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Abstract

Planning for visual navigation using topological mem-

ory, a memory graph consisting of nodes and edges, has

been recently well-studied. The nodes correspond to past

observations of a robot, and the edges represent the reacha-

bility predicted by a neural network (NN). Most prior meth-

ods, however, often fail to predict the reachability when

the robot takes different poses, i.e. the direction the robot

faces, at close positions. This is because the methods ob-

serve first-person view images, which significantly changes

when the robot changes its pose, and thus it is funda-

mentally difficult to correctly predict the reachability from

them. In this paper, we propose pose invariant topologi-

cal memory (POINT) to address the problem. POINT ob-

serves omnidirectional images and predicts the reachability

by using a spherical convolutional NN, which has a rota-

tion invariance property and enables planning regardless

of the robot’s pose. Additionally, we train the NN by con-

trastive learning with data augmentation to enable POINT

to plan with robustness to changes in environmental condi-

tions, such as light conditions and the presence of unseen

objects. Our experimental results show that POINT outper-

forms conventional methods under both the same and differ-

ent environmental conditions. In addition, the results with

the KITTI-360 dataset show that POINT is more applicable

to real-world environments than conventional methods.

1. Introduction

Planning for visual navigation has been widely studied.

Typically, a geometric map of an environment is constructed

by visual simultaneous localization and mapping (vSLAM)

[33, 23], and a path to a goal is planned by using a plan-

ning algorithm such as A* search [31]. However, in prac-

tical cases, vSLAM requires much effort to obtain a geo-

metrically accurate map, such as combination with high-

precision odometry or global navigation satellite system
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Figure 1. Overview of topological memory based planning. A

robot moves around an environment to collect data and train an

edge predictor with the data. Then, a topological memory is con-

structed on the basis of the edge predictor. The topological mem-

ory has nodes sampled from collected data and edges connected

between nodes if the nodes are predicted to be close (thus reach-

able) by the edge predictor. Finally, given current observations oc
and goal observations og , planning is performed on the topological

memory using an algorithm such as the Dijkstra algorithm [27].

(GNSS) sensors, and map modification and parameter tun-

ing by an expert. On the other hand, a number of works

have proposed planning methods using topological memory

[11, 32, 9, 24, 26, 36, 3], which is a memory graph where

each node corresponds to a past observation of a robot and

the edge between two nodes represents their reachability,

i.e. whether the positions corresponding to the nodes are

physically close or distant. In particular, recent works, such

as semi-parametric topological memory (SPTM) [32] and

hallucinative topological memory (HTM) [26], leverage a

neural network (NN) to predict the reachability. We call

such an NN an edge predictor. These methods do not aim

to build a geometrically accurate map, and thus do not re-

quire any combination with other high-precision sensors or

map modification and parameter tuning by an expert. Since

it is to be desired that visual navigation can be easily per-

formed without such requirements, we focus on topological

memory based methods. The overview of planning based

on topological memory is shown in Figure 1.

Previous topological memory based planning methods,

however, have a difficulty; the edge predictor often fails

prediction given observations with different poses. To ex-

plain the reason, we illustrate the procedure of the topologi-
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(b) Edge predictor training of POINT

Figure 2. (a) Illustration of topological memory construction of the conventional methods and POINT (our method). The left image

represents the bird’s eye view image of the environment and the past trajectory of the robot where the color represents a time step. The

green and blue arrows represent the positions and directions of the robot. The upper and bottom rows show the conventional methods and

POINT, respectively. (b) Overview of edge predictor training of POINT . We use contrastive learning with data augmentation.

cal memory construction of the conventional methods in the

top row of Figure 2(a). The left image represents the past

trajectory of the robot. While the robot positions, shown

as positions of the green and blue arrows in the left image,

are close and thus supposed to be predicted as reachable, the

robot poses, shown as the direction of the arrows, are differ-

ent. The conventional methods use first-person view images

as observations and convolutional NNs (CNNs) as the edge

predictor. Since first-person view images observed at the

green and blue arrows are totally dissimilar because their

poses are different, the feature maps extracted by the CNNs

are also dissimilar (see “Feature map space” in Figure 2(a)).

