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Figure 1. We present Neural Generalized Implicit Functions (Neural-GIF), to animate people in clothing as a function
of body pose. Neural-GIF learns directly from scans, models complex clothing and produces pose-dependent details for
realistic animation. We show for four different characters the query input pose on the left (illustrated with a skeleton) and
our output animation on the right.

Abstract

We present Neural Generalized Implicit Functions
(Neural-GIF), to animate people in clothing as a function
of the body pose. Given a sequence of scans of a subject
in various poses, we learn to animate the character for new
poses. Existing methods have relied on template-based rep-
resentations of the human body (or clothing). However such
models usually have fixed and limited resolutions, require
difficult data pre-processing steps and cannot be used with
complex clothing. We draw inspiration from template-based
methods, which factorize motion into articulation and non-
rigid deformation, but generalize this concept for implicit
shape learning to obtain a more flexible model. We learn to
map every point in the space to a canonical space, where
a learned deformation field is applied to model non-rigid
effects, before evaluating the signed distance field. Our for-
mulation allows the learning of complex and non-rigid de-
formations of clothing and soft tissue, without computing
a template registration as it is common with current ap-
proaches. Neural-GIF can be trained on raw 3D scans and
reconstructs detailed complex surface geometry and defor-
mations. Moreover, the model can generalize to new poses.

We evaluate our method on a variety of characters from dif-
ferent public datasets in diverse clothing styles and show
significant improvements over baseline methods, quantita-
tively and qualitatively. We also extend our model to mul-
tiple shape setting. To stimulate further research, we will
make the model, code and data publicly available at [1].

1. Introduction
Human avatars enable numerous applications related to

augmented and virtual reality, such as telepresence for en-
hanced communication and entertainment, and have been
instrumental to reconstruct and perceive people in im-
ages [2, 3, 11, 22, 62, 61]. Human shape deforms according
to articulation, soft-tissue and non-rigid clothing dynamics,
which make realistic animations extremely challenging.

State-of-the-art body models [29, 43, 61] typically learn
to deform a fixed topology template, usually using linear
blend skinning to model articulation, and blendshapes to
model non-rigid effects [29], even including soft-tissue [45]
and clothing [31, 42, 52]. The use of a fixed template lim-
its the type of clothing and dynamics that can be modeled.
For example, it would be difficult to model the subjects in
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Fig. 1 with one or more predefined templates. Furthermore,
every type of deformation (soft-tissue or clothing) requires
a different model formulation. Additionally for training a
model, 3D/4D scans need to be brought into correspon-
dence [29, 45], which is a challenging task especially for
clothing [44], and not even well defined when garments
vary in topology [10]. Recent works have leveraged im-
plicit function representation to reconstruct human shape
from images [49, 50] or 3D point-clouds [8, 15]. These
reconstructions are however static and not animatable.

In this work, we propose a new model, called Neu-
ral Generalized Implicit Functions (Neural-GIF) to animate
people in clothing as a function of body pose. We demon-
strate that we can model complex clothing and body de-
formations at a quality not easily achieved with a tradi-
tional fixed template-based mesh representations. In con-
trast to most prior work, we learn pose-dependent defor-
mations without the need of registration of any pre-defined
template, which degrades the resolution of the observations,
and is a notoriously complex step prone to inaccuracies for
complex clothing [44]. Instead we solely require the pose of
the input scans as well as the SMPL shape parameter (β).
Another key advantage of our method is that it can repre-
sent different topologies using the exact same formulation
–we show how to animate jackets, coats, skirts and soft-
tissue of undressed humans. Neural-GIF consists of a neu-
ral network to approximate the signed distance field (SDF)
of the posed surface. Naively learning to predict SDF from
pose is hard. Instead, we draw inspiration from template-
based methods which factorize motion into articulation and
non-rigid deformation, but generalize this concept for im-
plicit shape learning. Specifically, we learn to map every
point surrounding the surface to a canonical space, where a
learned deformation field is applied to model non-rigid ef-
fects, before evaluating the SDF. Our model (and its name)
is inspired by the seminal paper [53], which shows that a
wide variety of shapes can be obtained by simply applying
deformation fields to a base implicit shape. The advantage
of Neural-GIF is that the network can more easily learn a
base shape in canonical space, which can be deformed. In
summary, our contributions are:

• Neural-GIF, an implicit based re-posable character, which
can be directly learned from 3D scans. Our model
can represent complex character/clothing scans of varied
topology and geometry.

