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Abstract

Self-supervised learning holds promise in leveraging
large amounts of unlabeled data, however much of its
progress has thus far been limited to highly curated pre-
training data such as ImageNet. We explore the effects
of contrastive learning from larger, less-curated image
datasets such as YFCC, and find there is indeed a large dif-
ference in the resulting representation quality. We hypoth-
esize that this curation gap is due to a shift in the distri-
bution of image classes—which is more diverse and heavy-
tailed—resulting in less relevant negative samples to learn
from. We test this hypothesis with a new approach, Divide
and Contrast (DnC), which alternates between contrastive
learning and clustering-based hard negative mining. When
pretrained on less curated datasets, DnC greatly improves
the performance of self-supervised learning on downstream
tasks, while remaining competitive with the current state-
of-the-art on curated datasets.

1. Introduction

Recent developments in self-supervised learning have
shown that it is possible to learn high-level representa-
tions of object categories from unlabeled images [39, 43,
88, 12, 97], phonetic information from speech [69, 79]
and language understanding from raw text [21, 101]. The
most studied benchmark in self-supervised learning is Ima-
geNet [20], where representations learned from unlabeled
images can surpass supervised representations, both in
terms of their data-efficiency and transfer-learning perfor-
mance [13, 34].

One of the caveats with self-supervised learning on Im-
ageNet is that it is not completely “self-supervised”. The
training set of ImageNet, on which the representations are
learned, is heavily curated and required extensive human ef-
fort to create [20]. In particular, ImageNet contains many
fine-grained classes (such as subtly different dog breeds),
each one containing roughly the same number of images.
While this consistency may facilitate the learning of high-
level visual representations, limiting self-supervised learn-
ing to such curated datasets risks biasing their development

Figure 1. Linear evaluation on ImageNet of representations
learned from a large-scale uncurated dataset using ResNet-50.
Divide and Contrast (DnC) is better able to handle the diverse
and long-tailed distribution of images and improves more with
longer training. X-axis represents total computation, in ImageNet-
equivalent epochs.

towards methods which require this consistency, limiting
their applicability to more diverse downstream tasks and
larger datasets for pre-training.

In this paper we assess how well recent self-supervised
learning methods perform on downstream tasks (including
ImageNet) when they are pre-trained on significantly less
curated datasets, such as YFCC100M [87]. We observe a
notable drop in performance of over 9% Top-1 accuracy
(from 74.3% to 65.3%) for a ResNet50 model trained with
the current state-of-the-art in self-supervised learning.

We hypothesize that this curation gap is due to the
heavy-tailed nature of images collected in the wild, which
present much more diverse content, breaking the global
consistency exploited in previous datasets. We test this hy-
pothesis with a new method, Divide and Contast (DnC),
which attempts to recover local consistency in subsets of the
larger, uncurated dataset, such that self-supervised learning
methods can learn high-level features that are specific to
each subset. We find that such semantically coherent sub-
sets can be straightforwardly obtained by clustering the rep-
resentations of standard self-supervised models.

Divide and Contrast (DnC) proceeds by training individ-
ual “expert” models on each subset and distilling them into
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a single model. As a result, DnC can be used in combi-
nation with any self-supervised learning technique, and re-
quires the same amount of computation, as each expert is
trained for significantly less time. Finally, this computation
is trivially parallelized, allowing it to be scaled to massive
datasets.

The remainder of this paper is structured as follows. We
first review related work in self-supervised learning. We
then present a new stronger baseline (MoCLR) which im-
proves over current contrastive methods, matching the per-
formance of the current state-of-the-art (BYOL [34]). Next
we present the main method, Divide and Contrast, and how
this model can be used together with any SSL method. In
the experiments we evaluate the different hypotheses that
support DnC, and compare its ability to learn from uncu-
rated dataset with existing methods.