Therefore, it is fundamentally difficult to correctly predict

that the nodes corresponding to the blue and green arrows

are close. This mis-prediction, moreover, leads to a fail-

ure of localization and planning when the robot takes the

pose it has never taken. To deal with the problems by the

mis-prediction of the reachability due to the dissimilarity of

the feature maps, the conventional methods exploit a train-

able function, which is referred to as a predictor function

in this paper, that maps two feature maps to the reachability

from one to another, such as ones implemented as fully con-

nected (FC) layers at the top of the siamese network [15],

to implement the edge predictor functions. However, such

a predictor function increases the risk of incorrectly pre-

dicting dissimilar images observed at distant points as ones

observed at close points, as depicted by the pink line in the

topological memory in Figure 2(a).

To address the difficulty, we propose pose invariant

topological memory (POINT). The bottom row of Fig-

ure 2(a) shows an overview of the topological memory con-

struction of POINT. POINT observes omnidirectional view

images and uses an edge predictor consisting of spherical

CNNs (SCNNs) [5] and a cosine similarity predictor func-

tion. Thanks to a rotation invariance property of SCNNs,

the feature maps corresponding to observations at close po-

sitions are similar even if the robot takes different poses, as

shown by the green and blue arrows in Figure 2(a). Hence,

the corresponding nodes can be easily predicted to be close

by simply determining the similarity between feature maps.

Besides, the predictor function outputting the similarity of

feature maps rarely predicts dissimilar images observed at

distant positions to be close. In addition, considering more

practical situations, we attempt to achieve robust planning

to environmental condition changes, e.g. shadow direction,

light conditions, and the presence of unseen objects such

as pedestrians. To obtain the robustness, we train the edge

predictor by contrastive learning with data augmentation [4]

that learns to obtain similar features from randomly trans-

formed images, as shown in Figure 2(b). In our experi-

ments, we show that POINT outperforms the conventional

methods under both the same and different environmen-

tal conditions. In addition, the results with the KITTI-360

dataset [37] indicate that POINT is more applicable to real-

world environments than conventional methods.

2. Related Work

2.1. Planning using Topological Memory

Our method is built upon existing topological memory

based planning methods [11, 32, 9, 26, 24, 36, 20, 3]. Many

works suppose that actual movement along a planned path

is performed by using a local movement policy trained in

addition to the edge predictor. We focus on only topological
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memory construction and planning but not the local policy

training to purely evaluate planning performance.

The major differences between our method and most pre-

vious works, such as SPTM and HTM, are that we use om-

nidirectional images instead of first-person view images for

the observation and SCNNs [5] in the edge predictor. This

enables the robot to find the closest nodes on the topological

memory regardless of its pose. While [36] also uses omnidi-

rectional images as inputs of an edge predictor which does

not have the rotation invariance property theoretically, our

edge predictor theoretically guarantees the rotation invari-

ance for the omnidirectional images. Another difference

is that our method trains the edge predictor to be robust

to changes in the environmental conditions by contrastive

learning with data augmentation.

2.2. Planning using Dynamical Model

A number of works construct a dynamical model for

planning [7, 14, 16, 13, 1, 10, 28, 18]. Most of them plan

action series by using model predictive control. Their ad-

vantage compared with the topological memory based plan-

ning methods including our methods is that they do not re-

quire to additionally learn the local movement policy. How-

ever, dynamical model errors accumulate over time, making

it difficult to deal with long-horizon tasks. On the other

hand, the topological memory based planning methods re-

quire learning the local policy while being able to perform

long-horizon planning without such error accumulations.

2.3. Spherical Convolutional Neural Networks

There have been a number of studies proposing CNNs

for omnidirectional data [5, 8, 6, 29, 21, 36]. [5] and [8] pro-

posed theoretically rotation-equivariant CNNs on the unit

sphere. SphereNet proposed in [6] deals with distortion

on omnidirectional images but is not invariant to rotation.

DeepSphere [29] leverages graph CNNs to achieve rotation

equivariance and computational efficiency. [21] proposed

a spherical CNN on an unstructured grid that improves pa-

rameter efficiency. In this paper, we use the work of [5]

because it theoretically guarantees rotation invariance and

can be easily by using its official code1.

