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Abstract

Tracking by detection, the dominant approach for online
multi-object tracking, alternates between localization and
association steps. As a result, it strongly depends on the
quality of instantaneous observations, often failing when
objects are not fully visible. In contrast, tracking in hu-
mans is underlined by the notion of object permanence:
once an object is recognized, we are aware of its physical
existence and can approximately localize it even under full
occlusions. In this work, we introduce an end-to-end train-
able approach for joint object detection and tracking that
is capable of such reasoning. We build on top of the re-
cent CenterTrack architecture, which takes pairs of frames
as input, and extend it to videos of arbitrary length. To this
end, we augment the model with a spatio-temporal, recur-
rent memory module, allowing it to reason about object lo-
cations and identities in the current frame using all the pre-
vious history. It is, however, not obvious how to train such
an approach. We study this question on a new, large-scale,
synthetic dataset for multi-object tracking, which provides
ground truth annotations for invisible objects, and propose
several approaches for supervising tracking behind occlu-
sions. Our model, trained jointly on synthetic and real
data, outperforms the state of the art on KITTI and MOT17
datasets thanks to its robustness to occlusions.

1. Introduction
Consider the video sequence from the KITTI dataset [24]

shown in Figure 1. A man on the left walks behind the
moving car and is not visible anymore. Yet, there is no
question that he is still there, and did not simply vanish.
Moreover, we can approximately infer his location at that
moment. This capability is known to cognitive scientists
as object permanence, and is observed in infants at a very
early age [3, 53]. In adults, understanding that occluded
objects do not disappear is important for tasks like driving.
In this work, we propose a deep learning-based method for
multi-object tracking that is capable of such reasoning.

Virtually all modern multi-object tracking algorithms

Figure 1. Video frames from the KITTI dataset with outputs of
CenterTrack [66] (above), and our method (below). By modeling
object permanence, our approach is able to hallucinate trajectories
of fully occluded instances, such as the person behind the car.

operate in the tracking-by-detection paradigm. That is, they
use an existing object detector to localize objects of in-
terest in every frame of a video, and then link them into
tracks, either in an online [9, 11], or in an offline man-
ner [5, 6, 10, 34, 42]. In this work we focus on the online
setting, where a method needs to associate current detec-
tions with previously established trajectories [9, 54, 59, 62].
A major limitation of these methods is that the localization
step is completely independent from the previous history,
thus, once an object becomes partially or fully occluded,
the detector fails and the trajectory gets broken (see Fig-
ure 1, top). Recently, several approaches combine detection
and tracking in a single model [7, 66]. They take pairs of
frames as input and output detections together with pair-
wise associations. While these methods improve tracking
robustness, they can only handle single-frame occlusions.

In this work, we propose an end-to-end trainable, on-
line approach for multi-object tracking that leverages object
permanence as an inductive prior. To this end, we first ex-
tend the recent CenterTrack architecture [66] from pairs of
frames as input to arbitrary video sequences. The frames
are processed by a convolutional gated recurrent unit (Con-
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vGRU) [4] that encodes the spatio-temporal evolution of
objects in the input video, taking the entire history into ac-
count. As a result, it can can reason about locations of par-
tially and fully occluded instances using the object perma-
nence assumption (see Figure 1, bottom).

Supervising this behavior is a major challenge. No track-
ing dataset currently provides consistent annotations for oc-
cluded objects at a large scale (see Figure 5) because of
the associated uncertainty. In this paper, we instead pro-
pose to use synthetic data. Using the Parallel Domain
(PD) [1] simulation platform, we generate a dataset of syn-
thetic videos that automatically provides accurate labels for
all objects, irrespective of their visibility (see Figure 2). We
then use this dataset to analyze various approaches for su-
pervising tracking behind occlusions with both ground-truth
and pseudo-ground-truth labels for occluded instances.

Despite the progress in simulation, the domain gap be-
tween synthetic and real videos may limit performance.
As we show in Section 4.3, a model directly trained
on synthetic videos indeed underperforms when applied
to real-world multi-object tracking benchmarks such as
KITTI [24]. However, we find that this domain gap can be
overcome by just training our model jointly on synthetic and
real data, supervising invisible objects only on synthetic se-
quences. This allows to learn complex behaviors across do-
mains, including trajectory hallucination for fully occluded
instances although this was never labeled in the real world.
Our contributions are three-fold. (1) We propose an
end-to-end trainable architecture for joint object detection
and tracking that operates on videos of arbitrary length in
Sec. 3.2. (2) We demonstrate how this architecture can be
trained to hallucinate trajectories of fully invisible objects
in Sec. 3.3. (3) We show how to supervise our method
with a mix of synthetic and real data in Sec. 3.4, and val-
idate it on the KITTI [24] and MOT17 [38] real-world
benchmarks in Sec. 4, outperforming the state of the art.
Source code, models, and data are publicly available at
https://github.com/TRI-ML/permatrack.

