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Abstract

In this paper, given a small bag of images, each contain-
ing a common but latent predicate, we are interested in lo-
calizing visual subject-object pairs connected via the com-
mon predicate in each of the images. We refer to this novel
problem as visual relationship co-localization or VRC as an
abbreviation. VRC is a challenging task, even more so than
the well-studied object co-localization task. This becomes
further challenging when using just a few images, the model
has to learn to co-localize visual subject-object pairs con-
nected via unseen predicates. To solve VRC, we propose an
optimization framework to select a common visual relation-
ship in each image of the bag. The goal of the optimization
framework is to find the optimal solution by learning visual
relationship similarity across images in a few-shot setting.
To obtain robust visual relationship representation, we uti-
lize a simple yet effective technique that learns relationship
embedding as a translation vector from visual subject to vi-
sual object in a shared space. Further, to learn visual rela-
tionship similarity, we utilize a proven meta-learning tech-
nique commonly used for few-shot classification tasks. Fi-
nally, to tackle the combinatorial complexity challenge aris-
ing from an exponential number of feasible solutions, we
use a greedy approximation inference algorithm that selects
approximately the best solution.

We extensively evaluate our proposed framework on
variations of bag sizes obtained from two challenging pub-
lic datasets, namely VrR-VG and VG-150, and achieve im-
pressive visual co-localization performance.

1. Introduction
Localizing visual relationship (<subject, predicate,

object>) in images is a core task towards holistic scene in-
terpretation [15, 37]. Often the success of such localization
tasks heavily relies on the availability of large-scale anno-
tated datasets. Can we localize visual relationships in im-
ages by looking into just a few examples? In this paper, to-

Figure 1: Given a bag of four images as shown in the first
row, can you find the visual subjects and objects connected
via a common predicate? Our proposed model in this pa-
per automatically does that. In this illustration, the “biting”
predicate is present in all four images in the first row. Our
proposed model localizes those visual subjects and objects
in each image that are connected via “biting” as shown in
the third row. Note that the category name “biting” is not
provided to our approach. Here, green and yellow bound-
ing boxes indicate the localized visual subject and objects
respectively using our approach.[Best viewed in color].

wards addressing this problem, we introduce an important
and unexplored task of Visual Relationship Co-localization
(or VRC in short). VRC has the following problem set-
ting: given a bag of b images, each containing a common
latent predicate, our goal is to automatically localize those
visual subject-object pairs that are connected via the com-
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mon predicate in each of the b images. Note that, during
both the training and testing phases, the only assumption
is that each image in a bag contains a common predicate.
However, its category, e.g. biting, is latent.

Consider Figure 1 to better understand our goal. Given a
bag of four images, each containing a latent common pred-
icate, e.g. “biting” in this illustration, we aim to localize
visual subject-object pairs, such as (dog, frisbee), (man, hot
dog), and so on, with respect to the common predicate in
each of the images. VRC is significantly more challenging
than well-explored object co-localization [11, 26, 30] due to
the following: (i) Common objects often share a similar vi-
sual appearance. However, common relationships can visu-
ally be very different, for example, visual relationships such
as “dog biting frisbee” and “man biting hot dog” are very
different in visual space. (ii) Relationship co-localization
requires both visual as well as semantic interpretation of the
scene. Further, VRC is also distinctly different from visual
relationship detection (VRD) that aims to estimate the max-
imum likelihood for (<subject, predicate, object>) tuples
from a predefined fixed set of visual relationships common
across the train and test sets. It should be noted that test
predicates are not provided even during the training phase
of VRC. Therefore, the model addressing VRC has to inter-
pret the semantics of unseen visual relationships during test
time.

Visual relationship co-localization (VRC) has many po-
tential applications, examples include automatic image an-
notation, bringing interpretability in image search engines,
visual relationship discovery. In this work, we pose VRC
as a labeling problem. To this end, every possible visual
subject-object pair in each image is a potential label for
common visual subject-object pair. To get the optimal label-
ing, we define an objective function parametrized by model
parameters whose minima corresponds to visual subject-
object pairs that are connected via a common latent pred-
icate in all the images. To generalize well on unseen pred-
icates, we follow the meta-learning paradigm to train the
model. Just as a good meta-learning model learns on vari-
ous learning tasks, we train our model on a variety of bags
having different common latent predicates in each of them
so that the model generalizes to new bags. We use a greedy
approximation algorithm during inference that breaks down
the problem into small sub-problems and combines the so-
lutions of sub-problems greedily.