2.4. Contrastive Learning

Contrastive learning [15, 35, 2, 19, 4, 17, 12] is catego-

rized as unsupervised / self-supervised learning and aims

to learn good representations for downstream tasks such as

image recognition [19, 4, 17, 12] and reinforcement learn-

ing [35, 25]. In this paper, we leverage contrastive learning

for visual navigation. Many contrastive learning methods

learn to minimize a loss function called InfoNCE [35] so

that a positive pair is more similar to negative pairs in some

1https://github.com/jonas-koehler/s2cnn

measures. [4, 34] has demonstrated that data augmentation

helps to acquire robust good representations. We expect our

method to be robust to environmental condition changes by

using contrastive learning with data augmentation.

3. POINT: Pose Invariant Topological Memory

In this section, we propose pose invariant topological

memory (POINT) for visual navigation to address the prob-

lem of the conventional methods. We first explain the

procedure of planning using topological memory includ-

ing SPTM, HTM, and POINT briefly. Figure 1 illustrates

the procedure. The purpose of planning using topological

memory is to provide waypoint observations to reach a goal

from the current state, where the robot observes og and oc,

respectively. The topological memory M has N nodes sam-

pled from past observations Dtrain = {ot|0 ≤ t ≤ T − 1},

where ot denotes the observation at time step t and T de-

notes the number of the past observations. The edge pre-

dictor predicts the reachability between two nodes oi and

oj ∈ Dtrain. When planning from oc to og , they are added

to M as nodes and the shortest path problem is solved in an

algorithm such as the Dijkstra algorithm [27].

Importantly, the prediction accuracy of the edge pre-

dictor directly affects the planning performance. POINT,

as well as SPTM and HTM, trains the edge predictor to

distinguish whether past observations oi and oj are sepa-

rated by at most ∆tp time steps (|i − j| < ∆tp) or by

at least ∆tn time steps (|i − j| > ∆tn), where ∆tp and

∆tn are hyperparameters. The edge predictor is imple-

mented as the siamese network [15] consisting of two en-

coders E : O → R
d with shared parameters and a predictor

function f : Rd × R
d → R, where O denotes the obser-

vation space and d denotes the dimension of feature vectors

extracted by E. The differences between POINT and the

conventional methods lie in the composition and training of

the edge predictor. We summarize the differences among

SPTM, HTM, and POINT in Table 1. We describe the com-

position and training of our edge predictor below.

3.1. Edge Predictor using Spherical CNNs and Co
sine Similarity Predictor Function

To achieve accurate edge prediction regardless of the

robot’s pose, we propose two solutions. First, we ob-

serve omnidirectional images and use SCNNs [5] for E
to eliminate the pose dependency, instead of first-person

view images and CNNs. The SCNNs are known to be

able to extract rotation-invariant feature vectors [5]. It in-

dicates that similar feature vectors z ∈ R
d can be ob-

tained from observations at different robot’s poses, and thus

we can easily predict the accurate reachability even when

the robot faces different directions. Second, we employ

f(zi, zj) = exp(sim(zi, zj)/τ) as the predictor function,

where sim(zi, zj) = zTi zj/∥zi∥∥zj∥ is the cosine similar-
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Method Encoder E Predictor function f Training Data Aug.

SPTM CNN FC layers Classification No

HTM CNN exp
(

zTi Wzj
)

Contrastive Learning No

POINT (Ours) SCNN exp(zTi zj/τ∥zi∥∥zj∥) Contrastive Learning Yes

Table 1. Difference among SPTM, HTM, and POINT. FC layers for SPTM and W ∈ R
d×d for HTM are trainable and not positive definite.

ity between zi = E(oi) and zj = E(oj), ∥ · ∥ denotes

L2-norm, and τ > 0 is a temperature parameter. Since z do

not depend on the robot’s pose because of the rotation in-

variance property of the SCNNs, we can predict the reach-

ability by simply calculating the similarity of z. POINT

connects an edge between nodes oi and oj with edge cost

cij = 1/f(zi, zj), in the same way as HTM. An expected

advantage of our predictor function model relative to those

of SPTM and HTM is that it rarely connects an edge be-

tween distant nodes, such as the pink line in the topological

memory in Figure 2(a). This is because z corresponding to

observations at distant positions are almost always dissim-

ilar. We empirically found that predictor functions with a

positive definite property work reasonably well, and are not

limited to the cosine similarity. For more detail, see 4.1.2.

These two solutions are simple but expected to be ef-

fective for accurate topological memory construction and

planning. The overview of the difference between the con-

ventional methods and POINT is illustrated in Figure 2(a).