• We introduce a canonical mapping network, which learns
continuous skinning field in 3D space and unpose 3D
points surrounding the scan to a canonical T-pose, with-
out explicit supervision.

• We introduce a displacement field network, which shifts
points in the canonical space before evaluating the SDF,
yielding in fine details and deformation.

We test our method on a variety of scans originating
from different datasets and provide extensive quantitative
and qualitative comparisons. We also extend our formula-
tion to multiple shape setting, by adding a shape dependent
displacement field network. Experiments demonstrate that
our method generalizes to new poses, model complex cloth-
ing, and is significantly more robust and more detailed than
existing methods [51, 36, 18].

2. Related Work
Human and Clothing models: The problem of animating
clothing/characters has been tackled using Physics-Based
Simulation (PBS) methods for a long time. 3D meshes are
animated using PBS governed by some fundamental forces
and collision detection. PBS methods require designing a
garment/mesh template and manual intervention for find-
ing suitable physical parameters. Past work has explored
ways to automate this limitation by trying to infer these
physical parameters mechanically from data [35, 59], or use
videos to infer them [48, 54]. PBS methods are also compu-
tationally expensive and the complexity increases for real-
istic animations. Several approaches generate realistic and
high-frequency details by computing a high resolution mesh
from a base coarse mesh using constraint-based optimiza-
tion [38, 47]. One way of animating characters is by learn-
ing a transformation between pose-shape and the body sur-
face and one can generate characters in new pose and body
shape using this linear transformation [5, 29, 39]. Since
such body models do not model personalized and cloth-
ing details, various methods [4, 10, 44, 26] have explored
ways to extend the underlying body model [29], by predict-
ing per-vertex displacements for personalized and clothing
features. However, they do not take pose-dependent defor-
mations into account. Dyna [45], extends the body model
to predict soft-tissue dynamics caused by motion by learn-
ing a second-order auto-regressive model. With the ad-
vances in deep learning and 3D data acquisition [56, 57, 33],
data-driven models of clothing and humans [62] are be-
coming increasingly popular. One key aspect in model-
ing human and clothing is articulation and pose-dependent
non-rigid deformations. A significant amount of prior
work models these deformations conditioned on the body
shape-pose [6, 20, 52], the body pose [27], the body
shape-clothing size/style [55, 60] and the body shape-pose-
clothing style [42]. All these methods use a template-
specific model, i.e. either they are learned from offline PBS
data [6, 20, 42, 52, 60, 21, 58] or learned from template-
specific registration of scans [27, 31, 55]. [65] generates
fine details for any clothing styles, but requires low res-
olution meshes as input. This strictly limits the usabil-
ity of such approaches to new clothing styles, especially
to those with complex geometries and does not follow the
body topology. There is no existing work that can model
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Figure 2. We propose Neural Generalized Implicit Function (Neural-GIF), which first maps every point p in 3D posed space to the
canonical space by learning the associations between the point and the human body with fw based on a pose encoding (Pθ) as input. Then
we predict a displacement field model (fdef ) learns a pose-dependent deformation field in canonical space (∆p̄θ), conditioned on weighted
pose parameters (w ◦ θ) and pose encoding (P̄θ) in the canonical space. We add the displacement to the unposed point before evaluating
the SDF using our canonical SDF network (fCSDF). We also employ a normal prediction network (fnorm) to obtain results with fine-level
details. Both fCSDF and fnorm take weighted pose and pose encoding as input.