2. Related Work
Recent self-supervised representation learning generally

includes three types of methods: generative models that
directly model the data distribution, pretext tasks that are
manually designed according to the data, and contrastive
learning that contrasts positive pairs with negative pairs.
Generative models. While the primary goal of generative
models such as GAN [30, 14] or VAE [50] is to model the
data distribution (e.g., sample new data or estimate likeli-
hood), the encoder network can also extract good repre-
sentations [76]. Recent state of the art generative models
for representation learning include BiGAN [24] and BigBi-
GAN [25], which learn a bidirectional mapping between the
latent codes and the images, and iGPT [11] which trains an
autoregressive model on raw pixels.
Pretext tasks. Good representations may also be learned
by solving various pretext tasks. Examples include de-
noising [93], relative patch prediction [22], image inpaint-
ing [73], noise prediction [5], colorization [107, 108, 94],
Jigsaw [68], exemplar modeling [26], motion segmenta-
tion [72], image transformation prediction [29, 106], track-
ing [96], or even the combination of multiple tasks [23].
Another line of methods generates pseudo labels by
clustering features [8, 9, 46, 105, 1]. Most recently,
SeLa [102] jointly clusters images and balances the clusters.
SwAV [10] learns representatons by having different views
of the same image assigned to the same cluster. Another
work [45] directly optimizes the transferability of represen-
tation by integrating clustering with meta-learning.
Contrastive learning. Contrastive learning is a widely-
used generic method. The loss function for contrastive
learning has evolved from early margin-based binary clas-
sification [36], to triplet loss [80], and to recent k-pair
loss [82, 69]. The core idea lying at the heart of the re-
cent series of self-supervised contrastive learning meth-
ods [97, 69, 43, 88, 113, 3, 39, 64, 12, 15, 90, 13, 55, 7]

is to maximize the agreement between two “views” of the
same image while repulsing “views” from different images.
Such views can be created by color decomposition [88],
patch cropping [69, 43, 3], data augmentation [12, 13, 83],
or image segmentation [42, 92, 109]. Indeed, contrastive
learning is very general such that it can be easily adapted to
different data types. Examples include different frames of
video [69, 112, 81, 37, 31, 38], point clouds [100], multi-
ple sensory data [65, 18, 74], text and its context [63, 101,
59, 51], or video and language [84, 62, 56]. A set of other
work [2, 90, 110, 99, 91, 75, 95] focuses on providing em-
pirical and theoretical understanding of contrastive learn-
ing. Recently a non-contrastive method BYOL [34] applies
a momentum-encoder to one view and predicts its output
from the other, inspired by bootstrapping RL [35]. Finally,
contrastive learning has also been applied to supervised im-
age classification [48], image translation [70], knowledge
distillation [89, 77], and adversarial learning [49].

This paper is also related to knowledge distillation [44].
In [44], several expert models were also trained in paral-
lel on a large scale dataset, and then distilled into a single
model. While labels are assumed available in [44] to parti-
tion the dataset and distill into a single model, we are deal-
ing with self-supervised learning without supervision. Our
distillation procedure is also inspired by FitNet [78].

Lastly, while self-supervised representation learning on
uncurated datasets is largely unexplored, there are a few
prior attempts [9, 33]. In [9], clustering is applied to gen-
erate training targets, and in order to capture the long-tailed
distribution of images in the uncurated YFCC100m [87],
a hierachical formulation is proposed. The work of [33]
benchmarked pretext-based self-supervised methods in a
large scale setting, e.g., jigSaw, colorization and rotation
prediction, and found that these pretext tasks are not ‘hard’
enough to take full advantage of large scale data. Concur-
rent work SEER [32] directly scales up SwAV with larger
models and datasets.

3. Divide and Contrast
Though Divide and Contrast can be used in combination

with any self-supervised learning technique, in this paper
we will combine it with recent state of the art techniques
(BYOL, SimCLR, MoCo), such that the model can be com-
pared to a strong baseline and make the experiments rele-
vant with respect to recent developments in the literature.
We will start by introducing our baseline, MoCLR, which
is a simple hybrid based on BYOL [34], SimCLR [12] and
MoCo [39], and as a contrastive method outperforms Sim-
CLR v2 [13], achieving similar performance to BYOL (by
using a momentum encoder similar to BYOL and MoCo).
Even though DnC can be coupled with BYOL, empirically
we have found it to work better with methods that use a
contrastive loss.
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Figure 2. Overview of Divide and Contrast (DnC). DnC can be used in conjunction with any self-supervised learning method (we use
MoCLR, an improvement to SimCLR). In the first step a self-supervised learning method is trained on the whole dataset, which we call
the base model. The image representations of the base model are then clustered with k-means into 5, 10 or more groups. In the second
step, the clustered dataset is then used to train an expert model on each of the image clusters. In the third step the experts and base model
are distilled into a single model by predicting their representations. By splitting the dataset into semantically-similar subsets, contrastive
methods need to pay more attention to the differences between the images in those clusters and learn more specific representations.