3.2. Training for Robust Edge Prediction to Envi
ronmental Condition Changes

Considering more realistic situations, we improve

POINT to be robust to changes in environmental conditions,

e.g. light conditions, shadow direction, and the presence

of unseen objects like pedestrians. Figure 2(b) shows the

overview of the training. We train the edge predictor using

contrastive learning with data augmentation. During train-

ing, we apply a random transformation T to the observed

images such as color jitter and random erasing. That is,

we train the edge predictor to minimize the following loss

function called InfoNCE:

L = −Eot∼Dtrain

[

log
f(z̃t, z̃k)

∑

oi∈DCtr
f(z̃t, z̃i)

]

, (1)

where z̃i = E(T (oi)) denotes the feature vector corre-

sponding to the randomly transformed observation T (oi).
DCtr contains one observation ok where (ot, ok) satisfies

|t − k| < ∆tp, and K − 1 observations randomly sampled

from Dtrain. ∆tp is a hyperparameter.

This training aims to extract similar features from images

whose observed times are close, even when the images are

differently transformed. It is expected that POINT would

be able to predict edge connections with robustness to envi-

ronmental condition changes.

4. Experiments

We conducted experiments using synthetic and real-

world datasets. In experiments with the synthetic dataset,

we address the following questions:

• Does POINT outperform the conventional topological

memory based planning methods?

• Does the SCNN encoder allow successful planning re-

gardless of the robot’s pose?

• Does the contrastive learning with data augmentation

improve the robustness to the environmental condition

changes?

• What property should the predictor function have for

better topological memory construction?

On the other hand, in experiments with the real-world

dataset, we evaluate the applicability of POINT and the con-

ventional methods in real-world environments. The experi-

mental protocol and results for the synthetic and real-world

dataset are described in Sections 4.1 and 4.2, respectively.

4.1. Evaluation with Synthetic Dataset

4.1.1 Setup

Dataset To create a synthetic dataset, We implemented

the simulation environment using the robot operation sys-

tem (ROS) [30] and the Gazebo simulator [22] as shown

in Figure 3. We set up four different environmental condi-

tions shown in Figure 4; base, sunset, obstacles, and dif-

ferent shadow. We manually operated the robot under the

base environmental condition (Figure 4(a)) to collect Dtrain

four times. Each path of Dtrain is shown in Figure 6. Dtrain

is composed of omnidirectional images the robot observed

along the paths. Dtest, from which oc and og were sampled

for planning, was also collected four times under each envi-

ronmental condition (base, sunset, obstacles, and different

shadow) in the same way as one for collecting Dtrain. Al-

though the routes for collecting Dtest were similar to ones

for collecting Dtrain, Dtest has the observations along both

the same and opposite route directions – for example, if both

Dtrain and Dtest have observations at the same position un-

der the same environmental condition, Dtest has observa-

tions with different poses from the ones in Dtrain.
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(a) Simulation environment (b) Bird’s eye view (c) Robot

Figure 3. (a) Simulation environment and (b) its bird’s eye view.

The environment has an area of 20 × 20 m. (c) Robot that has an

omnidirectional camera on the top and can move about 3 m in 100

time steps if it continued to move straight ahead. More details of

the simulatior can be found in the supplementary material.

Training and evaluation procedure Given Dtrain, we

trained edge predictors by several variants of the topological

memory based planning methods including SPTM, HTM,

SoRB [9]2, and POINT, each of which is defined as a dif-

ferent combination of input image formats, the image trans-

form functions, the encoders, and the predictor functions.

The input image format is chosen from either the first per-

son view or the omnidirectional image. If the first person

view images were chosen, the input images were acquired

by cropping the center of the omnidirectional images in

Dtrain so that its field of view was 90 degrees as shown

in Figure 5(a), otherwise by masking the lower third of the

omnidirectional images in D as shown in Figure 5(b). The

mask is to remove images of the robot body that disrupt the

pose invariance of the omnidirectional images. The input

images were downsized to 128 × 128 before being fed to

the image transform function. The image transform func-

tion was chosen from the identity function (thus the data

augmentation was not performed) or the random transform

function T . The image transform function was applied to

the input images before being fed into the encoder. the en-

coder is chosen from either a CNN encoder or an SCNN

encoder. The edge predictor functions are chosen from the

one used in SPTM, the one used in HTM, the one used in

SoRB, or the one described in Section 3.1. The training ob-

jectives of those variants are determined by the choice of

edge predictor as shown in Table 1. The hyperparameters

∆tp and ∆tn were set to 100 and 200, respectively, since

these empirically worked well for all variants. The imple-

mentation of the edge predictors and other hyperparameters

are described in the supplementary material.