complex clothing like jackets, directly from scans.
Modeling using Implicit representations: There is a
plethora of recent methods [15, 16, 34, 40] that explore
neural implicit functions to represent 3D objects, includ-
ing detailed articulated objects like human bodies and gar-
ments [15, 16] but do not model pose-conditioned occu-
pancy. Corona et al. [17] introduces a generative model
for garments with different topology, but doesn’t model fine
pose dependent deformations. Like us, NASA [18] extends
the implicit surface formulation to represent articulated ob-
jects using a composition of part-based neural implicit func-
tions. However the part-based representation in [18] yields
artifacts at the interfaces and does not capture fine details.
Similar to our work, concurrent works like LEAP [36],
NiLBS [25] and SCANimate [51], propose a neural implicit
model which extends the idea of skinning weights to volu-
metric skinning weights. Previous work like ARCH [23]
and LoopReg [9] also extend skinning weights to 3D space,
but they are not learned and instead are pre-determined
based on nearest neighbour. Prior work like [28, 7] learn
skinning weights for different topolgies using graph convo-
lutions. Yang et al. [63], propose to predict shape, skeleton
and skinning jointly from image or depth data to animate
characters. Also, in [23], clothed humans are modeled as
pixel-aligned implicit functions in the unposed canonical
space but do not model pose-dependent effects. Božič et
al. [14] model non rigid deformations using an implicit de-
formable shape via an identity specific deformation graph
but their focus is tracking and reconstruction of non-rigid
3D objects. In [64], an implicit morphable model for faces
is proposed, where shape is decoupled into an implicit ref-
erence shape and a deformation of this reference shape.

Another line of work in implicit scene representation
comes from NeRF [37], where the focus is photorealistic

rendering of a scene. Dynamic NeRF methods [41, 46] add
the dynamic aspect to neural radiance fields, by first en-
coding the scene into canonical space, using a deformation
field and then predicting density and view-dependent color
values. Hence they can reconstruct and render novel im-
ages of objects under rigid and non-rigid motions from a
single camera moving around the scene. In contrast, we
learn a model which generalizes to new poses, learns from
3D scans, and integrates the SMPL kinematic skeleton.

In the seminal work of [53], a generalized formulation
of implicit functions is introduced to obtain new shapes
by deforming and transforming an implicit base shape, by
deforming and displacing points. Instead of using prede-
fined deformation matrices and displacement maps, we im-
pose articulated structure from the SMPL body model [29],
learn to map points to a canonical space, and learn a pose-
dependent displacement field with neural networks.

3. Method

Our method, called Neural-GIF, is a neural model based
on generalized implicit functions [53] for animating people
in clothing. Given a pose(θ) as input, Neural-GIF predicts
SDF, whose zero level set represents the character’s surface
S. Without loss of generality, we use SMPL [29] for our
pose representation. To train Neural-GIF we require se-
quences of 3D scans of a subject in a fixed clothing, and
the corresponding SMPL parameters. We do not require
non-rigid registration and un-posing as a pre-processing
step [42, 44, 45, 27], which is a tedious task and prone to er-
ror. Since learning the mapping θ 7→ SDF(S) is hard (large
variations due to articulation, fine non-rigid deformations
due to soft-tissue and clothing) and often results in missing
limbs, we factorize the motion to learn a deformable SDF in
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a canonical (unposed) space of the character. Three neural
functions are composed to obtain the pose dependent SDF:

• Canonical mapping network (Sec. 3.1): maps every
point in the posed 3D space to the canonical unposed
space by learning point to human body associations.

• Displacement field network (Sec. 3.2): models non-
rigid pose-dependent deformations (soft-tissue, cloth dy-
namics). Specifically, it predicts a continuous displace-
ment field for points in the canonical space.

• Canonical SDF (Sec. 3.3): By composition, Canonical
SDF network, takes the transformed point with the above
networks, and a pose encoding as input to predict the de-
sired signed distance for every query point. We addition-
ally predict a surface normal field as a function of pose in
canonical space to add realism in the results.

