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Abstract

Facial Action Units (AUs) are of great significance in
communication. Automatic AU detection can improve the
understanding of psychological conditions and emotional
status. Recently, several deep learning methods have been
proposed to detect AUs automatically. However, several
challenges, such as poor extraction of fine-grained and ro-
bust local AUs information, model overfitting on person-
specific features, as well as the limitation of datasets with
wrong labels, remain to be addressed. In this paper, we pro-
pose a joint strategy called PIAP-DF to solve these prob-
lems, which involves 1) a multi-stage Pixel-Interested learn-
ing method with pixel-level attention for each AU; 2) an
Anti Person-Specific method aiming to eliminate features
associated with any individual as much as possible; 3) a
semi-supervised learning method with Discrete Feedback,
designed to effectively utilize unlabeled data and mitigate
the negative impacts of wrong labels. Experimental results
on the two popular AU detection datasets BP4D and DISFA
prove that PIAP-DF can be the new state-of-the-art method.
Compared with the current best method, PIAP-DF improves
the average F1 score by 3.2% on BP4D and by 0.5% on
DISFA. All modules of PIAP-DF can be easily removed af-
ter training to obtain a lightweight model for practical ap-
plication.

1. Introduction

Facial expression, a natural way of human communi-
cation in people’s daily lives, is also an intuitive reflec-
tion of human emotions, mental states, and conscious-
ness when analyzing emotion recognition tasks. There are
some popular facial expression topics categorized as mi-
croexpressions. Microexpressions are reflected by rapid
and unconscious spontaneous facial movements, and stud-
ies have shown that microexpressions cannot be concealed
[8]. These characteristics make the detection of microex-
pressions necessary in some specific situations, such as the

diagnosis of depressed patients [9] and conversations of
criminals. Moreover, microexpression detection also has
a potential value in many other emotion recognition tasks
[15, 32, 35, 43]. In previous studies, the Facial Action Cod-
ing System (FACS) [13] method is often used to encode mi-
croexpressions. In FACS, each expression is considered as
a combination of multiple action units (AU). By detecting
the AU, FACS can effectively eliminate the ambiguity prob-
lem in microexpression annotation. Therefore, a reliable
AU detection system is of great importance for the analysis
of facial microexpressions.

In FACS, different AUs are associated with specific fa-
cial muscles, which in turn correspond to the features of
different regions of the face. Sometimes one AU may
also correspond to more than one region. Therefore, lo-
cal information is essential for AU detection. Traditional
[3, 7, 10, 19, 26, 42] approaches use manual methods to rep-
resent different local regions . In recent years, deep learning
methods for facial expression detection are gaining popular-
ity and some results have been achieved. Early work used
simple CNN for learning. Later, deeper neural networks
were employed to improve performance. Due to the im-

Figure 1. a) Comparison of patch and PI method on AU6, marked
as the red border and the blue border, respectively. b) PI Maps on
AU2 and AU6. The predefined PI Maps are generated with land-
mark information. After the second stage of PI, we have refined
PI Maps, shown as binary and the heatmap views.
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Figure 2. Overview of PIAP and Semi-Supervised Learning of Discrete Feedback.

portance of local features for facial AU detection, previous
works typically use facial landmarks to localize these re-
gions or divide the face into patches. In practice, however,
AU annotators are sometimes unable to give the exact re-
gion of the AU. In other words, the artificially defined AU
region correlations are actually not robust prior knowledge.
Besides, the giant Patch does not fit the AU-related region
well. As shown in Figure 1, these regions are not always
rectangles, such as AU6, nor fixed due to uncertainties in
the head pose and other factors. In addition, as mentioned
earlier, some AUs are simultaneously associated with mul-
tiple and fine-grained regions. Therefore, the idea of using
a simple landmark-based patch is not very effective. In ad-
dition, AU detection should be independent of any specific
individual. Due to the limited number of participants in cur-
rent AU datasets, trained models can be poorly generalized.
Therefore, it is necessary to remove person-specific effects
on the model.