The topological memories M were constructed with

N = 300 nodes. We used the k-nearest neighbor (kNN)

edge clean-up method proposed in [24] because it empiri-

cally worked well to reduce edge mis-connection between

actual distant nodes. It permits only the k edges with the

largest f(zi, zj) connected for each node. We set k = 20.

2While the original SoRB trains the edge predictor by exploring the

environment, we trained it by using data collected offline.

(a) Base (b) Sunset

(c) Obstacles (d) Different shadow

Figure 4. Environmental conditions. Dtrain is collected under

the (a) base condition, and planning is performed under the (a)

base, (b) sunset, (c) obstacles, and (d) different shadow conditions.

(b) has different colors and shadow directions from (a). (c) has

a number of white boxes in random positions. (d) has different

shadow directions from (a) but has the same color.

(a) CNN (b) SCNN

Figure 5. Input images for encoders. (a) is the input for the CNN

encoder, i.e. first-person view images, while (b) is the input for the

SCNN one. Both were downsized to 128× 128.

Route A Route C Route DRoute B

ti
m

e 
st

ep

Figure 6. Route paths for datasets. The color represents the time

step. The total time steps T for routes A, B, C, and D were 2442,

2404, 2424, and 2456, respectively.

We evaluate the topological memory based planning

methods as follows. Given oc and og randomly sampled

from Dtest, we performed planning from oc to og by the Di-

jkstra algorithm based on the constructed topological mem-

ories. A planning result is evaluated as a success if (i) the

planned path connecting positions where oc and og were

observed exists in M and (ii) it does not pass through an

edge that connects two nodes that are more than 6 m3 apart.

We conducted 100 trials for each Dtrain and Dtest, that is,

100 (trials) × 4 (Dtrain) × 4 (Dtest) = 1600 trials for each

environmental condition.

3It was set to the distance that the robot was able to move during ∆tn

time steps if it continued to move straight ahead.
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Figure 7. Planning success rates of SPTM, HTM, SoRB [9], and

POINT. SPTM (SCNN enc.) denotes a variant of SPTM that ex-

ploit SCNN encoder with omnidirectional images instead of the

ones SPTM exploits, and the same goes for HTM (SCNN enc.)

and SoRB (SCNN enc.). POINT (FPV + CNN enc.) denotes

a variant of POINT that exploits CNN encoder with first-person

view images instead of the ones POINT exploits.

4.1.2 Results

Does POINT outperform the conventional topological

memory based planning methods? The experimental re-

sults are summarized in Figure 7. While the success rates

of the conventional methods were low even under the base

condition, in which Dtrain is collected, POINT showed

much higher success rates. Besides, under the other con-

ditions, POINT maintained high success rates while the

performance of the conventional methods deteriorated. It

suggests that POINT significantly outperformed the con-

ventional methods. We found that POINT outperformed

POINT (FPV + CNN enc.), which uses first-person view

images and the CNN encoder, in all conditions, while

POINT (FPV + CNN enc.) outperformed the conventional

methods especially under the conditions except for the base

condition. It indicates that both the SCNN encoder with

omnidirectional images and contrastive learning with data

augmentation described in Section 3.2 are effective for ro-

bust and better planning. We further investigate how the

SCNN and constrastive learning with data augmentation

work. The investigation details are described below.

Does the SCNN encoder allow successful planning re-

gardless of the robot’s pose? We compared POINT with

a variant of POINT denoted by POINT (Omni. + CNN

enc.), which observes omnidirectional images but uses a

CNN encoder. We separately evaluated the success rates

under two cases: the route direction of Dtest was either the

same with or opposite to that of Dtrain. Figure 8 shows the

success rates in each case. Remarkably, the success rates

of POINT (Omni. + CNN enc.) significantly decreased

when the route direction of Dtest was opposite to the ones

of Dtrain, while POINT maintains its performance. It sug-

gests that the SCNN enabled proper edge prediction even

between observations in completely different directions, re-

sulting in successful planning regardless of the robot’s pose.

Figure 8. Planning success rates of POINT and POINT (Omni.