2. Related Work

Our approach addresses the problem of multi-object
tracking by designing a joint model for object detection and
tracking in videos and training it on synthetic data. Below,
we review the most relevant works in each of these fields.
Multi-object tracking is the problem of localizing objects
from a predefined list of categories in a video and asso-
ciating them over time based on identity. Most existing
approaches treat these two tasks separately, in a paradigm
known as tracking-by-detection. The main difference be-
tween the methods in this category is whether the associa-
tion step is performed online or offline.

State-of-the-art online object trackers [7, 9, 59, 62, 66]

keep a set of active trajectories as they progress through
a video. In every frame, a new list of object detec-
tions is processed by either associating them with an ex-
isting trajectory, or starting a new one. Early approaches,
such as SORT [9], used Kalman filter to associate detec-
tions based on bounding box overlap, or appearance fea-
tures from a deep network [59]. Recent methods pro-
posed to utilize more complex features for association, such
as human pose [54], or trajectory representations learned
with spatio-temporal graph convolutions [62]. Although
some of the methods in this category use a linear motion
model [11, 40, 64] to propagate a trajectory hypothesis be-
hind occlusions, this heuristic ignores changes in the scene
context. In contrast, our approach learns to hallucinate tra-
jectories of occluded objects in an end-to-end manner, out-
performing the aforementioned heuristic.

On the other hand, offline approaches [5, 6, 10, 34] first
build a spatio-temporal graph spanning the whole video,
with object detections as nodes [5]. Edge costs are de-
fined based on overlap between detections [30, 42, 65],
their appearance similarity [10, 39, 47, 62], or motion-based
models [2, 13, 16, 34, 44]. The association can then be
formulated as maximum flow [6] or, minimum cost prob-
lem [30, 34]. While these methods can handle complex sce-
narios, they are not practical due to their non-casual nature
and computational complexity. In contrast, our approach
does not require future frames and runs in real time.

A few methods have recently attempted to combine ob-
ject detection and tracking in a single end-to-end learnable
framework. Bergman et al. [7] utilize the box regression
branch in the Faster RCNN detector [45] to propagate ob-
jects from frame t − 1 to t. Zhou et al. [66] take a pair of
frames as input, and directly output the detections and asso-
ciation vectors, resulting in a simpler architecture. How-
ever, both these methods only capture short-term object
correspondences. Our approach builds on top of [66], but
modifies it to model spatio-temporal evolution of objects in
video sequences of arbitrary length, and uses synthetic data
to learn to detect and track even under full occlusions.

Several classical methods [26, 28, 41] have attempted to
capture the notion of object permanence through heuristics,
such as correlation between the motion of visible and invis-
ible instances in [26]. However, these rule-based methods
lack in flexibility. Recently, Shamsian et al. [51] proposed
a fully learning-based approach with promising results on
toy, synthetic examples. In contrast, our method is capable
of handling full occlusions in the wild.

Video object detection is primarily concerned with im-
proving the robustness of detectors in videos. Early ap-
proaches processed frames individually, but used a Siamese
network to establish association between detections and
smooth their scores [21]. Later, Kang et al. [31] proposed
to pass a stack of several frames to a network and directly
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Figure 2. A sample from our synthetic dataset (Section 4.1) with
ground truth visibility labels. Unlike real datasets, virtual ones
provide accurate annotations for all the objects, irrespective of
their visibility.

output short object tubelets. Finally, Xiao et al. [61] aug-
mented an object detector with a spatio-temporal memory
module, allowing it to process videos of arbitrary length.
Notice that none of these methods tackled the problem of
multi-object tracking. Instead, they used short-term associ-
ations to improve detection robustness. Similarly to [61],
our architecture also combines an object detector with a
spatio-temporal memory module, however, we use a more
recent CenterPoint [67] detector framework and train the
model to hallucinate trajectories of fully occluded objects
using synthetic data.