Recently, self-supervised and semi-supervised learning
has made huge leaps. Contrastive learning usually makes
the model capable of outputting approximate encodings for
different views of the same sample and distinguishing be-
tween encodings of different samples, while pseudo-based
methods expect models to output low-entropy predictions
on the samples never been seen before. It has been proven
that self-supervised and semi-supervised learning be effec-
tive in improving the generalization ability of the model.

In this paper, we propose PIAP-DF, a set of comprehen-
sive policies for AU detection networks. PIAP integrates
two learning strategies, Pixel-Interested (PI) learning and
Anti Person-Specific (AP) learning. PI is devoted to pro-
viding pixel-level attention for each AU, whereas AP tries
to remove person-specific features. Besides PIAP, we also
propose Discrete Feedback (DF) technique based on semi-
supervised learning, which aims to reduce the effect of mis-
labeling and improve the robustness. We use EfficientNet-
B1 [39] as our AU encoder. In our architecture, PI, AP, and
DF can be removed after training to obtain a lightweight

network for real-world scenarios.
The main contributions of this paper: 1) We propose

a Pixel-Interested learning method to improve the perfor-
mance of AU detection. PI ensures that the irregular local
information and pixel-level correlation of AUs can be re-
tained in the deep layer during forward propagation, thus
providing effective supervision of AU detection. 2) We pro-
pose an Anti Person-Specific learning method. We elimi-
nate person-specific features from the hidden layer of the
network with the help of the same encoder trained on the fa-
cial recognition dataset. AP allows the model to focus more
on the features of the AU itself on a limited dataset of par-
ticipants, improving the generality of the network. 3) Based
on the characteristics of the dataset and task, we propose
a semi-supervised learning strategy with discrete feedback.
By utilizing an appropriate amount of additional data and
randomly inactivated labels, DF could reduce the impact of
mislabeling on training and improve network robustness.

2. Related Works
Facial Action Unit Detection has been studied for

decades, and many representative methods have been pro-
posed. In early studies, features like Histogram of Oriented
Gradient (HOG) are extracted from the image, and the AU
classifier is trained on the extracted features [11,40,49]. For
example, Baltrusaitis et al. [1] proposed an AU detection
method based on the Support Vector Machine (SVM) clas-
sifier, which is trained on the HOG features from images
after principal component analysis. Since AU is defined
as being associated with the movement of facial muscles,
many methods also detect the occurrence of AU based on
location. Zhao et al. proposed JPML [49] to use patches
for feature extraction from local regions and a multi-label
classifier for AU detection.

Traditional methods are overly dependent on feature ex-
traction and have limitations for complex facial representa-
tions. Recently, convolutional neural networks (CNN) have
performed well and achieved state-of-the-art on many com-
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puter vision tasks, such as object detection [33, 34], clas-
sification [18, 21], face recognition [6, 36], and landmark
detection [46], etc. This technique has also been intro-
duced to facial AU detection. DRML proposed by Zhao
et al. [50] adopts region learning to construct highlight re-
gions, achieving the purpose of focusing on local features.

However, AUs consist of the movements of all facial
muscles together, and the over-emphasis on local features
may cause the global associations to be lost. Due to this
limitation, many global feature-based methods have been
proposed. Li et al. [22] extracts inputs from different parts
of the face and merges them into a global feature for AU
detection. Their later work [23] further proposes cropping
layers to get better local patches. Corneanu et al. proposes
DSIN [4]. DSIN first extracts features by CNN to initial-
ize predictions for each independent AU, then improves the
performance by considering the correlation between AUs.

Because of both the diversity and strong correlation of
face tasks, Shao et al. [37, 38] proposed JAA and JÂA with
joint face alignment for AU detection and multi-task learn-
ing. Human faces are person-specific. However, for AU de-
tection, such person-specific features should be eliminated,
since the detector is supposed to have similar performance
on different faces. Niu et al. [29] argue that the facial land-
mark contains person-specific features, which can be elim-
inated by making the AU feature orthogonal to the normal-
ized landmark vector. However, our experiments demon-
strate that the opposite is true. The features extracted by the
landmark detection task contain almost no person-specific
features. Consequently, we propose a more robust way to
eliminate person-specific features, by making the AU fea-
tures orthogonal to the features extracted from the same en-
coder trained on the facial recognition task. Experiments
show that this is an effective solution.