+ CNN enc.), which observes omnidirectional images but uses a

CNN encoder.

Figure 9. Planning success rates of POINT and POINT (w/o DA),

which trains the edge predictor by contrastive learning without

data augmentation.

Does the contrastive learning with data augmentation

improve the robustness to the environmental condition

changes? We compared POINT with POINT (w/o DA),

which trains the edge predictor by contrastive learning with-

out data augmentation. Figure 9 shows the success rates of

POINT and POINT (w/o DA). We found that the perfor-

mance of POINT (w/o DA) deteriorated when environmen-

tal conditions changed. It suggests that data augmentation

helps robust planning to changes in environmental condi-

tions. We expect the robustness to play an important role

for practical use in ever-changing environments.

What property should the predictor function have for

better topological memory construction? We further in-

vestigate if the choice of predictor function affects the plan-

ning performance. We compared various predictor function

models as shown in Table 2, where τ = 0.01. The cosine

similarity and log-bilinear models correspond to the predic-

tor functions of POINT and HTM, respectively. The inner

product model and linear inner product model can be inter-

preted as a log-bilinear model with a positive definite matrix

W = I and W = UTU , respectively. The Gaussian kernel

model is also a positive definite function.

Figure 10 shows the success rates of them. We found

that the cosine similarity achieved the highest success rates

under the base, sunset, and different shadow conditions, and

was competitive with the inner product model under the ob-

stacles condition. On the other hand, the log-bilinear model

used in HTM obtained the worst success rates. For more

analysis, we show the topological memories built when us-
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Model name Definition of log f

log-bilinear zTi Wzj
cosine similarity zTi zj/(τ∥zi∥∥zj∥)
inner product zTi zj
linear inner product (Uzi)

T (Uzj)
Gaussian kernel 1

τ
exp(−∥zi − zj∥

2)

Table 2. Predictor function models. Both W and U ∈ R
d×d are

trainable parameters.

Figure 10. Planning success rates of POINT with various predictor

functions.

ing the cosine similarity and log-bilinear models in Fig-

ure 11. It can be seen that the topological memory of the

cosine similarity does not connect edges between distant

nodes, whereas that of the log-bilinear often does. These

improper edge connections of the log-bilinear model caused

the planning to pass an edge between distant nodes and re-

sulted in the worst score. Not limited to the cosine similarity

model, the inner product, linear inner product, and Gaus-

sian kernel models, which are all positive definite, achieved

higher success rates than the log-bilinear model under all

environmental conditions. It suggests that the positive def-

inite property helps to achieve accurate topological mem-

ory construction and planning. We further investigate the

difference among the predictor functions with the positive

definite property. The investigation details can be found in

the supplementary material. As a result, we conclude that

the predictor function is desirable to take the normalized in-

puts as the cosine similarity function in addition to having

the positive definite property.

4.2. Evaluation with RealWorld Dataset

4.2.1 Setup

Dataset We used the KITTI-360 dataset [37], which con-

tains real-world omnidirectional images captured on streets.

We divided the dataset into Dtrain = {o3k|k ∈ N, k ≤
(Tall − 1)/3} and Dtest = Dall \ Dtrain for each data se-

quence Dall = {ot|0 ≤ t ≤ Tall−1}. The trajectory and an

example image of each sequence are shown in Figure 12.

Training and evaluation procedure The edge predictor

for each method is trained with Dtrain. The first-person

view input images were acquired by cropping the center of

(a) cosine similarity (b) log-bilinear

Figure 11. Visualization of topological memories. The circles rep-

resent nodes and their locations correspond to the xy-coordinates

of the position when the corresponding observations are acquired.

The lines represent edges.

the omnidirectional images so that its field of view was 90

degrees4 in the same way as the simulation experiments.

The input image resolution was 256 × 256 and ∆tp and

∆tn were set to 10 and 20, respectively. The number of

nodes in a topological memory was set to N = 1200 and

k for kNN edge clean-up was set to 10. To obtain a robust

topological memory, we used n-step mean of the predictor

function output
∑n−1

i=0
(f(zt, zt′−i) + f(zt−i, zt′))/2n in-

stead of f(zt, zt′) for edge prediction between nodes ot and

ot′ , where zt = E(ot), zt′ = E(ot′), and n = 3. Planning

was performed 100 times for each Dall. The implementa-

tion of the edge predictor and the other hyperparameters are

detailed in the supplementary material.