To evaluate the performance of the proposed model for
VRC, we use two public datasets, namely VrR-VG [18]
and VG-150 [34]. Our method achieves impressive perfor-
mance for this challenging task. This is attributed to our
principled formulation of the problem by defining a suitable
objective function and our meta-learning-based approach
to optimize it. Further, we present several ablation stud-
ies to validate the effectiveness of different components of

our proposed framework. On bag size = 4, we achieve
76.12% co-localization accuracy on unseen predicates of
VrR-VG [18] dataset.

The contributions of this paper are two folds: (i) We
introduce a novel task – VRC (Visual Relationship Co-
Localization). VRC has several potential applications and
is an important step towards holistic scene interpretation.
(ii) Inspired by the recent success of the meta-learning
paradigm in solving few-shot learning tasks, we propose a
novel framework for performing few-shot visual relation-
ship co-localization. Our framework learns robust repre-
sentation for latent visual predicates and is efficacious in
performing visual relationship co-localization with only a
few examples.

2. Related Work
Object Co-localization: Object localization [5, 12, 27, 40]
is an important and open problem in computer vision. To
localize object overlap between two or more images, object
co-localization has been introduced. In an early work, Tang
et al. [30] have proposed the box and image model in an
optimization framework to address object co-localization.
In their formulation, both the models complement each
other by helping in selecting clean images and the boxes
that contain the common object. Towards addressing the
limited annotated data issue, the recent works [11, 26]
have opted for the lane of few-shot learning. Hu et al. [11]
localize a common object across support and a query
branch. Whereas Shaban et al. [26] form bags of images,
and then find common objects across all the images in a
bag. While object co-localization is an interesting task,
visual relationship co-localization requires a visual as well
as a semantic understanding of the scene. To the best of our
knowledge, few-shot visual relationship co-localization has
not been studied in the literature.

Visual Relationship Detection (VRD): It is an in-
strumental task in computer vision due to its utility in
comprehensive scene understanding. To get the predicted
relationship label in the image, Zhang et al. [37] used the
spatial, visual, and semantic features. This approach is
limited to detecting those relationships that are available
during the training and does not generalise on unseen
relationships. Another method [38] project the objects and
relations into two different higher dimensional spaces and
ensures their semantic similarity and distinctive affinity by
using multiple losses. Zhang et al. [39] introduced a new
graphical loss to improve the visual relationship detection.
Zellers et al. [36] used a network of stacked bidirectional
LSTMs and convolutional layers to parse a scene graph
and, in between, detect various relationships in the image.
Many recent approaches have also benefited from the ad-
vancements in graph neural networks [17]. As compared to
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Notation Meaning

Lu Label set for Image-u
lso ∈ Lu Visual relationship

b Bag size
pu Number of object proposals in Image-u
Bu

i ith object proposal in Image-u
Pso Latent predicate connecting proposals

Bu
s and Bu

o

P ∗
so Common latent predicate

fϕ(·) Relationship embedding network
Rθ(·, ·) Visual relationship similarity

θ Model parameters

Table 1: Notations used in this paper.

visual relationship detection, we are distinctively different,
as discussed in the introduction of this paper.

Meta Learning for Few-Shot Learning: Few-shot
learning methods [1, 4, 8, 33] are being studied and
explored significantly for both computer vision [7, 20] and
natural language processing [3, 9, 22, 25, 33, 35]. There are
two major groups of methods towards solving the few-shot
learning problem: (i) metric-based and (ii) model-based
methods. Siamese Networks [13] which uses a shared
CNN architecture for learning the embedding function and
weighted L1 distance for few-shot image classification,
Matching Network [32] which uses CNN followed by an
LSTM for learning the embedding function, Prototypical
Network [28] which uses CNN architecture with a squared
L2 distance function and Relation Network [29] which
proposed to replace the hand-crafted distance metrics
with a deep distance metric to compare a small number
of images within episodes, are examples of metric-based
approaches. Model-based approaches generally depend
on their model design. MetaNet [19] is an example of a
model-based few-shot learning approach that enables rapid
generalization by learning meta-level knowledge across
multiple tasks and shifting its inductive biases via fast
parameterization. We use a metric-based approach viz.
Relations Network for learning similarity between visual
relationship embeddings in our optimization framework.