Recently, semi-supervised and self-supervised methods
[2,14,16,17] have attracted a wide range of attention. Pham
et al. [31] achieved a new state of the art on ImageNet [5]
using semi-supervised methods. For AU detection tasks,
Li et al. proposed TCAE [24], a twin network method to
swap AU features of the source and the target. TCAE is
trained on unlabeled data and could achieve performance
comparable to supervised learning. Therefore, we further
explore the semi-supervised learning approach based on our
PIAP. After applying all our strategies simultaneously, we
reached a new state of the art.

3. Proposed Method

In this section, we describe our method in detail, in-
cluding the stages of Pixel-Interested learning, Anti Person-
Specific learning, and semi-supervised learning with dis-
crete feedback.

Figure 3. Predefined PI Maps. Red points are facial landmarks
indexed from 0 to 67.

3.1. Pixel-Interested Learning

Facial AU detection is a task strongly related to feature
location, and some previous works have attempted to as-
sociate feature locations to the model for better AU pre-
dictions. Most of these methods [22, 23, 49, 50] manually
specify a fixed region for each AU and provide input to
each AU classifier using a patch-based method. However,
these methods have the following problems: 1) the patch
is always a rectangle, which leads to imprecise feature ex-
traction. Instead of being simple rectangles, the region of
the AU is usually irregular and discontinuous. As shown in
Figure 1(a), AU6 involves the muscles of orbicularis oculi
and risorius that corresponding to two irregular facial re-
gions. 2) Defined regions are fixed (not trainable), which
makes it hard for them to get rid of the mislabeling issue. In
practice, AU annotators can not give exact regions for AUs,
making such predefined AU regions not capable of being
robust prior knowledge.

To solve these problems, we propose a multi-stage Pixel-
Interested (PI) learning, demonstrated in Figure 4. PI in-
volves the following three stages.

In the first stage, based on our understanding of AUs, we
manually define the regions for each AU on the basis of the
68-point facial landmarks, naming predefined Pixel Inter-
est Maps (PI Maps). PI Maps act as a binarized mask to
block the features outside the region. Figure 3 gives out the
definition of predefined PI Maps for each AU based on land-
marks. To generate predefined PI Maps without landmark
information, we trained a modified UNet on the AFEW-VA
dataset [20]. This modified UNet, which we call DW-UNet,
replaces the original convolution layers with the depthwise
separable convolution and employs the binary cross-entropy
loss (BCELoss) as the loss function LPI (1). Here, H and
W represent the height and width of PI-Map; Y denotes the
ground truth, and Ŷ denotes the predicted value, the same
below. DW-UNet reduces the number of parameters and
calculations by 90%. The trained DW-UNet will act as PI
Generator 0 in the second stage, where we use it to gener-
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Figure 4. Overview of the 3 stages of Pixel-Interested learning.

ate 12 predefined PI Maps (12 × 256 × 256) from the raw
images.

LPI = − 1

HW

h=1∑
H

w=1∑
W

Yhw · log Ŷhw

+(1− Yhw) · log(1− Ŷhw)

(1)

In the second stage, for each image input, we first put
the RGB format sample (3 × 256 × 256) into PI Genera-
tor 0 to obtain 12 predefined PI Maps. Then we perform
Hadamard product on the predefined PI Maps (before One-
Hot encoding) and the grayscale format sample to gener-
ate 12-channel features, which is supposed to have key re-
gions highlighted. This feature map will be used as the in-
put of the encoder. In this stage, the encoder we used is an
EfficientNet-B1 pretrained on ImageNet, with the number
of input channels changed to 12 to fit the features. It per-
forms as the actual AU classifier to outputs AU predictions
in the end. We train the whole model supervised by LAU (2)
on the AU predictions, where C represents the total number
of AU categories. In this process, as the encoder converges,
the parameters of the PI generator are also updated, thus
facilitating the generator to better find the pixels of inter-
est. As a result, a more robust association between AU and
pixel-level region information is established, and we can get
a new PI Generator 1 after training. The PI Maps generated
by PI Generator 1 are pixel-level, better than the predefined
PI Maps (Figure 1). Note the PI Maps are adjusted after
training. As a quick reference, the model performance (F1-
score, %) at this stage reaches 60.5. We’ll exhibit more
details in the ablation study.