3.1. An Improved Contrastive Baseline: MoCLR

MoCLR roughly uses a similar setup to SimCLR and
BYOL, we will briefly describe the main components of this
setup and highlight the differences.
Augmenting two views. Given an image x and two distri-
butions of image augmentations T and T 1, two views are
created v “

∆ tpxq and v1 “
∆ t1pxq by respectively applying

random image augmentations t „ T and t1 „ T 1 from these
distributions. The augmentations T and T 1 here are exactly
the same as in BYOL [34].
Architecture. The first augmented view v is fed into an
online encoder fp¨q, followed up with an MLP projection
head gp¨q to produce a projection z. Similarly, an expo-
nential moving average of the online encoder and projec-
tion head, also known as momentum encoder [39] or mean
teacher [86], is applied on the second view v1 to generate z1.
The MLP head consists of two layers with a hidden dimen-
sion of 4096 and output size of 256, similar to BYOL [34].
Loss function. Given a batch B, we follow the InfoNCE
loss [69] with a cosine similarity function sp¨, ¨q and a scalar
temperature value τ :

LNCE “ ´
1

|B|

ÿ

iPB
log

espzi,z
1
iq{τ

espzi,z1
iq{τ `

ř

jPB{i e
spzi,z1

jq{τ
(1)

We symmetrize the loss LNCE by separately feeding v1 to the
online network and v to the momentum encoder, resulting
in rLNCE. The final loss is L “ LNCE ` rLNCE.

The difference between MoCLR and other standard
methods are as follows. Compared with SimCLR [12], we
use a momentum encoder, and double the size of the pro-
jection head (from 2048 to 4096 for the hidden layer, and
from 128 to 256 for the output layer). In comparison with
BYOL [34], we remove the predictor head and use the con-

Table 1. Evaluating the MoCLR baseline which is used in the pro-
posed Divide And Contrast (DnC) model. This comparison is
on the ImageNet linear classification benchmark. MoCLR is a
contrastive method which achieves similar performance as BYOL,
while requiring only a small change to SimCLR (see Section 3.1).

Method Epochs Top-1 Top-5

SimCLR [12] 1000 69.3 89.0
SimCLR v2 [13] 1000 71.7 90.4
MoCo v3 [16] 800 73.8 -
BYOL [34] 1000 74.3 91.6
MoCLR (ours) 1000 74.3 92.2

trastive loss instead of the mean squared prediction loss.
While concurrent work MoCo v3 [16] inherits from BYOL
the asymmetric “projector & predictor” design (the online
encoder has an additional predictor compared to the mo-
mentum network), our MoCLR removes the predictor for
simplicity.

In our experiments we set the batch size to 4096 and do
not use a memory buffer [97, 88, 39]. As we will show
in our experiments, with these simple changes our Mo-
CLR baseline trained for 1,000 epochs outperforms Sim-
CLR v1/v2 [13] and is on par with BYOL [34], see Table 1.

3.2. Divide and Contrast

The motivation behind Divide and Contrast is that, when
training on diverse, large-scale datasets, the density of in-
formative negatives will be sparse if we sample randomly
from the whole dataset. Instead, if we contrast locally be-
tween semantically-similar classes, the sampled negatives
will be more informative and the learned model will cap-
ture a more discriminative representation.

As visualized in Figure 2, the training of our DnC model
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Figure 3. Detailed architectural overview of the distillation of the
expert’s features. The distillation model and experts are applied to
the same augmented image view.

consists of three stages:
(1) We first train a MoCLR model on the given dataset

for N1 epochs (though other self-supervised learning meth-
ods can be used as well). We will call it the base model.
We use the base model to extract representations for a set of
samples in the training set, and cluster them in to K clusters.
With these clusters we partition the dataset into K subsets.

(2) For each subset, we train a separate MoCLR model
from scratch, which we call expert models. In this stage, we
distribute a total computational budget of N2 epochs (mea-
sured on the whole dataset) to these expert models, propor-
tionally to their corresponding cluster sizes.

(3) Finally, given a base model that captures the gen-
eral knowledge of the dataset and expert models focusing on
locally similar categories, we distill knowledge from these
models into a distillation model. In this stage, we train for
N3 epochs.

The encoder-architecture for the base model, expert
models, and the distillation model are all identical. There-
fore, the computational footprint can roughly be measured
by summing up the training epochs across all three stages,
resulting in a total training of N1 `N2 `N3 epochs (except
for the clustering overhead and extra forward pass during
distillation, which we discuss later).

3.3. Distillation

To leverage the information learned by each of the dif-
ferent experts and more general information from the base
model, we distill their representation into one model in the
last stage of training. During the distillation we use a single
augmented image (instead of the 2-view setup) in combina-
tion with a simple regression loss to predict the representa-

tions in these models (no contrastive loss).
The distillation model’s architecture is mostly identical

to the other models and is visualized in Figure 3. All have
a backbone encoder fp¨q and an MLP projection head gp¨q.
On top of the projection head in the distillation model there
are K ` 1 regression networks: rkp¨q, k “ 1, ...,K, one to
predict each of the K expert models and another regression
network rbp¨q to predict the base model. The architecture
of these regressors is the same as the projecton head, except
that we remove the final global BatchNorm after the last
output layer.

For distillation we use the same augmentation as during
self-supervised learning. Given an augmented input image
x with clustering id k, we feed it into the distillation model
to produce the projection-head output z. Similarly we get
zb and zk from the base model and the k-th expert model
respectively. We also ℓ2-normalize zb and zk to be unit-
norm. The distillation objective is then the average of the
two mean squared errors:

Lpxq “
1

2
}rbpzq ´ zb}

2
2 `

1

2
}rkpzq ´ zk}

2
2 (2)

Note that the outputs of rb and rk are not ℓ2 normalized.
To make it possible to compare to our baseline methods

in terms of the number of epochs trained, we use two aug-
mented views from the same input image and average their
losses. This is otherwise not necessary and alternatively one
could also increase the batch-size.

The computational cost in this stage is slightly higher
than the self-supervised learning stage (e.g., BYOL and
MoCLR), as there are now two forward passes (for the
expert and base model) for each view (not backward pass
and gradient computation). In contrast, BYOL and MoCLR
only need one forward pass from the momentum encoder.
However, we found that always feeding a center crop to ex-
pert and base models only leads to very marginal drop in
performance (instead of an augmented view). This strat-
egy offers the possibility of first doing a single forward pass
over the dataset and storing the activations offline.

4. Experiments
In this section, we compare DnC to BYOL and MoCLR

by pre-training on two large-scale uncurated datasets and
evaluating transfer performance on different downstream
tasks.
Datasets. We consider two large-scale uncurated datasets.
The first is a private dataset of roughly 300 million im-
ages (JFT-300M [85]). For the second dataset we use
YFCC100M [87], a public dataset of 95M Flickr images
available under the Creative Commons license. Figures 4
and 5 show a visual comparison between images from Ima-
geNet and YFCC100M. ImageNet images often contain the
object or animal of interest in the center of the image. Im-
ageNet also does not have a long-tailed distribution (e.g.,

10066



Figure 4. Example ImageNet images

Figure 5. Example YFCC100M images

power law) over object-classes but only considers a specific
set of 1000 different classes, which are (roughly) equally
represented in the dataset. As a result, specific objects or an-
imals (e.g., common tench, Bedlington terrier, . . . ) are over-
represented compared to more typically occurring scenes
such as human faces and landscapes (which are better rep-
resented in YFCC100M).
Settings. ResNet-50 [41] is used in all experiments, un-
less noted otherwise. For ease of comparison, we report
the computational footprint of all experiments in ImageNet-
epoch equivalents (e.g. 1 “epoch” “ 1281167{batch size
iterations). More implementation and optimization details
are included in Appendix.

Table 2. We consider three different training schedules for DnC.
The number of total training epochs in each stage, as well as the
number of clusters, is specified.

Schedules
Base Experts Distillation

epochs total epochs epochs
1,000 epochs 200 600 (5 clusters) 200
3,000 epochs 1,000 1,500 (5 clusters) 500
4,500 epochs 1,000 3,000 (10 clusters) 500

DnC Schedules. Table 2 shows three training schedules
with different number of epochs. For example, in the sched-
ule of 3,000 epochs, we first train the base model for 1,000
epochs, after which we cluster the samples into 5 groups.
The 5 experts are trained in parallel on these subsets. We
use 1,500 epochs in total, spread out over the experts ac-
cording to the number of images in each cluster (300 on
average per expert). The distillation model is then trained
for 500 epochs. See Section ?? for analysis of run time.

4.1. Linear Evaluation on ImageNet and Places-365

Table 3 shows the results of models pre-trained on
YFCC100M and JFT-300M and tested on ImageNet and
Places-365 [111] with linear evaluation, i.e., features are
frozen and a linear classifier is trained. For JFT-300M the

Table 3. Comparison of self-supervised learning methods pre-
trained on uncurated datasets YFCC100M and JFT-300M. For
evaluation a linear classifier is trained on ImageNet and Places-
365. Computation is measured as ImageNet-equivalent epochs.

Method Arch pre-training ImageNet Places 365
# epochs Top-1 Acc Top-1 Acc

Concurrent work trained on IG 1B images:
SEER [32] R-50 «1,000 61.6 -

R-101 «1,000 65.8 -

Pre-training on YFCC100M:
MoCLR

R-50
1,000 65.1 53.2

BYOL 1,000 65.3 52.9

MoCLR
R-50

3,000 65.7 53.2
BYOL 3,000 66.6 52.9
DnC 3,000 67.8 54.1
MoCLR

R-50
5,000 66.1 53.5

BYOL 5,000 67.0 53.2
DnC 4,500 68.5 54.4

Pre-training on JFT-300M:
MoCLR

R-50
1,000 66.6 52.1

BYOL 1,000 67.0 51.9
DnC 1,000 67.9 52.5
MoCLR

R-50
3,000 67.4 52.5

BYOL 3,000 67.6 52.4
DnC 3,000 69.8 53.3
MoCLR

R-50
5,000 67.6 52.4

BYOL 5,000 67.9 52.4
DnC 4,500 70.7 53.5
With larger ResNet:
MoCLR

R-200x2
3,000 74.2 54.6

DnC 3,000 77.3 56.2

results are also visualized in Figure 1. On the ImageNet
linear benchmark we see a large drop in performance com-
pared to pre-training on ImageNet (Table 1): -9.0%, -7.3%
for BYOL-1k and -9.2%, -7.7% for MoCLR-1k, show-
ing the difficulty of learning representations from uncurated
(and more diverse) data.

In these experiments DnC always uses MoCLR-1k
for the clustering, and uses the remaining pre-training
epochs for the expert training and distillation. Therefore
a good comparison is with MoCLR trained for longer (from
scratch). For 3,000 epochs of training, MoCLR-3k im-
proves over MoCLR-1k by +0.6 and +0.8 on YFCC100M
and JFT-300M respectively, while DnC-3k improves by
+2.7 and +3.2. On Places-365 we see similar relative im-
provements. We also include BYOL-3k for completeness
and again see small improvements with longer training for
BYOL. For further longer schedules (4,500-5,000 epochs),
we notice similar behavior on both YFCC100M and JFT-
300M. Besides, we see DnC significantly outperforms con-
current efforts SEER [32] when using ResNet-50. We fur-
ther test DnC with a larger model (i.e., ResNet-200 with a
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Table 4. Transfer learning experiments. We evaluate models pre-trained on ImageNet, YFCC100M and JFT-300M with a linear classifier
on 12 downstream classification tasks: Food-101 [6], CIFAR-10/100 [54], Birdsnap [4], SUN397 [98], Stanford Cars [53], FGVC Aircraft
[61], PASCAL VOC 2007 [27], Describable Textures (DTD) [19], Oxford-IIIT Pets [71], Caltech-101 [28] and Oxford 102 Flowers [67].
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Ave
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Y
FC

C BYOL-5k 69.1 85.8 66.8 35.5 64.1 50.1 51.9 82.5 74.5 74.0 87.6 95.8 69.8
MoCLR-5k 68.4 87.6 69.7 30.5 63.9 41.0 46.7 82.4 76.2 68.5 86.0 93.0 67.8
DnC-4.5k 72.1 88.0 71.1 35.5 67.2 52.6 49.2 83.7 76.5 75.9 87.0 97.8 71.4

JF
T-

30
0M BYOL-5k 73.3 89.8 72.4 38.2 61.8 64.4 54.4 81.3 75.5 77.0 90.1 94.3 72.7

MoCLR-5k 72.8 90.7 72.5 33.8 62.2 60.6 50.9 81.9 75.3 75.8 89.5 93.8 71.7
DnC-4.5k 78.7 91.7 74.9 42.1 65.0 75.3 54.1 83.1 76.6 86.1 90.2 98.2 76.3

Table 5. Fine-tuning pre-trained model for transfer learning experiments, including object detection on COCO dataset, semantic segmen-
tation on Pascal VOC 2012, and depth estimation on NYU v2 dataset. For the evaluation metrics of rms and rel, lower is better.

COCO detection COCO instance seg. PASCAL seg. NYU v2 depth estimation
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 mIoU ă1.25 ă1.252

ă1.253 rmsÓ relÓ

ImageNet Super. 39.5 60.1 43.3 35.4 56.9 38.1 74.4 81.1 95.3 98.8 0.573 0.127

Y
FC

C BYOL-5k 41.1 62.0 45.1 36.6 58.6 38.9 75.5 83.5 96.4 99.0 0.558 0.130
MoCLR-5k 40.8 61.7 44.8 36.6 58.5 39.0 75.1 86.7 97.4 99.3 0.503 0.117
DnC-4.5k 41.5 62.5 45.6 37.0 59.3 39.6 76.6 86.2 97.2 99.3 0.512 0.121

JF
T-

30
0M BYOL-5k 40.6 61.2 44.3 36.2 58.1 38.8 75.8 84.4 96.5 99.0 0.544 0.129

MoCLR-5k 41.1 62.0 45.4 36.9 58.9 39.5 76.1 86.3 97.2 99.3 0.513 0.120
DnC-4.5k 41.7 62.5 45.9 37.2 59.3 39.8 76.9 86.1 97.2 99.4 0.509 0.119

width multiplier of 2) and observe that DnC outperforms
MoCLR by +3.1.

4.2. Transfer Learning

In this section, we consider both using frozen represen-
tations for fine-grained linear classification and fine-tuning
for different downstream tasks.
Fine-grained linear classification. Following Sim-
CLR [12] and BYOL [34], we further perform linear classi-
fication evaluation on 12 classification datasets (introduced
by [52]), to assess whether the learned representation is
generic across different image domains (see more details
in Section ??). As shown in Table 4, when pre-training on
YFCC100M or JFT-300M, DnC significantly and consis-
tently outperforms BYOL and MoCLR.
Detection, segmentation, and depth estimation. In Ta-
ble 5, we evaluate the representation on three different fine-
tuning tasks: (1) for object detection and instance segmen-
tation on COCO [58], we train a standard Mask-RCNN [40]
using FPN [57] with a 1x schedule, i.e., 12 epochs; (2) for
semantic segmentation on VOC2012, we used FCN [60] as
in [39]; (3) for depth estimation on NYU-v2 dataset [66],
the setup is the same as [34]. In all three tasks, DnC sig-
nificantly outperforms ImageNet supervised pre-training,
e.g., +2.2 in APbb and +1.8 in APmk for detection, +2.5
in mIoU for segmentation, and +5.0 in ă1.25 metric for

depth prediction. DnC also significantly outperforms both
self-supervised baselines when transferring to PASCAL and
COCO tasks, and performs on-par with MoCLR while out-
performing BYOL for depth estimation.

For more implementation details, please refer to Sec-
tion ?? in the Appendix; Complete results for transfer learn-
ing are included in Section ??.

5. Hypothesis and Analysis
The Divide and Contrast (DnC) method hinges on two

main hypotheses. The first hypothesis is that clustering acti-
vations of powerful self-supervised learning models should
provide us with locally consistent clusters of images (e.g.
having similar class labels). The second is that contrasting
against similar (but different) object categories allows self-
supervised methods to learn more fine-grained, discrimina-
tive representations.