Synthetic data has been used in the past to circumvent
the need for manually labeling images [18, 46, 48] or
videos [19, 22, 55]. Most approaches have focused on
the setting in which no labels are available in the real
world, leveraging unsupervised domain adaptation tech-
niques such as adversarial training [23, 27, 35, 56] and self-
training [33, 50, 68, 69]. Although significant progress has
been achieved, the performance of these models remains
significantly below their counterparts trained on real data
in a fully supervised way. In videos, the most successful
approaches combined large amounts of synthetic data with
small sets of labeled real videos [29, 55]. In this work, we
follow a similar route and utilize synthetic data to obtain the
expensive labels for occlusion scenarios, while relying on
visible object annotations in multi-object tracking datasets
to minimize the domain gap. Synthetic datasets with ob-
ject track labels have been proposed in the past [20, 22].
We choose to capitalize on the recent progress in simula-
tion tools and collect a new, more realistic one.

3. Methodology

3.1. Background

We build our method on top of the recent Center-
Track [66] architecture. Their approach addresses tracking
from a local perspective. In particular, CenterTrack takes
a pair of frames {It−1, It} as input together with Ht−1

- an encoding of locations of previously detected objects
in frame t− 1. Objects are represented with their cen-
ter points p ∈ R2, thus Ht−1 is compactly encoded with
a heatmap. The three input tensors are concatenated and
passed through a backbone network f , producing a feature
map F t = f(Ht−1, It−1, It), which is used to both lo-
calize the object centers in the current frame {p̂t

0, p̂
t
1, ...},

regress their bounding box sizes {ŝt0, ŝt1, ...}, and predict
their displacement vectors with respect to the previous
frame {d̂t

0, d̂
t
1, ...}. At test time, displacement vectors are

used to project each center to the previous frame via p̂t
i−d̂t

i,
and then greedily match it to the closest available center
p̂t−1
∗ , thus recovering the tracks (see [66] for more details).

The local nature of CenterTrack is both its strength and
its weakness. While only considering a pair of consecutive
frames simplifies the architecture of the model, it limits its
representational power. In particular, it cannot capture the
notion of object permanence in videos, and learn to localize
and associate objects under full occlusions. To address this
limitation, we first extend [66] to a video-level model in
Section 3.2. We then describe how to train such a model to
track invisible objects using synthetic data in Section 3.3,
and detail our domain adaptation approach is Section 3.4.

3.2. A video-level model for tracking

Our model, shown in Figure 3, takes a sequence of
frames {I1, I2, ..., In} as input. Each frame is passed
through the backbone f individually to obtain feature maps
{F 1, F 2, ..., Fn}, which, per CenterTrack formalism, en-
code the locations of visible objects in that frame - an in-
stantaneous representation. To learn a permanent represen-
tations of objects in a video, we augment our network with a
convolutional gated recurrent unit (ConvGRU) [4]. It is an
extension of the classical GRU [14], which replaces a 1D
state vector with a 2D feature map M , and fully connected
layers, used to compute state updates, with convolutions.

At each time step t, the corresponding feature map
F t is passed to the ConvGRU, together with the pre-
vious state M t−1 to compute the updated state M t =
GRU(M t−1, F t). Intuitively, the state matrix M rep-
resents the entire history of the previously seen objects
{o1, o2, ...} in frames {1, ..., t− 1} and is updated with the
encoding of the visible objects in frame t via a series of
learnable, multiplicative transformations (see [4] for further
details). It can thus model the spatio-temporal evolution of
objects in the input video sequence by guiding their local-
ization and association in frame t using previous history.
Moreover, it can predict locations of the objects that were
seen in the past, but are currently occluded. Notice that
with this architecture there is no need to pass the explicit
encoding of the previous frame centers Ht−1, since they
are already captured in the ConvGRU state M t−1.