3.1. Canonical Mapping Network

Our canonical space is characterized by a T-pose of char-
acter. Learning in this space allows the network to discover
a mean shape that can be deformed and articulated, which
helps in pose generalization. Formally, the main task of the
network is to map every point in the posed space (includ-
ing off-surface points) to the canonical space p 7→ p̄. This
requires associating the point p with the body, and invert-
ing the articulated motion. While we could associate every
point to its closest SMPL body model point, this is often
ambiguous in occluded regions near the armpits or between
the legs(See fig. 8). Consequently, we propose to learn this
association as a function of pose.

Instead of simply using pose θ as input, we use a body-
aware pose representation. First, we take K joints the
SMPL mesh (ji, i ∈ {1 . . .K}), and then define a pose en-
coding Pθ ∈ RK×3, where Pθ,i = ||p− ji||.

Given a query point in space and its pose encoding, the
canonical mapping network predicts the blend weights w ∈
RK of query point p and transforms it to the canonical space
using a differentiable un-posing layer:

w = fw(p,Pθ) (1)

p̄ =

(
K∑
i=1

wiBi

)−1

p, (2)

where Bi is the transformation matrix for joints i ∈
{1 . . .K}, and wi its blend-weight. Eq. (1) and (2) define
the canonical mapping network fcan : (p,Pθ) 7→ p̄.

3.2. Displacement Field Network

A surface expressed implicitly as the zero level
set {x ∈ R3 |SDF (x) = 0} can be deformed to ob-
tain a new surface by applying transformations to
the points themselves. By applying a displacement
x′ = x+∆x we will effectively displace the zero level

set {x ∈ R3 |SDF (x′) = 0}, and consequently the surface
defined. To model subtle non-rigid deformations, we pro-
pose to explicitly learn a pose-dependent displacement field
in the canonical space:

∆p̄θ = fdef(p̄,w ◦ θ, P̄θ) (3)
where w ◦ θ is weighted SMPL pose parameter and P̄θ is
pose encoding computed in the canonical space. We denote
the space of pose encoding as (w ◦ θ, P̄θ) ∈ P . Note that
these are not per-vertex displacements, but a learned con-
tinuous displacement field R3 7→ R3, and hence we are not
restricted to a fixed mesh with fixed number of vertices.

3.3. Canonical SDF and Normal Prediction

Given points in canonical space and the pose encoding
(w ◦θ, P̄θ) ∈ P , we learn a signed distance field in canon-
ical space. The canonical SDF (fCSDF : R3 × P → R)
is parameterized with a fully-connected neural network. As
seen in Fig. 2, the network predicts SDF values for points
in the canonical space with the following equation:

d∗ = fCSDF(p̄+∆p̄θ,w ◦ θ, P̄θ) (4)

where the canonical point p̄ = fcan(p,Pθ), and the dis-
placement ∆p̄ = fdef(p̄,w ◦ θ, P̄θ) are computed with
the canonical mapping and displacement field networks re-
spectively. This formulation has several nice properties.
First, the network can implicitly learn a canonical shape
of clothing/human, without ever explicitly un-posing the
scans. Note that if the motion consists exclusively of only
articulation and displacement, then we could directly learn
fCSDF(p̄ + ∆p̄) without further conditioning (in practice
we condition on pose to give the network the flexibility to
learn shapes which can not be modeled via displacements
from a canonical shape). Second, we can supervise Eq. (4)
with distances computed in the original posed scans.

In addition to signed distances, we predict the normals
for points near the surface, to generate more realistic look-
ing results. We predict normals in canonical space, us-
ing fnorm and then transform it to pose space using blend
weights, computed from Eq. (1) and Bi:

n∗ =

K∑
i=1

wiBifnorm(p̄+∆p̄θ,w ◦ θ, P̄θ) (5)

3.4. Multi-subject model using Neural-GIF

We extend our proposed framework for multi-subject
setting, i.e. we learn multiple shapes in one single model.
For this we take motivation from SMPL [29] model, where
per-vertex shape dependent displacement is added and ex-
tend the idea to a continuous shape dependent displacement
field. To incorporate shape dependent displacement field,
we introduce another displacement network(fdef−β), which
predicts continuous displacement field in R3, given shape
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parameter(β) as input:
∆p̄β = fdef−β(p̄,β) (6)

We further modify our model by taking SMPL shape(β) as
additional input to each sub-network and adding ∆p̄β to
p̄+∆p̄θ before applying fCSDF(∗) and fnorm(∗).