4.2.2 Results

Table 3 shows the mean success rate of POINT, the conven-

tional methods, and variants of those methods. We can see

POINT achieved the highest success rate than other meth-

ods. It indicates that POINT is more applicable to real-

world environments than conventional methods. POINT

(Omni. + CNN enc.) obtained better performance than

SPTM (Omni.) and HTM (Omni.). It suggests that con-

trastive learning with data augmentation and the cosine

similarity predictor function significantly improve planning

performance. POINT (Omni. + CNN enc.) also obtained

better performance than POINT (Omni. + CNN enc.) while

POINT outperformed POINT (Omni. + CNN enc.). It indi-

cates that exploiting the omnidirectional images rather than

the first-person view images as the input of edge predictors

is better suited for building topological maps in real-world

environments and, thanks to the rotation invariance prop-

erty, the SCNN encoder can utilize the omnidirectional im-

ages more effectively than the CNN encoder. To see the

effect of SCNN qualitatively, we visualize the successful

4We did not use perspective images provided by [37] for first-person

view images because we needed to match frame rate with omnidirectional

image observations.
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(a) 2013 05 28 drive 0000 sync

(b) 2013 05 28 drive 0004 sync

Figure 12. Trajectories and example images of the sequences

we used. These sequences were obtained by dividing either

2013 05 28 drive 0000 sync or 2013 05 28 drive 0004 sync se-

quence into three. Each Dtrain and Dtest have 1280 and 2560 im-

ages, respectively, for 2013 05 28 drive 0000 sync, whereas 1287

and 2574, respectively, for 2013 05 28 drive 0004 sync.

Method Mean success rate

SPTM 0.020 ± 0.011

SPTM (Omni.) 0.040 ± 0.025

SPTM (SCNN enc.) 0.033 ± 0.016

HTM 0.045 ± 0.037

HTM (Omni.) 0.083 ± 0.028

HTM (SCNN enc.) 0.103 ± 0.034

POINT (FPV + CNN enc.) 0.435 ± 0.471

POINT (Omni. + CNN enc.) 0.908 ± 0.152

POINT 0.932 ± 0.163

Table 3. Planning success rates of SPTM, HTM, and POINT for

the KITTI-360 dataset. SPTM (Omni.) and HTM (Omni.) are

variants of SPTM and HTM respectively, which exploit CNN en-

coder with the omnidirectional images instead of the first-person

view images.

planned path of POINT and POINT (Omni. + CNN enc.)

in Figure 13. It can be found that POINT took the short-

est paths, whereas POINT (Omni. + CNN enc.) took de-

touring paths. It suggests that, whereas CNNs often plan

a redundant path even with omnidirectional image observa-

tions, the rotation invariance property of SCNNs helps to

plan not only successful but also shorter paths.

(a) POINT (b) POINT (Omni. + CNN enc.)

Figure 13. Planned paths of (a) POINT and (b) POINT (Omni. +

CNN enc.). Gray circles represent the nodes in each topological

memory. The blue line is the planned path from the green circle to

the pink circle.

5. Conclusion

In this paper, we have proposed pose invariant topolog-

ical memory (POINT), a topological memory based plan-

ning method for visual navigation. Comparing with the con-

ventional methods like SPTM and HTM, POINT can con-

struct an accurate topological memory and perform plan-

ning regardless of the robot’s pose, that is, the direction the

robot faces. This advantage is obtained by the edge predic-

tor consisting of the SCNNs, which theoretically guarantees

the rotation invariance, and the cosine similarity predictor

function, which rarely predicts dissimilar images observed

at distant positions as close. Moreover, considering more

practical situations, we train the edge predictor to be robust

to changes in environmental conditions by using contrastive

learning with data augmentation. We conducted experi-

ments with synthetic images as well as real-world images.

The results have demonstrated that (i) POINT outperformed

the conventional methods under both the same and different

environmental conditions, and (ii) POINT is more applica-

ble to real-world environments than conventional methods.

We have focused only on the planning in this paper. In

future work, we will examine the autonomous navigation

performance based on the planning by conventional visual

navigation methods such as vSLAM as well as the topolog-

ical memory based methods including POINT. We believe

that the comparison between vSLAM based methods and

the topological memory based methods while taking into

account the cost for building the map would provide insight

into the real-world visual navigation problem.
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