In practice, to generate the tracks on-line, M t
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Figure 3. Our method takes a sequence of frames as input and processes them individually with a backbone network (shown in yellow).
The resulting feature maps (shown in blue) are passed to the ConvGRU module which aggregates a representation of the scene, encoding
all the previously seen objects, even if they are fully occluded in the current frame. The memory state at time t, (shown in gold), is then
used to decode object centers, and estimate their visibility (other outputs directly adapted from [66] are not shown for readability).

is recurrently passed through separate sub-networks
fp, foff , fs, fd, which following [66], are used to decode
the bounding boxes of the objects and link them into tracks.
We augment those with a new visibility head fv, which pro-
duces an output map V t ∈ [0, 1]H×W . It is a binary classi-
fier, predicting whether the object center at a particular lo-
cation corresponds to a visible, or a fully occluded instance.
See, for example, the person walking behind the red SUV
on the right in Figure 3. His location behind occlusion is
supervised as a positive for the localization head P t, but as
a negative for V t. This distinction is important for evalua-
tion, since annotations for invisible objects are not provided
(we also remove them from the validation set of PD for a
fair comparison). To avoid being penalized for ‘false pos-
itive’ predictions, we only output bounding boxes that are
classified as visible by our model, but use the invisible ones
to recover object identities after occlusions.

All the operations detailed here are fully differentiable,
and thus the model can be trained in an end-to-end fashion
with backpropagation through time [58]. Following [66],
we use focal loss [36] to supervise P t and V t, and L1 loss
for the latter three heads. The overall training objective is:

L =
1

N

N∑
t=1

Lt
p + Lt

v + λoffL
t
off + λsL

t
s + λdL

t
d, (1)

where N is the length of the input sequence, and
λoff , λs, λd are hyper-parameters that balance the contri-
bution of the corresponding losses in the overall objective.

As we discuss in Section 4.3, training our model on
visible objects alone results in noticeable improvements
over [66] due to increased robustness to noise in instanta-
neous observations. Next, we discuss our approach to su-
pervising fully occluded objects.

3.3. Learning to track behind occlusions

3.3.1 Disambiguating levels of visibility

To generate training labels for a video sequence of length
N , our method takes object annotations {O1, O2, ..., ON},

with Ot = {ot1, ot2, ..., otm} as input. Each object oti =
(p, s, id, vis) is described by its center p ∈ R2, bound-
ing box size s ∈ R2, identity id ∈ I, which is used, together
with p, to supervise the displacement vectors d, and visibil-
ity level vis ∈ [0, 1], indicating what fraction of the object
is visible in the current frame. Naively, one could simply
ignore the visibility levels and supervise all the objects in
every frame. This would, however, result in the model be-
ing forced to hallucinate objects trajectories before they first
become visible (e.g. the car driving in front of the truck in
Figure 2 for the whole duration of the video). As we show
in our experiments (Table 2), such supervision is effectively
label noise and decreases model’s performance.

To avoid this, we pre-process the annotations to only
start supervising occluded objects after they have been visi-
ble for at least 2 frames. This is the minimal sufficient time
for the model to both localize an object and estimate its ve-
locity - the required information for predicting its position
under occlusion.

Concretely, we introduce two thresholds Tvis and Toccl.
Then, starting from the first frame in a sequence O1, for
every object o1i , if vis1i < Tvis the object is treated as a
negative, if Tvis < vis1i < Toccl it is ignored (the model is
not penalized for predicting it), and finally, if vis1i > Toccl
its marked as visible and used to produce the labels. The
same procedure is repeated for every frame in a sequence,
with the only difference that, starting from frame 3, objects
that were marked as visible for two consecutive frames in
the past are treated as positives regardless of their visibil-
ity status in the current frame. This procedure reduces the
ambiguity of supervision for the model. In particular, the
second threshold Toccl allows for a soft transition between
visible and invisible objects.

3.3.2 Supervising the invisible

The ambiguity of the location of an invisible object is
not fully addressed by the algorithm above. Consider the
ground truth trajectory of a person shown in white in Fig-
ure 4. She walks behind the bus stop, and then stops. In

10863



Figure 4. Illustration of the ambiguity of ground truth object locations under full occlusions. The woman, shown in white, walks behind
the bus stop and then stops. Instead of trying to predict this random event, we propose to supervise the model with deterministic pseud-
ground-truth in such scenarios (shown in green, matches the ground truth in the first two frames).

the absence of observations it is impossible for the model
to predict this behavior. Consequently, such examples also
constitute label noise. In fact, the only deterministic as-
sumption both a person and a neural network can make
about the trajectory of an occluded object is that it will
maintain constant velocity.

Propagating the last observed object location with its
constant velocity in the camera frame is also the state of the
art approach for handling occlusions in multi-object track-
ing literature [7, 66]. It is however, not robust to changes
in camera motion. Instead, we propose to generate pseudo-
ground-truth labels for supervising our model by propagat-
ing the occluded object locations with their last observed
velocity in 3D, and projecting the resulting centers to the
camera frame, which is made possible by the availability of
the full ground truth information in our synthetic dataset.