3.5. Training and Inference

Training: Each of the sub-networks is implemented using
an MLP. Following [37], we use a positional encoding for
query point p. We follow a multi-stage training regime for
faster convergence and stable training. First we pre-train
the canonical mapping network (fcan) using SMPL meshes
generated from the training motion sequences and initially
supervise blend weights with ground truth (only known at
the SMPL surface). Then we train the canonical mapping
network (fcan) and the canonical SDF (fCSDF) end-to-end.
Then in the final step, we freeze canonical mapping net-
work (fcan) and train ( fCSDF, fdef) together end-to-end.
For training the normal prediction network, we train only
for points which are near the surface, i.e. |d∗| < δ, once the
loss of fCSDF has stabilized. We train our network using
the following point-wise losses:

LSDF = ||d∗ − d||2 Lnorm = 1− nTn∗ (7)
where d∗, d represent the predicted and ground truth signed
distances respectively, and n∗,n denote the predicted and
ground truth normals for a point in the posed space. We
also added a regularizer for pose dependent displacement
field network, given by:

L∆p̄θ = ||∆p̄θ||22 (8)

We generate training data by sampling points on the sur-
face of the ground-truth mesh and randomly displace these
points with noise σ = {0.01, 0.1}. Similar to [16], the
ground-truth signed distances at these samples are com-
puted by casting randomized rays and checking the par-
ity [24]. We use K = 24 number of joints, for fully body
meshes and follow [42] for skirt and shirt meshes.
Inference: For generating meshes from our method, we
first sample points in space and predict d∗, using Eq. (4).
We reconstruct our meshes using marching cubes [30] on
the predicted SDF. Our reconstructed meshes are at 256
voxel resolution. Then we predict normals for the vertices
on the reconstructed surface, using fnorm. Note that un-
like [51], we directly query our point in pose space, so there
is no need for extra re-posing step.

4. Experiments and Results
Our proposed method can be used to learn non-rigid

pose-dependent deformations in human/clothing meshes.
We show results of our method on various datasets in
Sec. 4.1 and compare with [18, 51] in Sec. 4.3. We also
evaluate our model in multiple shape setting in Sec. 4.4.

Datasets: For evaluation of single-shape and clothing
model, we use CAPE dataset [31, 44], DFAUST [12, 45],
TailorNet [42] and a few human scan sequences with com-
plex clothing that we captured in our stage, which we will
refer to as ClothSeq. For multiple subject setup, we eval-
uate our method on three datasets: 1) MoVi [19, 32], 2)
SMPL pose and shape dataset and 3) DFAUST registra-
tions [12, 45] and compare with [36]. For SMPL pose
and shape dataset, we use the 890 poses provided in SMPL
model and create 9 different body shapes, by changing first
3 principal components of shape-space. For the CAPE and
TailorNet, the SMPL parameters are available in the dataset.
For others, we fit SMPL [8, 9] to obtain the pose and shape.

We split the dataset, such that the test set contains 2 un-
seen motion sequences for CAPE and DFAUST. For Tailor-
Net and SMPL pose-shape dataset, we follow the train/test
split used in [42]. For MoVi, we follow the train/test split
used in [36]. In order to show that Neural-GIF can model
complex geometries, loose clothing and topolgies, we test
our method on the ClothSeq which is a dataset of complex
clothing like jacket, loose shrugs etc.