3. Approach
Given a bag of b images, {Iu}bu=1 such that each image

of the bag Iu contains a latent common predicate that is
present across all the images in the bag, our goal is to find
the set O such that O = {(Bu

i , B
u
j )}bu=1 where each tuple

< Bu
i , B

u
j > corresponds to object proposal pairs in uth

image that are connected via the common predicate in the

bag. Here, Bu
i and Bu

j are the bounding boxes over visual
subject and object respectively. Table 1 shows the meaning
of major notations used in this paper.

3.1. VRC as a Labeling Problem

We pose VRC as a labeling problem. To this end, given
a bag containing b images, we construct a fully connected
graph G = {V,E} where V = {Iu}bu=1 is a set of vertices
such that each vertex corresponds to an image. The poten-
tial label set for each vertex is a set of all possible pairs of
object proposals1 obtained from the corresponding image.
Given this graph and label sets, the goal is to assign one
label to each vertex of the graph (or equivalently to each
image in the bag) such that visual subject-object pair con-
nected via the latent common predicate P ∗

so is assigned to
each image.

The labeling problem formulation for the visual relation-
ship co-localization using an illustrative example is shown
in Figure 2. Here, we show four images in a bag, i.e., bag
size b = 4. Each image is represented as a vertex in a fully-
connected graph G. To obtain a label set for each of these
vertices (or equivalently each image), we first obtain object
proposals using Faster R-CNN [23]. Let B = {Bu

i }
pu

i=1 be
a set of object proposals obtained for Image-u, for example,
in Figure 2, we get bounding boxes for “woman”, “sheep”,
“hat”, “bucket”, etc. as object proposals for Image-1. Here
pu is the number of object proposals in Image-u. Given
these, the label set of this vertex will contain all possible
ordered pairs of object proposals. In other words, the cardi-
nality of this label set is equal to pu × (pu − 1).

Further, each ordered pair of the object proposals is con-
nected via a latent predicate. Examples of latent predicate
in Image-1 (ref. Figure 2) are petting, wearing, etc. These
predicates define visual relationships such as “<woman,
petting, sheep>”, “<woman, wearing, hat>”, etc. Suppose
< Bu

s , Pso, B
u
o > represents that object proposals Bu

s and
Bu

o of image-u that are connected via a hidden predicate
Pso. Then, the label set for Image-u or equivalently corre-
sponding vertex-u is given by:

Lu = {< Bu
s , Pso, B

u
o > | s ̸= o and (Bs, Bo) is an

ordered pair of object proposals in image-u and
Pso is a latent predicate.}

(1)

A label lu(s,o) = < Bu
s , Pso, B

u
o > ∈ Lu is an

instance (or member) of label set for vertex-u. For sim-
plifying the notation, we write lu(s,o) as lut from here on-
wards where t varies from 1 to |Lu|. Further, the optimal
label, i.e., the visual subject-object pair that are connected
via a “common” latent predicate P ∗

so in image-u is repre-
sented by: l∗ut. In Figure 2, P ∗

so = “petting” with visual

1Object proposals should not be confused with the object in a visual
relationship.
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Figure 2: VRC as a labeling problem. Given a bag of b images (b = 4 in this illustration), we construct a fully connected
graph by denoting each image as a vertex. All the pairs of object proposals in each image constructs the label set for each
vertex. The goal is to find a labeling such that the labels representing common latent predicate are selected for each image,
e.g., “petting” in this illustration. We solve this problem by minimizing a corresponding objective function. Refer to Section 3
for more details. [Best viewed in color].