Concretely, for an object i getting occluded at time t, we
take its ground truth centers in the previous two frames in
the world coordinate system Pt−1

i ,Pt−2
i ∈ R3, and com-

pute the object velocity Vi = Pt−1
i −Pt−2

i . We then use it
to estimate the location of the object center at time t under
the constant velocity assumption via P̃t

i = Pt−1
i +Vi. Fi-

nally, this estimated center is projected to the camera frame
via p̃t

i = K[R|t]P̃t
i, where K is the camera intrinsics, and

[R|t] is the camera extrinsic matrix, and is used to replaced
the ground-truth center pt

i in the corresponding label set
oti. The same procedure is repeated for all the frames dur-
ing which the object remains invisible. This principled ap-
proach, shown in green in Figure 4, results in a deterministic
supervision for invisible objects.

If the object does not re-appear at the expected location,
the model is supervised to keep hallucinating the box as de-
scribed above. Re-identification is then performed at the
time of dis-occlusion t by supervising the displacement vec-
tor dt to project the ground-truth, visible location to the hal-
lucinated location at t− 1.

3.4. Bridging the sim-to-real domain gap

Analyzing the approaches for supervising tracking be-
hind occlusion described above requires a large video
dataset with objects densely labeled regardless of whether
they are visible, together with precise visibility scores, 3D

coordinates and camera matrices. No real dataset with such
labels exists due to the cost and complexity of collecting
these annotations.

Instead of going the expensive route, we use synthetic
data for which it is easy to automatically generate physi-
cally accurate ground truth. However, generalization to real
videos remains a challenge. A few approaches that used
synthetic videos for training in the past addressed the do-
main discrepancy by simply finetuning the resulting model
on a small real dataset [22, 29, 55]. Recall, however, that
real datasets in our scenario do not provide consistent an-
notations for occluded objects, thus such finetuning would
result in forgetting the trajectory hallucination behaviour.

To mitigate this issue, we propose to jointly train our ap-
proach on synthetic and real data, where at each iteration a
batch is sampled from one of the datasets at random. More-
over, we cannot use real sequences of length more than 2
for the same reason mentioned above (we want the invisible
objects supervision to remain consistent). As a result, we
sample synthetic clips of length N and real ones of length 2
during training, with the final loss being:

L =
1

N

N∑
t=1

Lt
sym +

1

2

2∑
t=1

Lt
real, (2)

where Lsym and Lsym are defined in the same way as in
Equation 1. Effectively, we use synthetic videos to learn
the desired behavior, and real frame pairs to minimize the
domain discrepancy.

4. Experiments
4.1. Datasets and evaluation

We use two real datasets in the experimental analysis to
compare to prior work: KITTI [24] and MOT17 [38]. In
addition, we use a virtual dataset - ParallelDomain (PD),
to learn to track behind occlusions. Details of these datasets
are provided in the supplementary material. While our work
is focused on the 2D setting, our approach can be directly
extended to 3D tracking, as we show on the nuScenes [12]
benchmark in the supplementary.
Evaluation metrics Traditionally, multi-object tracking
datasets have been using the CLEAR MOT metrics for eval-
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uation [8], with MOTA being the main metric used to com-
pare the methods. It has recently been shown, however,
that it overemphasizes detection over association [37]. In-
stead, supplementary metrics, such as fraction of tracks that
are maintained for at least 80% of their duration (‘mostly
tracked’) have to be used in conjunction with MOTA.

The lack of a single metric that combines detection
and association accuracy has been addressed by track
intersection-over-union (IoU) based metrics [17, 49, 63],
and HOTA [37]. In our analysis we use the former due to its
larger emphasis on association accuracy. To formally define
track IoU, let G = {g1, . . . , gT } and D = {d1, . . . , dT }
be a groundtruth and a corresponding predicted track for
a video with T frames. Importantly, only one predicted
track can be assigned to each ground truth trajectory, and
all the unassigned ones are treated as false positives. Track
IoU is then defined as: IoU(D,G) =

∑T
t=1 gt∩dt∑T
t=1 gt∪dt

. Simi-
larly to standard object detection metrics, track IoU together
with track confidence can be used to compute mean average
precision (mAP) across categories using a predefined IoU
threshold. Following [17] we use a threshold of 0.5, refer-
ring to this metric as Track AP. When comparing to the state
of the art, we report the standard metrics for each dataset.