LAU = − 1

C

c=1∑
C

Yc · log Ŷc + (1− Yc) · log(1− Ŷc) (2)

In the third stage, we still use an EfficientNet-B1 model
pretrained on ImageNet as the AU encoder. What’s differ-
ent in this stage is that we add a decoder branch before the

last average pooling layer, while fixing the parameters of
the PI Generator. The decoder consists of DWConv lay-
ers and upsampling layers. It accepts the feature map of
1280× 7× 7 and is trained to output PI Map predictions as
close as the ones (ground truth, 12× 256× 256) generated
from PI Generator 1. The loss is measured by LPI . In this
way, the whole model is supervised by both LAU and LPI ,
and we add a hyper-parameter α to adjust their weights, as
shown in (3). So what are the benefits of doing this? The
features in front layers may be discarded or diffused in the
deep layers, making it contain no or sparse location-related
information. However, AU detection is a strong location-
related task. If we can extract a similar PI Map from the
feature map by a decoder, it must contain some degree of lo-
cation information. As for the location information we used
as ground truth, it reflects what the PI Generator learned in
stage 2 and could be regarded as robust prior knowledge.
This information, in turn, provides additional supervision
for AU detection. The model reaches F1-score performance
of 63.9% in this stage.

L = α · LAU + (1− α) · LPI (3)

In summary, we first use predefined PI Maps to train a PI
Generator. Then the supervision of the AUs makes the PI
Generator learn finer pixel interest information. At last, the
new PI Generator is used to sustain pixel-interest informa-
tion in the deep layers of the network, providing additional
and effective supervision for AU detection. In later sec-
tions, we will see how Pixel-Interested learning can be used
jointly with other strategies to further improve performance.

3.2. Anti Person-Specific Learning

Due to expensive annotation costs and privacy limita-
tions, the AU detection datasets always contain a large num-
ber of video frames but very few participants. For exam-
ple, BP4D dataset has more than 140,000 labeled frames
but only 41 participants. Compared with the complex dis-
tribution of AU features, the model is more likely to learn
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person-specific features of different participants and predict
AUs based on a specific person. This explains why most
models can achieve high F1cores on the training set but per-
form poorly on the validation and the test set.

To address this problem, LP-Net [29] takes normalized
facial landmarks as person-specific features and tries to
eliminate their impact by making global AU features or-
thogonal to it. However, the facial landmark is actually
patterned and structured, rather than person-specific infor-
mation. In other words, a facial landmark detection model
works because it knows that Rachel, Ross, and Joey all have
eyes and noses, not because it knows Rachel is Rachel. So
using facial landmarks as a regularization condition will in-
stead cause the network to remove the structured, patterned,
and non-person-specific features needed for AU detection,
making the AU detection less effective. We give a toy case
here to prove that the face landmark detection task is also
not person-specific. We first trained a Resnet50 [18] model
on the AFEW-VA dataset [20] and get Mean Square Error
(MSE) of 0.6%. Then we use the 1000-dimension vector
before the last fully-connected layer as the feature vector
to validate on the LFW dataset [27] in the general way [6].
The result shows a low accuracy of 58%, which confirms
our idea. We also try to apply the strategy in our experi-
ments, and unsurprisingly the landmark regularization de-
creases the baseline performance. Due to space limitations,
we only describe it briefly here and this toy case can be eas-
ily reproduced.

Our solution is Anti Person-Specific learning (AP), as
shown in Figure 2. We add an Encoder P with the same
model structure as Encoder AU, so that the two encoders
have the same parameter space. First, we train the En-
coder P for face recognition task on the CASIA-WebFace
dataset [45], and after training it achieves 96.2% of accu-
racy on another dataset LFW [27]. After that, we could
use the vector vP output by Encoder P as person-specific
features. To make the AU features independent from the
person-specific features, we use LAP defined in (4) to en-
courage vAU and vP to be orthogonal, thus making fAU and
fP orthogonal functions. Here vAU refers to the AU feature
vector output by Encoder AU. Ultimately, supervised by L
defined in (5), the features extracted by encoder AU could
filter out personal features as much as possible. Here, we
use β to adjust the weight between LAU and LAP . The
average F1-score after applying AP to the baseline reaches
61.9 (%).

LAP = − 1

N

n=1∑
N

log(1− |⟨vP , vAU ⟩|
∥vP ∥2 · ∥vAU∥2

) (4)

L = β · LAU + (1− β) · LAP (5)

3.3. Discrete Feedback Semi-Supervised Learning

Due to the characteristics of the task domain, the exist-
ing AU datasets are not yet perfect. First, the BP4D dataset
contains a number of incorrect labels. Generally, the noise
from incorrect labels in the dataset can obviously affect the
performance of the model. Second, both datasets face the
problem of insufficient participants, as mentioned in Sec-
tion 3.2. This problem is particularly evident for DISFA. In
previous works, DISFA dataset is usually not used for the
full training due to its limited number of participants. As
for BP4D, it has more than 200,000 unlabeled frames that
also limits the effective utilization.

To mitigate the impact of the above two problems for
the model, we want to 1) make full use of samples of
DISFA and unlabeled samples of BP4D to improve model’s
generalizability by semi-supervised learning; 2) randomly
pick up labeled data from the BP4D dataset as unlabeled
samples to iteratively encourage the semi-converged model
to converge in the right direction against incorrect labels.
The latter is actually another kind of regularization strat-
egy. Inspired by feedback strategy of MPL [31], we propose
Discrete Feedback strategy to improve the performance of
semi-supervised learning.

As shown in Figure 2, well pretrained PI and AP jointly
as f . Then f is copied to fθ and fξ, where fθ is the Teacher
and fξ is the Student. Let their parameters be θ and ξ. We
use xu and xl to refer to unlabeled and labeled samples,
respectively. Let Y be the labels, and Yp be the pseudo
labels generated by Teacher. We use Gl = (M,P, Y ) and
Gp = (M,P, Yp) to refer to these ground truth pairs, where
M is the ground truth PI Maps and P is person-specific
features. We denote (m̂, p̂, ŷ) as the prediction pairs and
let Ŷθ,l be the value of fθ(xl). LPIAP is defined as (6),
where α, β, and γ are used to adjust the weights of each
components.

{
LPIAP = α · LAU + β · LPI + γ · LAP

α+ β + γ = 1
(6)

Every step ti, unlabeled sample xu is used to update θ.
xu contains unlabeled samples and few labeled samples of
BP4D and samples of DISFA without labels. Ŷθ,u refers
to predictions of fθ based on unlabeled data. g refers to
gradient.

gθ,u = ∇θLPIAP (Ŷθ,u, Gp)

gξ,u = ∇ξLPIAP (Ŷξ,u, Gp)
(7)

ξ′ = ξ − ηgξ,u (8)

In each step ti+1, labeled sample xl is used to compute
feedback fb. Then θ is updated by σ, fbDiscrete, gθ,u and
gθ,l. In the training process, we found the feedback fb may
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be too large or too small due to the accumulation of SGD’s
momentum and other factors in the model such as Dropout.
Besides, some feedback is likely to be wrong because of
the wrong labels. Consequently, we proposed discrete feed-
back learning. We make the feedback as discrete format
and randomly disable it by chance σ (10) to weaken the
negative impact. When the Student gives positive feedback,
fbDiscrete is set to 1, or -0.1 for negative feedback, and 0
for σ of positive. Where σ is a random factor, with a 5%
possibility of being 0 otherwise 1. This strategy performs
better than MPL in our task.

gθ,l = ∇θLPIAP (Ŷθ,l, Gl)

gξ′,l = ∇ξ′LPIAP (Ŷξ′,l, Gl)
(9)

fb = gξ′,l
⊤ · gξ,u

fbDiscrete = σ · h(fb)

h(z) =

{
1, z > 0

−0.1, z ⩽ 0

(10)

θ′ = θ − η · (fbDiscrete · gθ,u + gθ,l) (11)

θ+ = argmin
θ

Exl,Gl
[LPIAP (Ŷξ+,u, Gl)]

ξ+ = argmin
ξ

Exu [LPIAP (Ŷξ,u, Gp)]
(12)

For each step, according to [12,25], ∇θ can be deducted
as

∇θ =
∂Exu,GpLPIAP (Ŷξ′,l, Gl)

∂θ

=
∂LPIAP (Ŷξ′,l, Gl)

∂ξ′
·
∂Exu,Gp

[ξ′]

∂θ

= gξ′,l ·
∂Exu,Gp [ξ − η · ∇ξLPIAP (Ŷξ,u, Gp))]

∂θ
(13)

and can be further calculated as the following [44]:

∇θ = η · gξ′,l ·
∂LPIAP (Ŷξ,u, Gp)

∂ξ
· −∂ log(P (Gp))

∂θ

= η · gξ′,l⊤ · gξ,u︸ ︷︷ ︸
feedback:fb

·gθ,u

(14)
We can find feedback fb in (14). The detailed derivation

can be found in Appendix. This process achieves the effect
that Teacher may make mistakes, so the feedback given by
Student’s performance on the labeled data can correct its
mistakes. Note that the feedback is randomly disabled to
adapt to the presence of incorrect labels.

3.4. Summary of PIAP-DF

To combine all our methods, we first perform the first
and second stages of Section 3.1 to obtain the trained PI
Generator 1 as the PI Generator in Figure 2. Then we have
Encoder P trained as 3.2, and we take LPIAP to calculate
the loss. After that, we make 2 copies of PIAP with PI
Generator and Encoder P fixed and Encoder AU initialized,
as Teacher and Student. The Teacher and Student then get
trained on labeled and unlabeled data as 3.3. This marks the
completion of PIAP-DF. The AU Encoder of Student is the
final model we need for AU detection.

4. Experiment
In this section, we show the experimental evaluation of

PIAP on two widely used AU detection datasets and give the
results of ablation experiments on BP4D to investigate the
effectiveness of PI, PA and DF. We also give the results of PI
Maps for some AUs generated by Pixel-Interested learning.

4.1. Experiment Setting

4.1.1 Dataset

AU datasets are much more limited than other image task
datasets due to their stringent requirements and the limita-
tions of the task itself. In this paper, we use two widely used
AU detection datasets, BP4D and DISFA.

BP4D [48] contains 23 female and 18 male participants.
8 different tasks are tested on the 41 participants, and their
spontaneous expressions are recorded in several videos. In
the recorded 328 videos, 12 AUs are coded by 0 or 1 without
intensity information. There are 140,000 labeled frames and
240,000 unlabeled frames in the 2D video we used in BP4D.

DISFA [28] involves 27 participants, 12 females and 15
males. Each participant is asked to watch a video, and their
facial features are recorded during the process. DISFA con-
tains more than 100,000 video frames with 12 AU labels
ranging from [0, 5], in which 8 AU labels are used for exper-
imental comparisons. We use 2 as a threshold to distinguish
between positive and negative samples.

4.1.2 Training

We train our model on the two datasets with slight differ-
ences. On the BP4D dataset, we train the model with 3-fold
cross-validation to verify the validity and universality of the
method. The division of the dataset is based on the partic-
ipants’ IDs. On the DISFA dataset, since we have no ad-
ditional unlabeled data available, we do not perform semi-
supervised learning on it. As the well-trained PIAP-DF is
based on the DISFA dataset, we alternatively fine-tune the
PIAP model trained on BP4D to evaluate the performance.
We extract the 1280-dimension vector before the original
fully connected layer and reconnect it to an 8-dimension
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Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

LSVM [11] 23.2 22.8 23.1 27.2 47.1 77.2 63.7 64.3 18.4 33.0 19.4 20.7 35.3
JPML [49] 32.6 25.6 37.4 42.3 50.5 72.2 74.1 65.7 38.1 40.0 30.4 42.3 45.9

SplitBrain [47] 39.0 32.0 39.7 72.9 70.6 78.2 83.7 57.8 37.3 53.6 32.3 45.1 53.5
TCAE [24] 43.1 32.2 44.4 75.1 70.5 80.8 85.5 61.8 43.7 58.5 37.2 48.7 56.1

DRML [50] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3
ROI [22] 36.2 31.6 43.4 77.1 73.7 85.0 87.0 62.6 45.7 58.0 38.3 37.4 56.4
DSIN [4] 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

EAC-Net [23] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
LP-Net [29] 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 [54.2] 61.0

JAA-Net [37] 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0
JÂA-Net [38] 53.8 47.8 [58.2] 78.5 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4

PIAP 54.2 47.1 54.0 79.0 78.2 [86.3] 89.5 [66.1] 49.7 63.2 49.9 52.0 64.1
PIAP-DF [55.0] [50.3] 51.2 [80.0] [79.7] 84.7 [90.1] 65.6 [51.4] [63.8] [50.5] 50.9 [64.4]

Table 1. Comparison of F1 score (in %) on BP4D Dataset. Bracketed and bold numbers indicate the best performance; bold numbers
indicate the second best.

Method AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.

LSVM [11] 10.8 10.0 21.8 15.7 11.5 70.4 12.0 22.1 21.8

SplitBrain [47] 13.1 10.6 35.7 40.2 30.2 57.5 77.4 40.3 38.1
TCAE [24] 15.1 15.2 50.5 48.7 23.3 72.1 82.1 52.9 45.0

DRML [50] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
ROI [22] 41.5 26.4 66.4 [50.7] 8.5 [89.3] 88.9 15.6 48.5

JAA-Net [37] 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0
DSIN [4] 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6

LP-Net [29] 29.9 24.7 [72.7] 46.8 49.6 72.9 93.8 65.0 56.9
JÂA-Net [38] [62.4] [60.7] 67.1 41.1 45.1 73.5 90.9 [67.4] 63.5

PIAP 50.2 51.8 71.9 50.6 [54.5] 79.7 [94.1] 57.2 [63.8]

Table 2. Comparison of F1 score (in %) on DISFA Dataset. Bracketed and bold numbers indicate the best performance; bold numbers
indicate the second best.

output vector to obtain the new AU prediction. In this work,
all the implementations are based on PyTorch [30].

4.1.3 Metric

AU detection is a multi-label binary classification task,
where F1-score can be a good metric. In previous works,
F1-score is also a common evaluation criterion [10, 41].
We calculate F1-score for 12 AUs in BP4D and 8 AUs
in DISFA. F1-score can be directly compared as a perfor-
mance indicator for different algorithms on each AU.

4.2. Comparison

For the sake of rigorous and reasonable experimental re-
sults, we compare PIAP with the current image-based AU
detection methods using 3-fold cross-validation, including
the traditional methods LSVM [11], JPML [49], and the su-
pervised methods DRML [50], ROI [22], DSIN [4], EAC-
net [23], LP-Net [29], JAANet [37], JÂANet [38], and two

semi-supervised methods TCAE [24] and SplitBrain [47].

Table 1 shows the performance comparison of PIAP with
other AU detection methods on BP4D. Overall, PIAP shows
excellent performance on this widely used AU detection
dataset. Compared to the existing best method, JÂAnet,
PIAP with Discrete Feedback learning (PIAP-DF) achieves
an average performance improvement of 3.2% for F1-score.

Table 2 shows the experimental results of PIAP on the
DISFA dataset. PIAP improves the F1 score by 0.5% on
average over the best method. For DIFSA, we do not train
the model from scratch, but fine-tune the model trained on
BP4D. For this reason, our strategy cannot be directly ap-
plied to DISFA, resulting in weaker improvements for each
AU than that on BP4D, but it still outperforms the existing
automatic AU detection methods. This also indicates an im-
proved generalization ability of our model. On BP4D which
directly benefited from it, the model performance on most
individual AUs could achieve the best.
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Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.

Baseline 44.3 42.8 51.9 71.5 68.6 80.7 80.8 57.9 49.4 54.9 43.5 45.8 57.7
PI-2 44.7 21.8 48.3 75.2 78.7 81.9 82.7 65.4 67.2 61.9 47.7 50.1 60.5
PI-3 54.6 44.1 [56.2] 77.8 77.8 85.5 88.9 65.9 50.7 63.5 50.1 51.0 63.9
AP 54.1 49.2 48.8 75.7 79.6 83.7 89.3 63.2 45.3 61.8 48.7 42.9 61.9
DF 46.8 43.3 51.2 77.8 71.4 82.1 87.0 61.2 45.1 59.9 41.9 44.8 59.4

PIAP 54.2 47.1 54.0 79.0 78.2 [86.3] 89.5 [66.1] 49.7 63.2 49.9 [52] 64.1
PIAP-DF [55.0] [50.3] 51.2 [80] [79.7] 84.7 [90.1] 65.6 [51.4] [63.8] [50.5] 50.9 [64.4]

Table 3. F1-score (in %) of ablation experiments on the BP4D dataset. Bracketed bold number indicates the best performance, and bold
numbers for second best. PI-2: Baseline with stage-2 of PI; PI-3: Baseline with stage-3 of PI; AP: Baseline with AP; DF: Baseline with
DF; PIAP: Baseline with stage-3 of PI, and AP; PIAP-DF: Baseline with PIAP and DF.

From the results, benefiting from the combined use of
the three strategies, PIAP-DF shows excellent performance.
In terms of actual deploying, the training module PI, AP,
and DF can all be easily removed to get a lightweight in-
ference model. Note this lightweight model does not need
any additional information such as facial landmarks. These
advantages make PIAP-DF significantly better than other
methods.

4.3. Ablation Study

In this section, we demonstrate the ablation study on
PIAP-DF to investigate the effectiveness of Pixel-Interest
learning (PI), Anti Person-Specific learning (AP), and Dis-
crete Feedback Semi-Supervised Learning (DF). Table 3
shows the F1-score by individual ablation experiments on
BP4D. All of the results are based on 3-fold cross-validation
experiments.

We use EfficientNet-B1 as the baseline. After we apply
the first 2 stages of PI (PI-2)to the baseline (the first stage
of PI does not output AU predictions), the average F1-score
reaches 60.5%, an improvement of 4.9% points from base-
line. Stage-3 of PI (PI-3 or PI) further improves on PI-2 by
5.6% to 63.9%. If we apply both PI and AP on the baseline,
the PIAP can achieve an 11.1% improvement compared to
baseline, reaching an average F1-score of 64.1%. For DF,
it can be used alone on the baseline to achieve a score of
59.3% and gain a 2.8% increase, or combine it with PIAP
together, forming the complete PIAP-DF, to get the best
F1-score of 64.4%. This is also the current state-of-the-art
method as we know.

The ablation study proves the individual strategies we
designed further improve the performance.

4.4. Results of Pixel-Interested Learning

In this section, we show the PI Maps of AU2 and AU6
generated by the PI Generator in PI-2, and compare them
with the predefined PI Maps in Figure 1. We use a translu-
cent mask to refer to the predefined PI Map used in the tradi-
tional methods and the binary PI Map used in PI-2 method,
where the red pixels are 1 and the blue pixels are 0. We also

show the heatmap-format PI Maps in PI-2, where the value
of red pixels is larger than the blue and green ones. By
comparison, we can see that PI Generator generates more
refined PI Maps, unlike patches or predefined PI Maps that
must have straight edges and regular shapes. These more
refined PI Maps also proved to be more effective in our ab-
lation study. By presenting these PI Maps, we hope that the
pixel-level and multi-region PI Maps can give some useful
inspiration to AU annotators and researchers.

5. Conclusion

Automatic face AU detection is a challenging task. In
this paper, we propose an integrated strategy approach in-
corporating: a strategy PI for pixel-level interest learning,
a strategy AP for person-specific information removal, and
a semi-supervised learning method with discrete feedback.
These methods can be used jointly to train models for AU
detection tasks on a limited dataset with incorrect labels. By
evaluating on two generic AU datasets, PIAP-DF makes the
final model outperform all existing models. At last, PIAP-
DF, as a flexible training strategy, any model trained with
it can be easily exported as a lightweight AU encoder for
inference purposes. These encoders can better fit the pro-
duction environment, such as mobile or IoT devices.
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