4.1. Reanimating people in clothing

Modeling people in complex clothing: We use our Neural-
GIF, to animate characters in new poses. We generate
results for various characters of the ClothSeq and CAPE
datasets. We provide results on poses of the test set (volley-
ball and walking sequences) of the CAPE dataset in Fig. 3
and on the ClothSeq dataset in Fig. 4. Our method gen-
erates accurate reconstructions and generalizes to unseen
poses, while preserving the structure of identity and gen-
erating fine details. Since we directly learn from scans,
which are noisy, e.g., near the hands, feet and inner-thigh,
the reconstruction around these areas tends to be a bit noisy
and unstructured. Modeling such types of clothing using
template-based methods is not straightforward due to the
open-layered structure of the clothes on top of the body. As
a result, a single template cannot explain two extreme de-
formations of a jacket, (i.e., on one end when a layer of the
jacket is close to the body surface and on the other side of
the spectrum when the layer is far from the body surface
due to some pose like lifting hands in the air). Our method
produces large deformations for loose garments like open
jackets and shrugs(Fig. 4) as opposed to template-based
methods. This is possible because we do not rely on blend
weights associated to the underlying body, but instead we
predict blend weights for every point in the space as a func-
tion of pose, for a given subject. So our network learns to
associate each point correctly to joints e.g. a point on the
surface of jacket near torso will have different association
(weight) in the rest pose and slightly different association
when the person is lifting hands. Our canonical mapping
network learns this pose-dependent association from data.
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Figure 3. Re-animating CAPE: Reposing a character from CAPE dataset [31] using our proposed method. We show results on walking
motion sequence (left) and on playing volleyball motion sequence (right).

Figure 4. Modeling people in complex clothes: Results of Neural-GIF for subjects from the ClothSeq dataset. Neural-GIF can model
well complex cloth geometries, like hoodies (left), puffer jacket (middle) and loose clothes like shrugs (right).

Modeling separate clothing items: Since our method is
not limited by a pre-defined template or topology, we can
also train Neural-GIF on the clothing meshes of shirts and
skirts from the TailorNet dataset, and for completeness,
also compare to TailorNet [42]. It is important to note
that such a comparison is not totally fair for our method.
First, the training meshes are of a fixed resolution dictated
by the template used in TailorNet, so our model is upper-
bounded by this. Second, registration is noise free because
meshes are obtained from physics simulations (ideal case
for template-based methods) – this allows the mapping of
every shape to a vector, which makes learning significantly
easier for TailorNet – correspondence is known for Tai-
lorNet whereas is not known for Neural-GIF. Despite this,
qualitatively Neural-GIF is comparable to TailorNet [42] as
seen in Fig. 5. We can see that our method generalizes to
new unseen poses and predicts fine details and deforma-
tions. Quantitatively we find that point to surface distance
for TailorNet results is slightly better than our method. We
produce 11.14mm and 10.98 mm error for skirt and shirt
clothing, while TailorNet’s results are 9.82mm and 7.28
mm respectively. Another source of slight inaccuracy orig-
inates from our mesh reconstruction method for open sur-
faces. Since shirt/skirts are a thin layered surface, we re-
construct the mesh using a small threshold of 0.01mm in
marching cubes, which might result in slightly thicker sur-
faces, and could be addressed by switching to unsigned neu-
ral distance fields [16]. This comparison shows that when
registration is possible (easy clothing animated with physics
simulation) it helps learning.

TailorNet Ours TailorNet Ours
Figure 5. Comparison with TailorNet: Qualitative comparison
on skirt(top) and shirt(bottom) meshes from the TailorNet dataset.

4.2. Modeling soft-tissue dynamics

Neural-GIF models high frequency pose-dependent de-
formations for various shapes like full clothing, jackets and
skirts. We now evaluate how well this representation can
model soft-tissue dynamics, which are highly non-linear
and high-order pose-dependent deformations. Thus, we
evaluate our method on this task using the DFAUST [13]
dataset. We show our results on DFAUST [13] in Fig. 6. We
evaluate our method on a single subject with 14 sequences,
which demonstrate extreme soft-tissue dynamics. In Fig. 6
we provide results for 3 sequences and observe that the net-
work predicts soft-tissue dynamics/deformations. Our nor-
mal prediction network also helps in producing more real-
istic renders. We notice that since deformation in the facial
region is not controlled by any keypoint and also the sub-
jects’ facial expressions change over time, we tend to pro-
duce smooth results around the face.
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Table 1. We quantitatively compare the results of our method with NASA [18] and SCANimate [51]. We report point to surface distance
(in mm) and IoU and F-Scores(%) for comparison.

Dataset
Model NASA [18] SCANimate [51] Ours (Neural-GIF)

Point2Surface ↓ IoU ↑ F-Score ↑ Point2Surface ↓ IoU ↑ F-Score ↑ Point2Surface ↓ IoU ↑ F-Score ↑
CAPE [31] 10.67 0.918 94.32 5.82 0.957 98.51 5.86 0.957 98.53
ClothSeq 23.26 0.780 57.29 7.32 0.953 97.32 4.73 0.967 99.15
DFAUST [13] 10.52 0.939 95.48 3.79 0.971 99.50 3.21 0.972 99.56

Ours GT Ours GT Ours GT Ours GT Ours GT Ours GT

Figure 6. Results on DFAUST [13]: We show our results on three different motion sequences (running, jiggle on toes, shake hips) from
DFAUST and compare with ground-truth DFAUST data and visualize results in (prediction, GT) pairs. Neural-GIF is able to retain pose-
dependent soft-tissue deformations present in the ground truth scans.

4.3. Comparisons and Ablation Studies

Comparison with SoTA: For the single shape model, we
compare our method with [18, 51] and provide the quantita-
tive evaluations in Table 1. In NASA [18] pose-dependent
occupancy is represented using part-based implicit func-
tions. NASA produces good results for human meshes
from [13], however it cannot model fine details and complex
or loose clothing like jackets. We observe from Fig. 9, that
NASA generates rigid and overly smooth results, compared
to our model. NASA also suffers from part-based artifacts,
such as intersecting body parts in poses like bending elbows
or knees. This problem is even more prominent if there are
significantly less data points for such poses. Since we learn
the whole body shape using a single network our approach
does not encounter such issues. From Tab. 1 we observe a
significant drop in terms of IoU on ClothSeq when using
NASA, which is because the network cannot learn the loose
deformations of jackets and hoodies, as one can observe
in Fig. 9. Quantitatively, SCANimate [51] performs better
than our method on CAPE, as seen in Table 1, first row, but
we notice that results of SCANimate are less detailed and
have posing artifacts due to LBS, as highlighted in figure 7.
We also show significant improvements in terms of the qual-
ity of details produced by our method. We accredit this to
the combination of the displacement field network, the nor-
mal prediction and positional encoding of query point.

Ablation studies: We now evaluate the significance of each
module in our proposed method and report the result of ab-
lation in Table 2 and our complete model in Table 1(last
column). First, we simply use the Canonical SDF to learn
the distance field in the canonical space. We find the blend
weights for every point in space (p), by associating the
blend weight of nearest point on the SMPL body surface.

Ours SCANimate Ours SCANimate
Figure 7. Comparison with SCANimate: We compare the results
of our method on the CAPE dataset with SCANimate [51]. Our
model preserves more details and does not have posing artifacts.

Table 2. Ablation: Quantitative evaluation between nearest neigh-
bour based SMPL weights and learned weights from canonical
mapping network.

Dataset
Model SMPL weights Canonical mapping network

Point2Surface ↓ IoU ↑ Point2Surface ↓ IoU ↑
CAPE [31] 12.93 0.866 7.93 0.955
ClothSeq 11.89 0.874 9.18 0.963
DFAUST [13] 18.38 0.806 3.28 0.972

We transform p to p̄ using Eq. (1) and calculate the SDF
using Eq. (4). In Fig. 8(left), we observe that if we sim-
ply use nearest point based blend weights, we obtain wrong
reconstructions (space between the legs). We observe that
for this case (Table 2, col.1), the IoU is relatively low as
compared to the other two versions of our model and also
lower than NASA(see Table 1) on DFAUST. This is because
of incorrect body part associations, as shown in Fig. 8 and
explained above. This problem is most prominent, near the
inner thighs and especially when both the legs are not per-
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fCSDF+
SMPL weights fCSDF+ fcan
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(complete)

Figure 8. Ablation: Canonical SDF+SMPL weights results in
wrong association and hence result in wrong occupancy (left). Our
canonical mapping network solves this problem by learning blend
weights from data, but produces smooth results (middle). Finally
displacement field network and normal prediction network helps
in generating small pose-dependent details (right).

forming a symmetrical motion. The test split in DFAUST
consists of jumping, running etc, which produce very low
IoU and the points in this area randomly change their asso-
ciation between left and right legs and are mapped to a point
in the canonical space, which may lie inside the canonical
shape, for a given pose.

We alleviate this problem, with our canonical mapping
network to predict these blend weights (Table 2, col.2). The
network learns correct associations based on data. Learn-
ing the SDF in the canonical space, simplifies the learn-
ing process, as the network learns a strong prior for the
shape of the subject. We observe from Fig. 8(middle),
that just using Canonical SDF + Canonical mapping net-
work, does not produce fine pose-dependent deformations.
Hence we introduce a displacement field network, to learn
a pose-dependent displacement field in the canonical space
for small non-rigid deformations and a normal prediction
model. We observe that having a separate model to incor-
porate such fine details and training the network in a multi-
step regime (Sec. 3.5), helps to learn these deformations.

4.4. Multiple shape model

As mentioned in section 3.4, we extend our formulation
to incorporate multiple body shapes in one model. We com-
pare with concurrent method LEAP [36] and show the quan-
titative evaluation in Table 3. We model body shape varia-
tion as a continuous displacement field in canonical space.
Even with a simple formulation, we perform comparably or
better than LEAP. We also observe that our training is more
stable than training LEAP.

5. Conclusion
We introduced Neural-GIF, a novel model to learn ar-

ticulation and pose-dependent deformation for humans in
complex clothing using an implicit 3D surface representa-

Table 3. For multiple shape model we quantitatively compare the
results of our method with LEAP [36].

Dataset
Model LEAP [36] Ours (Neural-GIF)

Point2Surface ↓ IoU ↑ Point2Surface ↓ IoU ↑
DFAUST [13] 3.42 0.958 3.35 0.963
MoVi [19] 3.19 0.969 3.20 0.969
SMPL 3.26 0.968 3.18 0.971

Ours NASA Ours NASA Ours NASA
Figure 9. Comparison with NASA: We compare the results of our
method (bottom) on the ClothSeq dataset with NASA [18] (top).
Our model reconstructs complex clothing without any part-based
artifacts and generates realistic pose-dependent deformations.

tion. Neural-GIF admits end-to-end learning directly from
scans provided with their corresponding SMPL pose and
shape parameters. The key idea of Neural-GIF is to express
shape as displacement and articulation deformations of a
canonical shape, a concept that has been widely used for
parametric meshes, which we generalize here to neural im-
plicit function learning. Neural-GIF can accurately model
complex geometries of arbitrary topology and resolution,
because our model does not require a pre-defined template,
or non-rigid registration of a template to scans.

We show significant improvements from prior work [18,
51], in terms of robustness, ability to model complex cloth-
ing styles and retaining fine pose-dependent details. We be-
lieve that the use of generalized implicit functions with our
canonical mapping and displacement field networks help
the network to more effectively factor out articulation from
non-rigid components. We further extend our model to mul-
tiple shape setting and show comparable performance to
concurrent work LEAP [36].

We believe that Neural Generalized Implicit Functions
open several interesting research directions. Since currently
we have a clothing-specific model, it will be useful to ex-
tend this approach such that it can animate multiple cloth-
ing using the same model. It would be also valuable to learn
temporal correspondences implicitly during learning. Fi-
nally, since Neural-GIF produces signed distance fields, we
want to leverage them for fast collision and contact compu-
tation in human-object and scene interactions.
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