4.2. Implementation details

For the components of our model shared with Center-
Track [66] we follow their architecture and protocol ex-
actly. Here we only provide the values of the new hyper-
parameters. Additional details, such as joint training on
synthetic and real data, are reported in the supplementary.

The ConvGRU has a feature dimension of 256, and uses
7 × 7 convolutions. We train the model on synthetic se-
quences of length 17 for 21 epochs with a batch size 16
using the Adam optimizer. The choice of the clip length
is defined by GPU memory constraints. The learning rate
is set to 1.25e−4 and decreased by a factor of 10 every 7
epochs for 1 epoch. It is then increased back to the origi-
nal value. We have found such a periodic schedule to speed
up convergence. We set the visibility threshold Tvis to 0.05
and the occlusion threshold Toccl to 0.15, corresponding to
5% and 15% of the object being visible respectively. Dur-
ing evaluation, our model is applied in a fully online way,
processing all the frames from a video one by one. It runs
on a single Tesla V100 GPU at around 10FPS.

4.3. Ablation analysis

In this section, we analyze our proposed approach. All
the variants are trained using exactly the same hyper-
parameters and learning rate schedules. Invisible object an-
notations are ignored in the validation set of PD, so only
visible parts of the trajectories are used for evaluation. This
allows to fairly compare methods that do and do not have
access to invisible object labels during training.

GRU Ht−1 Input Car AP Person AP mAP
CenterTrack - X 2 fr 66.2 54.4 60.3
Ours 3× 3 X 2 fr 64.6 49.7 57.1
Ours 7× 7 X 2 fr 65.2 54.0 59.6
Ours 7× 7 7 2 fr 65.7 55.6 60.6
Ours 7× 7 7 Video 66.8 57.9 62.4

Table 1. Analysis of the architecture of our our model using Track
AP on the validation set of PD. We ablate the effect of the filter size
in ConvGRU, explicitly passing the encoding of object centers in
the previous frame Ht−1, and training on videos vs frame pairs.

Invis. sup. Post-proc. Car AP Person AP mAP
Ours All GT - 66.0 58.3 62.2
Ours Filtered GT - 71.1 60.6 65.9
Ours 2D const v - 70.7 60.8 65.7
Ours 3D const v - 71.0 63.0 67.0
CenterTrack - 2D const v 67.6 54.9 61.2
Ours 3D const v 2D const v 72.7 63.1 67.9

Table 2. Comparison of different approaches for handling full oc-
clusions using Track AP on the validation set of PD. We evaluate
several supervision strategies, and compare the best variant to the
heuristic-based constant velocity track propagation.

Model variants. We begin by studying the variants of our
video-level tracking model. To this end, we first train Cen-
terTrack on PD using the code provided by the authors and
report the results in row 1 of Table 1. The basic variant our
our model, shown in row 2, like CenterTrack, takes pairs of
frames as input together with Ht−1, the encoding of detec-
tions in the previous frame, but processes them recurrently
with a ConvGRU. It performs significantly worse than the
baseline, due to the fact that CenterTrack uses a deep net-
work with a large field-of-view to combine the two frames
and establish associations between the objects, whereas our
model relies on a few convolutional layers in the ConvGRU
with 3×3 filters. Increasing the filter size (row 3 in Table 1)
indeed results in a noticeable performance improvement.

Next, we observe that the additional Ht−1 input is re-
dundant in our case. Moreover, removing this input allows
to avoid the corresponding heat map augmentation strategy
proposed by [66]. This simplification (show in row 4 in
Table 1) further improves the performance of our model,
matching CenterTrack. Finally, training and evaluating on
longer sequences (last row in Table 1) unlocks the full po-
tential of our architecture to capture object permanence in
videos. Even when trained only on visible objects, this vari-
ant significantly outperforms the baseline due to its robust-
ness to the noise in instantaneous observations.

Tracking behind occlusions. In Table 2 we now compare
various strategies for supervising full occlusion scenarios.
Firstly, we observe that the naive approach of training the
model to detect and track all the invisible object results in a
slight decrease in performance compared to variant trained
only on visible ones (last row in Table 1). As discussed in
Section 3.3, such supervision is highly ambiguous, as the
model cannot localize the fully occluded objects it has not
seen before. