
constructions while taking longer to compute.

5. Analysis

Extracting the Shadow’s Edge In Figure 5 we show that
our algorithm implicitly amplifies the edge gradients to de-

tained when all measurements are used for the fit, and g, ;)
denotes the fit obtained after the i*" data point has been re-
moved from the measurement set. The quantity s = N’i‘?\,
is the mean square error of the fit y calculated from the
residual vector e = (y —y) and the dimensions of the model
matrix. The value hy; is referred to as the leverage of the
measurement y; and is defined as the i*" diagonal element
of the hat matrix H = A(ATA + )\, I)"1AT.

In Figure 6 we’ve plotted an image of Cook’s Distance
corresponding to a specific target image measurement. As
expected, we notice that the pixels with the largest Cook’s
Distance appear to lie within the shadowed regions.

2599



Figure 6. We plot an image of the Cook’s distance (bottom right)
associated with each pixel in the target image shown on the bot-
tom left. The estimated environment map associated with this im-
age is shown in the top row. The Cook’s distance image has been
compressed with a gamma value of 0.5 to highlight interesting
features.

Assessing Object-Camera Performance Although the
Cook’s Distance is useful for determining which pixels in
a specific set of measurements are most influential, we may
also want to assess how influential individual pixels are in
general, independent of any specific set of measurements.
For this purpose, the leverage of individual measurement
channels can be a useful metric. The leverage of pixel ¢,
previously defined as the 7" diagonal component of the hat
matrix, can also be defined as follows:

09
hi=al(ATA+ AT la;T = az ©)

Here a} corresponds to the i** row of the matrix A. Fig-
ure 7 includes an image of per-pixel leverage values calcu-
lated for the bunny-camera. We note that, as with Cook’s
distance, the pixels closest to the base of the bunny appear
to be most influential.

Given a particular object-camera configuration, we
might also be interested in assessing which entries in an
environment map we can expect to reconstruct accurately.
We take the square roots of the diagonal entries of the co-
variance matrix of our least-squares fitt ¥ = (ATA +
)\,,I)_l—that is, the inverse of the Hessian of the loss func-
tion defined in Eq. 3. We ignore the scene smoothness
prior for the sake of analyzing the intrinsic properties of the
object-camera.

A plot of these relative uncertainty values is also shown
in Figure 7. From this image, we anticipate that the bunny-
camera will be best at reconstructing illumination arriving
from above and slightly to the left or right of the bunny.

Figure 7. We illustrate how occluder shape impacts object-camera
performance by generating images of per-pixel leverage (top row)
and environment map uncertainties (bottom) for three occluder
shapes: a bunny, a sphere, and a coded aperture mask [22].

Effect of Occluder Shape Our analysis of the bunny-
camera makes it clear that the shape of the occluder can
have a significant effect on the object camera’s perfor-
mance. This has important practical ramifications. For in-
stance, we might choose to opportunistically exploit occlud-
ers found “in the wild” that are likely to produce accurate
reconstructions of illumination originating from certain di-
rections. Alternatively, we could design an optimized oc-
cluder shape that can be 3D printed and used as an object
camera in the real world.

We demonstrate the effect of occluder shape in Figure
7. We show leverage and uncertainty maps for three dif-
ferent occluder shapes—a bunny, a sphere, and a 2D coded
aperture mask. Compared to the bunny-camera, the sphere-
camera achieves reconstruction uncertainties that are more
uniform across the hemisphere, but that are higher on aver-
age. In contrast, the coded aperture mask achieves very low
uncertainties when the shadow of the mask falls within the
camera field of view, but uncertainty is high when the mask
is illuminated edge-on, and very high when light originates
near the horizon.

6. Conclusion

Reconstruction using the shadows cast by objects onto
their surrounding surface can be practically achieved using
tools used commonly in computer vision and graphics re-
search. Shadows are an important cue for high-frequency
incident illumination estimation and can be essential for
solving an otherwise poorly-conditioned problem.

We hope this work will inspire further extensions, com-
bining many exciting research directions in computer vi-
sion, from illumination estimation for image relighting and
augmented reality, to imaging beyond and around the line
of sight.
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