relationship tuples <woman, petting, sheep>, <man, pet-
ting, dog>, <man, petting, horse>, <man, petting, sheep>
in Image-1 to 4 respectively. Recall that the goal of the la-
beling problem is to assign the optimal labels to all of the
bag images or, in other words finding an optimal pair of
subject and object bounding boxes < Bu

s
∗, Bu

o
∗ > for each

bag image.
Formulation for the optimal labeling: To solve the la-
beling problem, we define the following objective function
whose minima corresponds to optimal labeling for VRC,
i.e., localizing the visual subject-object pairs in each image
of a bag that are connected via the common latent predicate:

Ψ =

b∑
u=1

(
min
t

Ψu(lut) +

b,u ̸=v∑
v=1

min
t1,t2

Ψuv(lut1 , lvt2 ,θ)
)
.

(2)
In this objective function there are two terms: (i) Unary

term Ψu(lut) which represents cost of assigning a label
lut =< Bu

s , Pso, B
u
o > to image u. Since given an im-

age, any subject-object pair is considered to be equally
likely. Therefore, this term of the objective function does
not contribute to the optimization.2 (ii) Pairwise term
Ψuv(lut1 , lvt2 ,θ) represents the cost of image-u taking a
label lut1 = < Bu

s , Pso, B
u
o > and image-v taking a label

lvt2 = < Bv
s , Pso, B

v
o >. Here θ is a learnable model

parameter that needs be learnt from few examples. We use
a neural model to learn these parameters. We describe this
neural model in Section 3.2. Further, the pairwise term of
optimization should be defined in such a way that it is lower
when hidden predicates Pso of lut1 and lvt2 are semanti-
cally similar, and higher otherwise. We compute this pair-
wise term in Equation 6. Further, to compute this pairwise

2We write a ‘general form of the cost function (unary+pairwise)’ to
emphasize that ‘theoretically’ the likelihood of a subject-object pair in an
image could also contribute to the optimization.
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term, we need to first learn a robust semantic encoding of
lso given pair of object proposals Bs and Bo which are rep-
resented using concatenation of bounding box coordinates,
Faster-RCNN fc6 features, and object class scores. In other
words, we wish to learn visual relation embedding as fol-
lows:

flso = fΦ(Bs, Bo), (3)

where fΦ denotes our visual relationship embedding net-
work parameterized by Φ and flso is the encoding of visual
relationship lso. We use a popular relationship encoding
network viz. VTransE [37] for computing relationship em-
bedding.

3.2. Learning to Label with Few Examples

In our problem setting, to be able to generalize well on
new bags, the model should be able to learn similarity be-
tween visual relationships even when looking into small-
size bags at a time. This is usually referred to as a few-shot
setting. Many learning paradigms exist for addressing the
problem in this setting. We choose Meta-Learning [10, 24]
which is one of the most successful approaches. To be
specific, we use one of the metric-based meta-learning ap-
proaches viz. Relation Network [29] to learn the similarity
between visual relationships as follows.

Given a pair of visual relationships li and lj , we first
obtain their representations fli and flj respectively using
the Equation 3. Then we calculate similarity score between
these representations as follows:

Rθ(fli , flj ) = wTK(fli , flj ) + b, (4)

where w is a learnable weights matrix and b is the bias vec-
tor. Further, K is computed as follows:

K(fli , flj ) = tanh(W1([fli ; flj ]) + b1)

σ(W2[fli ; flj ] + b2) + ((fli + flj )/2), (5)

where W1,W2 are two learnable weight matrices, b1, b2
represent the bias vectors. Further, tanh and σ represent
the hyperbolic tanh and sigmoid activation function respec-
tively. Here, instead of only using the mean of visual rela-
tionship features, we also add a widely used learnable gated
activation [21, 31] to get a better feature combination.

We train the Relation Network parameters using episodic
binary logistic regression loss. To this end, for each bag, we
create all possible pairs of li and lj such that they belong to
different images in the bag. A pair of li and lj is positive
if the predicates of both are the same as the common latent
predicate of the bag; otherwise, it is negative. We finally
compute the pairwise cost as negative of the learned simi-
larity metric, i.e.,

Ψuv(lut1 , lvt2 ,θ) = −Rθ(flut1
, flvt2

). (6)

3.3. Inference

The problem of finding the global optimal solution for
the optimization function in Equation 2 is an NP-hard prob-
lem. The cardinality of the label set of an image is pu ×
(pu − 1) where pu is number of object proposals in image-
u. Therefore, a brute force technique to find the optimal so-
lution to this labeling problem will take O

(∏b
u=1 p

2
u

)
time.

We adopt a greedy inference algorithm proposed by Sha-
ban et al. [26] due to its proven superiority over other ap-
proximation algorithms available for solving these kinds of
problems [2, 14].

4. Experiments and Results

4.1. Datasets and Experimental Setup

To quantitatively study the robustness of our proposed
approach, we have used the following two public datasets
for all our experiments.
(i) VrR-VG [18]: Visually relevant relationships dataset
(VrR-VG in short) is derived from the Visual Genome [16]
by removing all the statistically and positionally-biased vi-
sual relationships. It contains 58,983 images, 23,375 visual
relationship tuples, and 117 unique predicates. Out of these
117 predicates, we use randomly chosen 100 predicates for
training and the remaining 17 predicates for testing.
(ii) VG-150 [34]: To test the robustness of our approach,
we further show results on VG-150. This dataset contains
150 object categories and 50 predicate classes. Out of the
50 predicates, we use 40 and 10 for training and testing,
respectively.

To obtain object proposals for an image, we use Faster
R-CNN [23] trained on Visual Genome [16]. We then se-
lect the top-100 most confident object proposals after per-
forming a non-max suppression with a 0.5 intersection over
union (IoU) threshold. To create the label set for an image,
we consider all possible ordered pairs of object proposals
for that image as candidates for the common visual rela-
tionship. Since we consider top-100 object proposals per
image, we get 9900 (= 100 × (100 − 1)) candidates for
visual subject-object pairs in each image.

Further, we train VTransE [37] using training predicates
to obtain visual relationship embeddings. To create an im-
age bag of size b, we first select a predicate and then pick b
images from the dataset such that each of the b images has
at least one visual relationship with the selected predicate.
In this way, we get a bag in which all the images share a
common predicate. We create 10,000 training bags and 500
testing bags using disjoint set of training and testing predi-
cates respectively.
Performance Metrics: Following the widely-used local-
ization metric CorLoc [6], we use the following two perfor-
mance metrics to evaluate the performance of our approach:
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Variations of our approach Bag size VrR-VG VG-150
Bag-CorLoc (%) VR-CorLoc (%) Bag-CorLoc (%) VR-CorLoc (%)

Concat + Cosine Similarity 2 55.90 72.16 50.00 71.42
4 31.57 70.86 24.40 65.58
8 30.65 76.85 18.75 67.33

VTransE + Cosine Similarity 2 59.84 73.34 55.67 74.90
4 36.23 74.20 33.45 71.78
8 34.64 82.56 26.67 70.85

Concat + Relation Network 2 61.72 75.61 54.55 71.85
4 35.28 74.02 38.62 72.19
8 31.24 76.38 29.15 75.55

Our best model 2 63.40 78.99 61.10 75.82
4 48.06 76.12 42.30 79.15
8 45.48 84.07 37.61 79.96

Table 2: Visual Relationship Co-localization results on unseen predicates. We observe that our best model which uses
VTransE for representing visual relationships and relation network for computing relationship similarity outperforms other
variants by a significant margin. Impressive visual relationship co-localization performance by our approach verifies the
effectiveness of relationship embedding and metric-based meta-learning approach to compute visual relationship similarity
as components in our approach and our overall optimization framework. Note: We sampled three different sets of training
bags to evaluate our model and found that VR-CorLoc only varied by the standard deviation of ±2.7%.

(i) Visual Relation-CorLoc: In an image, a visual rela-
tionship candidate prediction is considered to be correct if
both its visual subject and visual object localization are cor-
rect.3 VR-CorLoc is defined as the fraction of test images
for which visual subject-object pairs are correctly localized.
(ii) Bag-CorLoc: If the common visual relations are cor-
rectly predicted for all of the bag images, then we consider
that bag to be correctly predicted. Bag-CorLoc is defined
as the fraction of the total number of bags for which the vi-
sual subject-object pairs are correctly localized for all of its
images.

4.2. Ablations and Different Problem Settings

VRC being a novel task, we do not have any direct com-
petitive method to compare with our proposed approach.
However, to justify the utility of different modules of our
approach (also referred as our best model) and to show ro-
bustness on few-shot visual relationship localization, we
perform the following ablation studies:
(i) VtransE + cosine Similarity: As the first ablation, to
verify the utility of Relation Network that we use to com-
pute the similarity between two of the relationship embed-
dings fli and flj , we replace the it by a cosine similarity.
(ii) Concat Embedding + Relation Network: To verify the
utility of relationship embedding encoder network in our

3An object proposal is considered to be correct if it has greater than 0.5
IoU with the target ground-truth bounding box.

best model viz. VTransE, we replace it with just a trivial
concatenation of subject and object embeddings, i.e., fli =
[s; o] where s and o represent the concatenation of Faster R-
CNN features, bounding box coordinates, and object class
probability scores of subject and object respectively. The
rest of the method is identical to ours.
(iii) Concat Embedding + cosine Similarity: In this abla-
tion, we replace both the vital components of our approach,
i.e., VtransE and Relation Network, by cocat embedding
and cosine similarity respectively.

Further, in the original problem setting of VRC, only a
bag of images is provided (no supervision). While we per-
form the experiment in this challenging setting, we also re-
lax the problem setting a bit as follows in conducting addi-
tional experiments:
(i) Visual subjects in all the images are given: In this set-
ting, along with the bag of images, we assume that a bound-
ing box for the visual subject is also provided in each im-
age. Our goal is to only co-localize those visual objects that
connect the given subject via a common predicate in all the
images of the bag.
(ii) Both visual subject-object in one image is given: In
this setting, both visual subject and object bounding boxes
corresponding to the common latent predicate are provided
but only for one image of the bag. Given this, our goal is
to co-localize visual subjects and objects in the remaining
images of the bag.
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Variations of
our approach → Concat + Cosine VtransE+ Cosine Concat+ Rel. Net Our best model

Supervision ↓ Bag Size Bag Size Bag Size Bag Size
2 4 8 2 4 8 2 4 8 2 4 8

No supervision 72.16 70.86 76.85 73.34 74.20 82.56 75.61 74.02 76.38 78.99 76.12 84.07
Subject Fixed 76.82 78.66 81.27 80.37 83.12 83.58 81.07 82.88 84.60 83.90 88.25 86.67
Subject-Object
in one image 77.03 80.20 79.42 83.33 82.40 84.07 79.29 81.69 81.45 87.44 84.46 86.95

Table 3: Effects of weak supervision on VRC. We observe that just by giving a weak form of supervision, e.g., fixing
subject in all images of bag or fixing subject and object in one image of the bag, the visual relationship co-localization
performance (% VR-CorLoc) increases significantly using our approach. Refer Section 4.2 and Section 4.3 for more details.

We show results of these ablations and problem setting
variations on datasets presented in Section 4.1, and compare
them against our best model in the next section.

4.3. Results and Discussion

We first perform a quantitative analysis of our proposed
approach in Table 2. We report Bag-CorLoc and VR-
CorLoc (refer Section 4.1) in % for bag size varying from
2 to 8. We observe that by the virtue of the right choice
of visual relationship embedding technique and metric-
based meta-learning approach in our principle optimization
framework, our best model achieves 45.48% Bag-CorLoc
and 84.07% VR-CorLoc on VrR-VG on bag size = 8. Such
an impressive visual relationship co-localization verifies the
efficacy of our proposed approach.

Further, to justify our choice of VTransE for learning vi-
sual relationship embedding and Relation Network to com-
pute the similarity between visual relationship embeddings,
we perform ablations by replacing VTransE with a sim-
ple concatenation of subject and object features and Re-
lation Network by cosine similarity. As shown in Ta-
ble 2, our framework with a simple visual relation embed-
ding such as concatantion of subject-object features and
a simple similarity computation such as cosine similarity
achieves reasonable performance. This can be attributed to
our meta-learning-based optimization approach. The choice
of VTransE and Relation Network modules in our frame-
work (see our best model, last row) further improves the
performance of visual relationship co-localization. We no-
tice similar trend in visual relationship co-localization per-
formance in VG-150 as well.

We also perform extensive experiments with minor
tweaks in the original setting of VRC by relaxing it a bit.
We have shown VR-CorLoc for all those experiments in Ta-
ble 3 on the VrR-VG dataset. We observe that once we relax
the strictness in problem setting a little bit, in other words,
by providing subject bounding boxes, the VR-CorLoc in-
creases significantly for each of the ablation and promi-
nently if we see our approach for bag size two and four, it

increases to 83.90% and 88.25% from 78.99% and 76.12%
respectively. In the other scenario where we relax the con-
dition by only giving subject and object bounding boxes
for only one image in the bag, the VR-CorLoc score in-
creases to 87.44% and 84.46% from 78.99% and 76.12%
for bag size two and four, respectively. These results shows
that by providing slightly more supervision (either annotat-
ing bounding boxes for subject corresponding to a common
predicate in all the images or annotating subject-object pair
corresponding to a common predicate in one image), the
visual relationship co-localization of our approach signifi-
cantly improves.

A selection of visual relationship co-localization results
by our approach is shown in Figure 3.4 Here we show a
bag of images in each column. The subject and object co-
localization on these bags is shown using bounding boxes
of green and yellow colors, respectively. We observe that
our approach successfully co-localizes the visual subject
and objects connected via a latent predicate by just look-
ing into four images in the bag. Specifically, consider the
fourth column where the latent predicate is Following. Our
approach co-localizes subject and object following to each
other, for example “a cow following to another cow” in row-
1, “a sheep following to a man” in row-2 and so on. Given
that our model has not seen the predicate following during
the training and there are different combinations of subject
and object following each other, these results are encourag-
ing. Note that all the relationships shown in Figure 3 are
‘unseen’ during the training phase.

As the first work towards visual relationship co-
localization, we focus on co-localizing only one common
visual relationship. Our primary dataset VrR-VG does not
contain visually-trivial relationships, e.g. ‘car has wheels’,
‘man wearing shirt’, and as the bag size grows (2 → 4 →
8), it naturally becomes less likely to have more than one
common predicate present in ‘all’ of the images. For ex-
ample in VrR-VG test set, only 68/500, 1/500, 0/500 bags
of sizes 2, 4, 8 respectively have more than one common

4More visual results are presented in Supplementary Material.
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Figure 3: We show some of the qualitative results of our approach on the VrR-VG dataset. Each column is a bag of images
(bag size = 4), having a common latent predicate in all its images. The common latent predicate is written on top of each
column. Our approach localizes the visual subject-object pairs in each image of the bag, which are connected through that
common latent predicate by drawing bounding boxes around them. The green and yellow bounding boxes correspond to
the localized visual subject and object, respectively. It should be noted that all of these predicates are never seen during the
training phase. [Best viewed in color and 200% zoom in].

predicate. In cases, where there are more than one common
predicates, for example in VG-150, our method predicts the
one which corresponds to minimum pairwise cost and drops
the other common predicates. This results in slightly infe-
rior performance on dataset containing multiple common
and visually-trivial relationships viz. VG-150 as compared
to VrR-VG (refer Table 2). Co-localizing multiple common
visual relationships requires more investigation in the line
of diverse optimal solution prediction. We leave this as a
future extension.

5. Conclusion
We presented a novel task, namely a few-shot visual re-

lationship co-localization (VRC), and proposed a principled
optimization framework to solve this by posing an equiv-

alent labeling problem. Our proposed model successfully
co-localizes many different visual relationships with rea-
sonably high accuracy by just looking into few images. We
also show visual relationship co-localization in two more
exciting settings, firstly when the subject is known in all the
images, and we have to co-localize objects. Secondly, when
the subject and object pair is annotated for one image in the
bag, and we need to transfer this annotation to the remain-
ing images in the bag. In both these settings, our proposed
method has been found effective indicating utility of VRC
in visual relationship discovery and automatic annotation.
We firmly believe the novel task presented in this paper and
benchmarks shall open-up future research avenues in visual
relationship interpretation and, thereby, holistic scene un-
derstanding.
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