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Abstract

Efficient processing of high-resolution video streams is
safety-critical for many robotics applications such as au-
tonomous driving. Image downsampling is a commonly
adopted technique to ensure the latency constraint is met.
However, this naive approach greatly restricts an object de-
tector’s capability to identify small objects. In this paper,
we propose an attentional approach that elastically mag-
nifies certain regions while maintaining a small input can-
vas. The magnified regions are those that are believed to
have a high probability of containing an object, whose sig-
nal can come from a dataset-wide prior or frame-level prior
computed from recent object predictions. The magnification
is implemented by a KDE-based mapping to transform the
bounding boxes into warping parameters, which are then
fed into an image sampler with anti-cropping regulariza-
tion. The detector is then fed with the warped image and we
apply a differentiable backward mapping to get bounding
box outputs in the original space. Our regional magnifica-
tion allows algorithms to make better use of high-resolution
input without incurring the cost of high-resolution process-
ing. On the autonomous driving datasets Argoverse-HD
and BDD100K, we show our proposed method boosts the
detection AP over standard Faster R-CNN, with and with-
out finetuning. Additionally, building on top of the previous
state-of-the-art in streaming detection, our method sets a
new record for streaming AP on Argoverse-HD (from 17.8
to 23.0 on a GTX 1080 Ti GPU), suggesting that it has
achieved a superior accuracy-latency tradeoff.

1. Introduction
Safety-critical robotic agents such as self-driving cars

make use of an enormous suite of high-resolution percep-
tual sensors, with the goal of minimizing blind spots, max-
imizing perception range, and ensuring redundancy [5, 4,
37]. We argue that “over-sensed” perception platforms pro-
vide unique challenges for vision algorithms since those
visual sensors must rapidly consume sensor streams while
continuously reporting back the state of the world. While
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Figure 1: Standard image downsampling (top right) limits
the capability of the object detector to find small objects. In
this paper, we propose an attentional warping method (bot-
tom right) that enlarges salient objects in the image while
maintaining a small input resolution. Challenges arise when
warping also alters the output labels (e.g., bounding boxes).

numerous techniques exist to make a particular model run
fast, such as quantization [40], model compression [8], and
inference optimization [30], at the end of the day, simple
approaches that subsample sensor data (both spatially by
frame downsampling and temporally by frame dropping)
are still most effective for meeting latency constraints [19].
However, subsampling clearly throws away information,
negating the goals of high-resolution sensing in the first
place! This status quo calls for novel vision algorithms.

To address this challenge, we take inspiration from the
human visual system; biological vision makes fundamental
use of attentional processing. While current sensing stacks
make use of regular grid sampling, the human vision system
in the periphery has a much lower resolution than in the cen-
ter (fovea), due to the pooling of information from retinal
receptors by retinal ganglion cells. Such variable resolution
is commonly known as foveal vision [18].

In this paper, we propose FOVEAted image magnifica-
tion (FOVEA) for object detection, which retains high reso-
lution for objects of interest while maintaining a small can-
vas size. We exploit the sparsity in detection datasets –
objects of interest usually only cover a portion of the im-
age. The key idea is to resample such that background pix-
els can make room for objects of interest. The input images
are downsampled and warped such that salient areas in the
warped image have higher resolutions. While image warp-
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ing has been explored for image classification [16, 31] and
regression [31], major challenges remain for object detec-
tion. First, processing the images in the warped space will
produce bounding box outputs in the warped space. We
make use of differentiable backward maps to unwarp the
bounding box coordinates. Second, it’s much more chal-
lenging to identify regions for magnification. Empirically,
we find that end-to-end trained saliency networks that work
well for image classification fail for object detection. How-
ever, unlike gaze estimation and fine-grained image classi-
fication, the tasks evaluated on by [31], we have an explicit
signal for saliency with object detection – bounding box an-
notations or outputs. Specifically, we use dataset-wide pri-
ors and object locations from the previous frame (for video
streams). We train a function that maps bounding box loca-
tions to warping parameters. Third, object detection has a
much lower tolerance to cropping than image classification,
since objects appear not only in the center but also near the
edges of the image. We find that previous image warping
methods are very susceptible to this issue, so we introduce
an anti-cropping modification to the warping formulation.

We validate our approach on two self-driving datasets
for 2D object detection: Argoverse-HD [19] and BDD100K
[42]. First, we show that even without learning, our hand-
coded bounding-box-guided magnification improves the av-
erage precision (AP) for off-the-shelf Faster R-CNN [33],
suggesting that considerable sparsity exists in the input
space for those datasets. Next, we finetune the detector
with differentiable image warping and a backward label
mapping, which further boosts AP. In both cases, the im-
provement for small objects is most significant. Finally, to
show that such accuracy improvement is worth the latency
cost, we evaluate our algorithm under the streaming percep-
tion framework [19], and we achieve state-of-the-art perfor-
mance in terms of streaming AP.

2. Related Work
Object detection Object detection is one of the most
fundamental problems in computer vision. Many meth-
ods have pushed the state-of-the-art in detection accu-
racy [11, 33, 23, 6, 29], and many others aim for improv-
ing the efficiency of the detectors [26, 32, 38, 3]. The in-
troduction of fully convolution processing [36] and spatial
pyramid pooling [13] have allowed us to process the input
image in its original size and shape. However, it is still
a common practice to downsample the input image for ef-
ficiency purposes. Efficiency becomes a more prominent
issue when people move to the video domain. In video
object detection, the focus has been on how to make use
of temporal information to reduce the number of detectors
invoked [44, 43, 27]. These methods work well on sim-
ple datasets like ImageNet VID [35], but might be unsuit-
able for the self-driving car senarios, where multiple new

objects appear at almost every frame. Furthermore, those
methods are usually designed to work in the offline fashion,
i.e., allowing access to future frames. Detection methods
are the building blocks of our framework, and our proposed
approach is largely agnostic to any particular detector.

Online/streaming perception In the online setting, the
algorithm must work without future knowledge. [22] pro-
poses the Temporal Shift Module that enables video under-
standing through channel shifting and in the online setting,
the shifting is restricted to be uni-directional. [2] proposes
a multi-object tracking method that takes input previous
frame detection as addition proposals for the current frame.
Our method also takes previous frame detection as input,
but we use that to guide image warping. Streaming accu-
racy [19] is a recently proposed metric that evaluates the
output of a perception algorithm at all time instants, forc-
ing the algorithm to consider the amount of streaming data
that must be ignored while computation is occuring. [19]
demonstrates that streaming object detection accuracy can
be significantly improved by tuning the input frame resolu-
tion and framerate. In this work, we demonstrate that adap-
tive attentional processing is an orthogonal dimension for
improving streaming performance.

Adaptive visual attention Attentional processing has
been well studied in the vision community, and it appears
in different forms [9, 15, 17, 25, 21, 41]. Specially in
this paper, we focus on dynamic resolutions. For image
classification, [39] designs an algorithm to select high-
resolution patches, assuming each patch is associated with
a data acquisition cost. [28] applies non-uniform downsam-
pling to semantic segmentation and relies on the network
to learn both the forward and backward mapping, whose
consistency is not guaranteed. For object detection, a dy-
namic zoom-in algorithm is proposed that processes high-
resolution patches sequentially [10]. However, sequential
execution might not meet latency requirements for real-time
applications. Most similar to our work, [31] proposes an
adaptive image sampling strategy that allocates more pix-
els for salient areas, allowing a better downstream task per-
formance. But the method only works for image classifica-
tion and regression, where the output is agnostic to the input
transformation.

3. Approach
Assume we are given a training set of image-label pairs

(I, L). We wish to learn a nonlinear deep predictor f
that produces a low loss L(f(I), L). Inspired by past
work [31, 16], we observe that certain labeling tasks can
be performed more effectively by warping/resampling the
input image. However, when the label L itself is spatially
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Figure 2: Our proposed method for object detection. Given bounding box predictions from the previous frame (if the input
are videos) or a collection of all the ground truth bounding boxes in the training set, the saliency generator creates a saliency
map and that is fed into the spatial transformer (adapted from [31, 16]) to downsample the high-resolution input frame while
magnifying salient regions. Then we feed the downsampled input into a regular object detector, and it produces bounding-box
output in the warped space, which is then converted back to the original image space as the final output.

defined (e.g., bounding box coordinates or semantic pixel
labels), the label itself may need to be warped, or alter-
natively, the output of the deep predictor may need to be
inverse-warped.

In this section, we first introduce the saliency-guided
spatial transform from related work as the foundation of
our method. Next, we introduce our solutions to address
the challenges in image warping for object detection. An
overview of FOVEA, our method, is shown in Fig 2.

3.1. Background: Saliency-Guided Spatial Trans-
form

The seminal work of spatial transformer networks (STN)
introduces a differentiable warping layer for input images
and feature maps [16]. It was later extended to incorporate
a saliency map to guide the warping [31]. Here we pro-
vide implementation details that are crucial to our method.
Please refer to the original papers [16, 31] for more details.

A 2D transformation can be written as:

T : (x, y) → (x′, y′), (1)

where (x, y) and (x′, y′) are the input and output coordi-
nates. Since image pixels are usually discrete, interpolation
is required to sample values at non-integral coordinates. An
image warp WT takes input an image I , samples the pixel
values according to the given transformation T , and outputs
the warped image I ′:

I ′(T (x, y)) = I(x, y) (2)

Naive forward warping of discrete pixel locations from in-
put I can result in non-integral target pixel positions that
need to be “splatted” onto the pixel grid of I , which can

produce artifacts such as holes. Instead, image warps are
routinely implemented via a backward map [1]: iterate over
each output pixel grid location, compute its inverse map-
ping T −1 to find its corresponding input coordinates (which
may be non-integral), and bilinearly interpolate its color
from neighboring input pixel grid points:

I ′(x, y) = I(T −1(x, y)) (3)

In other words, the implementation of WT only requires the
knowledge of the inverse transformation T −1. The pixel
iteration can be replaced with a batch operation by using a
grid generator and apply the transformation T −1 over the
entire grid.

STN uses a differentiable formulation of T −1
θ (parame-

terized by θ) and an ensuing bilinear grid sampler, which is
differentiable and parameter-free. [31] proposes a special
form of T −1 parameterized by a saliency map S: T −1

θ =
T −1
S . This transform has a convolution form (therefore fast)

using the intuition that each pixel in the input space (x, y) is
attracting samples taken of the original image with a force
S(x, y), leading to more sampling at salient regions during
the warp. We point out that both [16] and [31] ignore the
effect of warping on the corresponding label space and they
skip the modeling of the forward transform T , which is re-
quired for converting certain label types.

3.2. Image Warping for Object Detection

In this section, we first explain our high-level inference
formulation, then our specific form of the warping, and in
the end some adjustments for training the task network.

Inference formulation We visually lay out the space of
image and label warps in Fig 3, which shows that we have
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Figure 3: Image warps WT are commonly implemented via
a backward map T −1 followed by (bilinear) interpolation of
nearby source pixel grid values, since forward mapping T
can result in target pixel positions that do not lie on the pixel
grid (not shown). Though image warping is an extensively
studied topic (notably by [16, 31] in the context of differ-
entiable neural warps), its effect on labels is less explored
because much prior art focuses on global labels invariant to
warps (e.g. an image class label). We explore warping for
spatial prediction tasks whose output must be transformed
back into the original image space to generate consistent
output. Interestingly, transforming pixel-level labels with
warp WT −1 requires inverting T −1, which can be difficult
depending on its parameterization [1]. In this paper, we fo-
cus on transforming pixel coordinates of bounding boxes,
which requires only the already-computed backward map
T −1 (the red arrow).

to transform the bounding box outputs accordingly after the
warping. Quite conveniently, because standard image warp-
ing is implemented via the backward map T −1, the back-
ward map is already computed in-network and so can be
directly applied to the pixel coordinates of the predicted
bounding box. The complete procedure for our approach f̂
can be written as f̂(I, T ) = T −1(f(WT (I))). where f(·)
is the nonlinear function that returns bounding box coordi-
nates of predicted detections. Importantly, this convenience
doesn’t exist when warping pixel-level values; e.g., when
warping a segmentation mask back to the original image in-
put space (the third pathway in Fig 3). Here, one needs to
invert T −1 to explicitly compute the forward warp T .

Warping formulation We adopt the saliency-guided
warping formulation from [31]:

Figure 4: By restricting the general class of warps (left, fig-
ure adapted from [31]) to be separable (right), we ensure
that bounding boxes in the warped image (examples out-
lined in red) remain axis-aligned. We demonstrate that such
regularization (surprisingly) improves performance, even
though doing so theoretically restricts the range of express-
ible warps (details in Sec 4.1.2).

T −1
x (x, y) =

∫
x′,y′ S(x

′, y′)k((x, y), (x′, y′))x′∫
x′,y′ S(x′, y′)k((x, y), (x′, y′))

, (4)

T −1
y (x, y) =

∫
x′,y′ S(x

′, y′)k((x, y), (x′, y′))y′∫
x′,y′ S(x′, y′)k((x, y), (x′, y′))

, (5)

where k is a distance kernel (we use a Gaussian kernel
in our experiments). However, in this general form, axis-
aligned bounding boxes might have different connotations
in the original and warped space. To ensure axis-alignment
is preserved during the mapping, we restrict the warping to
be separable along the two dimensions, i.e., T −1(x, y) =
(T −1

x (x), T −1
y (y)). For each dimension, we adapt the pre-

vious formulation to 1D:

T −1
x (x) =

∫
x′ Sx(x

′)k(x′, x)x′∫
x′ Sx(x′)k(x, x′)

, (6)

T −1
y (y) =

∫
y′ Sy(y

′)k(y′, y)y′∫
y′ Sy(y′)k(y, y′)

. (7)

We call this formulation separable and the general form
nonseparable. Note that the nonseparable formulation has
a 2D saliency map parameter, whereas the separable formu-
lation has two 1D saliency maps, one for each axis. Fig 4
shows an example of each type of warp.

One nice property of T −1 is that it is differentiable and
thus can be trained with backpropagation. One limitation
though is that its inverse T doesn’t have a closed-form so-
lution, nor does its derivative. The absence of T is not ideal,
and we propose some workaround as shown in the follow-
ing subsection.

Anti-Cropping Regularization We find the convolution
form of saliency-guided spatial transform tends to crop the
images, which might be acceptable for image classification
where a large margin exists around the border. However,
any cropping in object detection creates a chance to miss ob-
jects. We solve this by using reflect padding on the saliency
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map while applying the attraction kernel in Eq 6. This in-
troduces symmetries about each of the edges of the saliency
map, eliminating all horizontal offsets along vertical image
edges and vice versa. Thus cropping is impossible under
this formulation. A 1D illustration is shown in Fig 5 to ex-
plain the problem and the solution.

Training formulation Once we have the inference for-
mulation, training is also straightforward as we re-
quire the loss L to be computed in the original space:
L(Q(f(WT (I)), L), where Q is the label-type-specific
backward mapping as shown in Fig 3, and in our case,
Q = T −1. Note that WT , f and T −1 are all differen-
tiable. While inference itself does not require the knowl-
edge of T , it is not the case for training detectors with re-
gion proposal networks (RPN) [33]. When training RPNs
[33], the regression targets are the deltas between the an-
chors and the ground truth, and the deltas are later used in
RoI Pooling/Align [13, 12]. The former should be com-
puted in the original space (the ground truth is in the origi-
nal space), while the latter is in the warped space (RoI Pool-
ing/Align is over the warped image). This implies that the
deltas need first to be learned in the original space, applied
to the bounding box, and then mapped to the warped space
using T for RoI Pooling/Align. But as discussed before, T
cannot be easily computed. As a workaround, we omit the
delta encoding and adopt Generalized IoU (GIoU) loss [34]
to account for the lost stability. The main idea of GIoU is
to better reflect the similarity of predicted and ground truth
bounding boxes in cases of zero intersection; this has been
shown to improve results.

3.3. KDE Saliency Generator

In prior arts [16, 31], saliency is supervised by the final
task loss without intermediate supervision. We explore this
for object detection in Sec 4.1.2, but find that saliency maps
for object detection can be more complex due to the local
structure of objects. In the streaming setting, predictions
from the previous frame can serve as a strong intermediate
signal for contextual priming. To learn a single attentional
system that can generalize to frame-level or dataset-level
priors, we describe an algorithmic approach for converting
bounding boxes (be it from a dataset or the previous frame)
to a saliency map.

To this end, we use kernel density estimation (KDE) with
the bounding boxes as the data points. More precisely, given
a set of bounding boxes B with centers ci, heights hi and
widths wi, we model the saliency map SB as a sum of nor-
mal distributions:

Sa,b
B =

1

K2
+ a

∑
(ci,wi,hi)∈B

N
(
ci, b

[
wi 0
0 hi

])
(8)

(a) Default, σ ≈ 5.5 (b) Anti-crop, σ ≈ 5.5 (c) Anti-crop, σ ≈ 1.7

Figure 5: Saliency-guided transform illustrated in 1D. The
red curve is a saliency map S. The bottom row of dots
are the output points (at uniform intervals), and the top row
of dots are the locations where we’ve sampled each output
point from the original “image”, as computed by applying
T −1
S to the output points. (a) The default transform can

be understood as a weighted average over the output points
and thus ignores points with near zero weights such as those
at the boundaries. (b) Note the effects of introducing anti-
crop reflect padding, and (c) how decreasing the std dev σ of
the attraction kernel k results in more local warping around
each peak (better for multimodal saliency distributions).

where a and b are hyperparameters for amplitude and band-
width, respectively, and K is the size of the attraction kernel
k in Eq 6. Adding the small constant is done to prevent ex-
treme warps. We then normalize the 2D saliency map such
that it sums to 1 and marginalize along the two axes if using
the separable formulation1. As laid out in the previous sec-
tion, this is then used to generate the image transformation
T −1
S according to Eq 6.

Once we have the saliency generator defined, one can
either apply SB to the previous frame prediction to obtain a
frame-specific temporal prior (denoted as SI ), or to the set
of all bounding boxes in the training set to obtain a dataset-
wide prior (denoted as SD). In the former case, we note
that the KDE formulation effectively foveates the image at
each of the previous frame’s detections. For the first frame
in each video sequence, this trivially defaults to the uniform
saliency map. In the latter case, we note that for datasets
like Argoverse-HD, the horizon tends to be in the center of
the image, and thus objects are more likely to appear there.
We also try combining these signals to capture both biases.
The resulting saliency map is SC = α · SI + (1 − α) ·
SD, where α is a hyperparameter for how much we trust
the temporal bias. All of the above saliency generators are
differentiable, so we can use the final task loss to learn our
hyperparameters a and b.

4. Experiments
In this section, we first show on the autonomous driv-

ing dataset Argoverse-HD that FOVEA greatly improves

1When using the separable formulation, we could instead skip the inter-
mediate 2D saliency map representation. However, we opt not to, because
the intermediate 2D saliency map produces more interpretable visualiza-
tions, and the difference in runtime is negligible.
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accuracy over naive downsampling. Next, we conduct cost-
performance analysis under streaming perception showing
that accuracy gain is worth the additional latency cost. Fi-
nally, we present results on BDD100K showing the gener-
alization capability of our method. We include additional
results, diagnostic experiments, and implementation details
in the appendix.

4.1. Object Detection for Autonomous Navigation

Argoverse-HD [19], the primary dataset we evaluate our
methods on, is an object detection dataset captured in an
embodied autonomous vehicle setting. The data contain 30
FPS video sequences and dense 2D bounding box annota-
tions. As a common practise for detection, we adopt AP
as our primary evaluation metric. We also report end-to-
end latency (including image preprocessing, network infer-
ence, and bounding box postprocessing) measured on a sin-
gle GTX 1080 Ti GPU. The image resolution for this dataset
is 1920×1200, much larger than COCO’s, which is capped
at 640. Since all models used in this paper are fully con-
volutional, we run them with different input scales, denoted
by ratios to the native resolution, e.g., 0.5x means an input
resolution of 960× 600.

4.1.1 Baseline and Setup

The baseline we compare to throughout our experiments is
Faster RCNN [33] with a ResNet-50 backbone [14] plus
FPN [23]. The default input scale for both the baseline
and our method is 0.5x. For the baseline, however, we ad-
ditionally train and test at 0.75x and 1x scales, to derive
a sense of the latency-accuracy tradeoff using this model.
Our contribution is orthogonal to the choice of the baseline
detector and we obtain similar results with other detectors
including RetinaNet [24] and YOLOF [7] (shown in Ap-
pendix B). Additionally, we compare against other zoom-
based approaches [31, 10] in Appendix C.

Notably, Argoverse-HD’s training set only contains
pseudo ground truth (at the time of paper submission) gen-
erated by running high-performing detector HTC [6] in the
offline setting. For all experiments, unless otherwise stated,
we train on the train split with pseudo ground truth anno-
tations, and evaluate on the val split with real annotations.
Additional measures are taken to prevent overfitting to bi-
ased annotations. We finetune COCO pretrained models on
Argoverse-HD for only 3 epochs (i.e., early stopping). We
use momentum SGD with a batch size of 8, a learning rate
of 0.02, 0.9 momentum, 10−4 weight decay, and a step-
wise linear learning rate decay for this short schedule [20].
Also, when training detectors with warped input, we apply
our modifications to RPN and the loss function as discussed
in Sec 3.2.

Figure 6: The learned direct separable (left) and nonsepa-
rable (right) dataset-wide warps. Despite the vastly greater
flexibility of nonseparable warps, the learned warp is almost
separable anyway.

4.1.2 Learned Saliency

Our first experiments directly try to learn saliency without
using bounding box priors and under supervision from just
the final task loss. This serves as a control for our later
experiments using the KDE saliency generator formulation
introduced in Sec 3.3.

In our first formulation, the saliency map is a parameter
of our network and learned through backpropagation, yield-
ing a learned dataset-wide fixed warp. We test both the sep-
arable and nonseparable versions of this and report results
in Tab 1. Training configuration and implementation details
are given in Appendix F.

We find that both separable and nonseparable methods
significantly improve overall AP over the baseline, owing to
the boosted performance on small objects. However, there
is also a small decrease in AP on large objects. Interest-
ingly, even though the nonseparable formulation is more
flexible than the separable formulation, it performs worse,
showing that the model struggles to learn in this parameter
space. Also, as shown in Fig 6, the final learned nonsep-
arable warp is actually uncannily close to being separable,
suggesting that the separable class of warps might be pre-
ferred anyways. Therefore, going forward, we choose the
separable warp formulation in our later experiments.

Following the lead of [31], we also try learning a
“saliency network” that maps each input image to its
saliency map via a ResNet-18 backbone [14]. In this sense,
the learned saliency map would adapt to each image. How-
ever, we find that this approach doesn’t translate well to ob-
ject detection in that it makes training very unstable. From
our experiments, even with a learning rate of 10−5 on the
saliency network, the model learns a degeneracy in which
an extreme warp leads to no proposals being matched with
ground truth bounding boxes in the RoI bounding box head,
leading to a regression loss of 0.

4.1.3 KDE Saliency Generator

In this section, we attempt to use bounding box detections
to guide our saliency using the KDE formulation introduced
in Sec 3.3.
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We first try manually tuning the amplitude a and band-
width b to obtain the desired magnifications. We find that
an amplitude a = 1 and a bandwidth b = 64 works the best,
paired with an attraction kernel of std. dev. of about 17.8%
the image height, which allows for more local warps as il-
lustrated in Fig 5. We finetune our models using the same
configuration as the baseline, the only difference being the
added bounding box and saliency-guided spatial transfor-
mation layer. To simplify training, we use jittered ground
truth bounding boxes from the current frame rather than de-
tections from the previous frame. We implement the SI

formulation, which uses just the bounding box detections
from the previous frame, the SD formulation, which uses
all bounding boxes in the training set to generate a fixed
dataset-wide prior, and the SC formulation with α = 0.5.

We then attempt to learn hyperparameters a and b
through backpropagation, since our KDE formulation is dif-
ferentiable. We initialize parameters a′ and b′ to 0, under
the construction that a = |1+a′|+0.1, b = 64·|1+b′|+0.1.
The learning rate of a′ and b′ is set to 10−4 with zero weight
decay. Other than this, we train the learned KDE (LKDE)
model with the same configuration as the baseline. We im-
plement the SI formulation.

All results are shown in Table 1. Even without finetun-
ing our detector, using a simple fixed dataset-wide warp
SD, we find significant improvements in AP. As we switch
to temporal bias and finetune, we see even more improve-
ment. As in the learned saliency case, these improvements
in overall AP are due to large boosts in APS , outweighing
the small decreases in APL. Combining our saliency sig-
nals (SC) doesn’t help, because in our case, it seems that
the temporal signal is strictly stronger than the dataset-wide
signal. Perhaps if we had an alternate source of saliency
like a map overlay, combining saliencies could help. Our
best method overall is LKDE, which learned optimal values
a = 1.07, b = 71.6. Learning a nonseparable saliency per-
forms better than our hand-constructed dataset-wide warp
SD; however, they’re both outperformed by SI . Finally, we
note that our increased performance comes at the cost of
only about 2 ms in latency.

4.2. Streaming Accuracy for Cost-Performance
Evaluation

Streaming accuracy is a metric that coherently integrates
latency into standard accuracy evaluation and therefore is
able to quantitatively measure the accuracy-latency trade-
off for embodied perception [19]. Here we adopt their eval-
uation protocol for our cost-performance analysis. In our
case of streaming object detection, the streaming accuracy
refers to streaming AP. We use the same GPU (GTX 1080
Ti) and their public available codebase for a fair compari-
son with their proposed solution. Their proposed solution
includes a scale-tuned detector (Faster R-CNN), dynamic

Baseline - 0.5x Baseline - 1x

KDE (SD) - 0.5x

KDE (SI) - 0.5x

KDE (SC) - 0.5x

KDE (SD) - 0.5x - Saliency Map

KDE (SI) - 0.5x - Saliency Map

KDE (SC) - 0.5x - Saliency Map

Figure 7: Qualitative results for our methods after finetun-
ing on Argoverse-HD. The cars in the distance (in the dotted
boxes), undetected at 0.5x scale, are detected at 1x scale,
and partially detected by our methods. Different rows show
the variations within our method based on the source of at-
tention.

scheduler (shrinking-tail) and Kalman Filter forecastor. Our
experiments focus on improving the detector and we keep
the scheduler and forecastor fixed.

Tab 2 presents our evaluation under the full-stack set-
ting (a table for the detection-only setting is included in
Appendix E. We see that FOVEA greatly improves the pre-
vious state-of-the-art. The improvement first comes from
a faster and slightly more accurate implementation of the
baseline (please refer to Appendix F for the implementation
details). Note that under streaming perception, a faster algo-
rithm while maintaining the same offline accuracy translates
to an algorithm with higher streaming accuracy. The second
improvement is due to training on pseudo ground truth (dis-
cussed in Sec 4.1.1). Importantly, our KDE image warping
further boosts the streaming accuracy significantly on top
of these improvements. Overall, these results suggest that
image warping is a cost-efficient way to improve accuracy.

4.3. Cross-Dataset Generalization

Our experiments so far are all conducted on the
Argoverse-HD dataset. In this section, we cross-validate
our proposed method on another autonomous driving
dataset BDD100K [42]. Note that BDD100K and
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Argoverse-HD before finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck Latency (ms)

Baseline 21.5 35.8 22.3 2.8 22.4 50.6 20.8 9.1 13.9 7.1 48.0 16.1 37.2 20.2 49.4 ± 1.0

KDE (SD) 23.3 40.0 22.9 5.4 25.5 48.9 20.9 13.7 12.2 9.3 50.6 20.1 40.0 19.5 52.0 ± 1.0
KDE (SI ) 24.1 40.7 24.3 8.5 24.5 48.3 23.0 17.7 15.1 10.0 49.5 17.5 41.0 19.4 51.2 ± 0.7
KDE (SC) 24.0 40.5 24.3 7.4 26.0 48.2 22.5 14.9 14.0 9.5 49.7 20.6 41.0 19.9 52.0 ± 1.2

Upp. Bound (0.75x) 27.6 45.1 28.2 7.9 30.8 51.9 29.7 14.3 21.5 6.6 54.4 25.6 44.7 23.7 86.9 ± 1.6
Upp. Bound (1.0x) 32.7 51.9 34.3 14.4 35.6 51.8 33.7 21.1 33.1 5.7 57.2 36.7 49.5 24.6 133.9 ± 2.2

Argoverse-HD after finetuning
Method AP AP50 AP75 APS APM APL person mbike tffclight bike bus stop car truck Latency (ms)

Baseline 24.2 38.9 26.1 4.9 29.0 50.9 22.8 7.5 23.3 5.9 44.6 19.3 43.7 26.6 50.9 ± 0.9

Learned Sep. 27.2 44.8 28.3 12.2 29.1 46.6 24.2 14.0 22.6 7.7 39.5 31.8 50.0 27.8 51.5 ± 1.0
Learned Nonsep. 25.9 42.9 26.5 10.0 28.4 48.5 25.2 11.9 20.9 7.1 39.5 25.1 49.4 28.1 50.0 ± 0.8

KDE (SD) 26.7 43.3 27.8 8.2 29.7 54.1 25.4 13.5 22.0 8.0 45.9 21.3 48.1 29.3 50.8 ± 1.2
KDE (SI ) 28.0 45.5 29.2 10.4 31.0 54.5 27.3 16.9 24.3 9.0 44.5 23.2 50.5 28.4 52.2 ± 0.9
KDE (SC) 27.2 44.7 28.4 9.1 30.9 53.6 27.4 14.5 23.0 7.0 44.8 21.9 49.9 29.5 52.1 ± 0.9

LKDE (SI ) 28.1 45.9 28.9 10.3 30.9 54.1 27.5 17.9 23.6 8.1 45.4 23.1 50.2 28.7 50.5 ± 0.8

Upp. Bound (0.75x) 29.2 47.6 31.1 11.6 32.1 53.3 29.6 12.7 30.8 7.9 44.1 29.8 48.8 30.1 87.0 ± 1.4
Upper Bound (1.0x) 33.3 53.9 35.0 16.8 34.8 53.6 33.1 20.9 38.7 6.7 44.7 36.7 52.7 32.7 135.0 ± 1.6

Table 1: Results before and after finetuning on Argoverse-HD. Without retraining, processing warped images (KDE SI , top
table) improves overall AP by 2.6 points and triples APS . Even larger gains can be observed after finetuning, making our
final solution (LKDE SI ) performing close to the 0.75x upper bound. Please refer to the text for a more detailed discussion.

ID Method AP APS APM APL

1 Prior art [19] 17.8 3.2 16.3 33.3

2 + Better implementation 19.3 4.1 18.3 34.9
3 + Train with pseudo GT 21.2 3.7 23.9 43.8

4 2 + Ours (SI ) 19.3 5.2 18.5 39.0
5 3 + Ours (SI ) 23.0 7.0 23.7 44.9

Table 2: Streaming evaluation in the full-stack (with fore-
casting) setting on Argoverse-HD. We show that our pro-
posed method significantly improves previous state-of-the-
art by 5.2, in which 1.5 is from better implementation, 1.9
is from making use of pseudo ground truth and 1.8 is from
our proposed KDE warping.

Argoverse-HD are collected in different cities. For sim-
plicity, we only test out off-the-shelf generalization with-
out any finetuning. We experiment on the validation split
of the MOT2020 subset, which contains 200 videos with
2D bounding boxes annotated at 5 FPS (40K frames in to-
tal). Also, we only evaluate on common classes between
BDD100K and Argoverse-HD: person, bicycle, car, motor-
cycle, bus, and truck. The results are summarized in Tab 3,
which demonstrate the generalization capability of our pro-
posed method.

5. Conclusion
We propose FOVEA, a highly efficient attentional model

for object detection. Our model magnifies regions likely

ID Method AP APS APM APL

1 Baseline (0.5x) 15.1 1.0 10.6 39.0
2 Ours SD (0.5x) 13.7 1.3 10.0 34.7
3 Ours SI (0.5x) 16.4 2.1 12.8 38.6

4 Baseline (0.75x) 19.7 3.0 16.1 44.2
5 Ours SD (0.75x) 18.2 3.4 15.4 40.0
6 Ours SI (0.75x) 20.1 5.2 17.0 42.5

7 Upper bound (1.0x) 22.6 5.7 20.1 45.7

Table 3: Cross-dataset generalization to BDD100K [42].
Rows 2 & 5 are saliency computed on the Argoverse-HD
training set, as expected, they fail to generalize to a novel
dataset. Despite operating at a larger temporal stride (5
FPS vs 30 FPS), our proposed image-adaptive KDE warp-
ing generalizes to a novel dataset (row 3 & 6). Note that
here the image native resolution is smaller at 1280× 720.

to contain objects, making use of top-down saliency priors
learned from a dataset or from temporal context. To do so,
we make use of differentiable image warping that ensures
bounding box predictions can be mapped back to the orig-
inal image space. The proposed approach significantly im-
proves over the baselines on Argoverse-HD and BDD100K.
For future work, it would be natural to make use of tra-
jectory forecasting models to provide even more accurate
saliency maps for online processing.
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