We empirically assess these hypotheses in isolation.
Next we compare DnC with current state of the art meth-
ods on ImageNet to see how well it performs on standard
(curated) datasets, and analyze the design choices of DnC.

5.1. Clustered Representations are Object Cate-
gories

Our first hypothesis is that clusters of self-supervised
representations are semantically meaningful. To this effect
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Table 6. Evaluating clustered representations from self-supervised
learning methods using Top-1 accuracy and Mutual Information
(MI) with the class labels. The representations of each method are
clustered using k-means with 1000 centroids. To compute Top-1
accuracy, every cluster is mapped to the most frequent class label
for the images in that cluster.

Method Layer Dimension Top-1 Acc MI

SimCLR [12]
pool 2048 30.1 5.64

hidden 2048 33.3 5.83
output 128 31.8 5.68

BYOL [34]
pool 2048 39.9 6.23

hidden 4096 51.0 6.99
output 256 50.0 6.78

MoCLR (ours)
pool 2048 40.1 6.26

hidden 4096 51.6 7.19
output 256 49.8 7.11

we cluster the representations of various self-supervised
learning methods trained on ImageNet with k-means.
Specifically, we consider representations from three differ-
ent layers: the pool layer right after the mean pooling,
the hidden layer of the projection head, and the final
projection.

We start with 1000-way clustering, and assign every
cluster to a single ImageNet class with a simple majority
vote to measure the Top-1 Accuracy. We also measure the
mutual information between the clustering assignments and
the class labels. Table 6 gives an overview of these re-
sults. In particular, these methods can group images from
the same category surprisingly well, with some represen-
tations achieving over 50% Top-1 clustering accuracy. We
also notice that the hidden layer performs the best for all
methods, and thus use this layer for clustering in the DnC
method.

To give an orthogonal view with a smaller number of
clusters, Figure 6 plots the 5 clusters used in the DnC model
for ImageNet (based on the clustering of a MoCLR ResNet-
50). Qualitatively, it appears that groups of classes are
jointly assigned to the same cluster. Indeed, the fraction
of images in each class that belong to the same cluster is
87.4%, lending further evidence that individual clusters are
semantically coherent.

5.2. Training on Semantically Similar Data Subsets

DnC is based on the second hypothesis that training self-
supervised learning methods on a subset of images from
similar object categories should improve performance on
those object classes. Contrastive methods in particular
stand to benefit from this procedure, as distinguishing pos-
itive samples from negatives from nearby classes might re-
quire learning more fine-grained features (similarly to hard-
negative mining [80, 47]). On the other hand, it might hin-

Table 7. Linear classification evaluated on the Canine subset of
ImageNet (130 classes). The feature extraction models were pre-
trained either on ImageNet (Full) or the subset of Canine images
without using any labels. All computation is reported in terms of
“full imagenet” epochs. We report the difference in performance
relative to training on the full dataset for 1,000 epochs. Even
though the canine-only models were trained with 5ˆ fewer gradi-
ent updates, they largely outperform the self-supervised learning
models that were trained on the full dataset. We also observe that
contrastive methods (SimCLR, MoCLR) benefit the most.

Method Pre-training Dataset Epochs Top-1 Acc

SimCLR Full 200 67.4
BYOL Full 200 70.7
MoCLR Full 200 68.7

SimCLR Full 1,000 69.4
BYOL Full 1,000 76.5
MoCLR Full 1,000 75.3

SimCLR Canine 100 72.8 (+3.4)
BYOL Canine 100 76.0 (-0.5)
MoCLR Canine 100 76.1 (+0.8)

SimCLR Canine 200 74.1 (+4.7)
BYOL Canine 200 77.3 (+0.8)
MoCLR Canine 200 77.5 (+2.2)

der performance by drawing negative samples that are too
similar, including more false-negatives [17].

To test this hypothesis in isolation and gain a better
intuitive understanding of our method, we train various
self-supervised learning models on the subset of ImageNet
classes that belong to the canine family (including dogs,
wolves and foxes, 130 classes in total) and compare them to
models trained on the full dataset. For all models, we train
a linear classifier on the canine-only subset, and evaluate on
validation images from the canine subset.

From Table 7 it can be seen that models pre-trained
on the canine-only subset perform significantly better than
those trained on the entire ImageNet dataset, even though
they have significantly less images to learn from and were
trained with 5ˆ less computation.

5.3. ImageNet Results

Even though our main goal is to improve self-supervised
learning on uncurated datasets, we asked whether it remains
competitive on heavily studied datasets such as ImageNet.

From Table 8 we see that training the baseline MoCLR
for 2,000 more epochs does not improve the results by much
(+0.2). DnC on the other hand convincingly outperforms
the baseline (+1.3). Interestingly, DnC even slightly out-
performs MoCLR or BYOL when giving a computational
budget of 1,000 epochs. Though DnC aims at uncurated
datasets, the previous results from Section 5.2 on the ca-
nine subset have shown that even on ImageNet it might be
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Figure 6. Visualization of the 5-way ImageNet clustering used in DnC. For each ImageNet class we compute the fraction of images that
belong to each cluster. For better visualization the x-axis was sorted per cluster. From the figure it is clear that most images in each class
belong to a single cluster. The fraction of images in each class that belong to the same cluster is 87.4%.

beneficial to draw negatives from more similar categories.

Table 8. Comparison with BYOL and MoCLR on ImageNet lin-
ear evaluation benchmark with training budgets of 1000 and 3000
epochs. Top-1 accuracy is reported using ResNet-50.

Method 1000 epochs 3000 epochs ∆

BYOL 74.3 73.9 -0.4
MoCLR 74.3 74.5 0.2
DnC (ours) 74.5 75.8 1.3

5.3.1 Semi-supervised learning

We evaluate the performance of DnC when fine-tuning on
a subset of ImageNet’s train set. Following the semi-
supervised protocol [52, 104, 12, 34], we use the same splits
of 1% and 10% ImageNet data as in [12, 34]. As shown in
Table 9, DnC consistently outperforms BYOL, SwAV, and
MoCLR and Barlow Twins.

Table 9. Semi-supervised results with a fraction of ImageNet la-
bels following the protocol of [12, 34]. The encoder is ResNet-50.

Top-1 Top-5
method Label fraction Label fraction

1% 10% 100% 1% 10% 100%

SimCLR [12] 48.3 65.6 76.0 75.5 87.8 93.1
BYOL [34] 53.2 68.8 77.7 78.4 89.0 93.9
SwAV [10] 53.9 70.2 - 78.5 89.9 -
MoCLR 53.0 68.8 77.4 79.1 89.6 94.0
Barlow Tw. [103] 55.0 69.7 - 79.2 89.3 -
DnC 59.9 71.1 78.2 83.0 90.4 94.2

5.3.2 Ablations

We provide further experiments for isolating the factors that
make DnC work, shown in Table 10. If we train the expert
models on the full dataset instead of subsets (similar to an
ensemble), but with the same computational budget, the re-
sulting model achieves the same performance as the base
model (no improvement). Alternatively, splitting the dataset

Table 10. Ablating the experts used in DnC: We notice a big drop
in performance if the experts models are trained on the whole
dataset (ensemble), or on random subsets.

Partitioning Experts trained on Top-1 Acc

DnC Clustering local partition 75.8
- local experts - full dataset 74.3

- clustering Randomly local partition 73.1

Table 11. Evaluation of what models to predict during distillation.

base model local experts use center-crop Top-1 Acc

✓ 74.5
✓ 75.2

✓ ✓ 75.8
✓ ✓ ✓ 75.6

into random subsets hurts the final performance, showing
the importance of the clustering used.

In Table 11 we study the distillation process, showing
it is important to regress to both the base model and ex-
perts. And as discussed in Section 3.3, using center-crops
instead of augmented views does not hurt the performance
by much.

6. Conclusion
In this paper we have studied how state of the art self-

supervised learning methods perform when they are pre-
trained on uncurated data – datasets that did not require
human annotations or labels to create – as a step towards
fully self-supervised learning. We have observed that cur-
rent methods suffer from a large drop in performance of
up to -9% when pre-trained on these uncurated datasets.
To alleviate this issue, we have proposed Divide and Con-
trast (DnC) that requires a few simple changes to existing
self-supervised learning methods, and which largely outper-
forms state of the art SSL methods on uncurated datasets,
as well as achieving similar or better performance on Im-
ageNet. We hope this work draws more attention to uncu-
rated datasets as a benchmark for self-supervised learning.
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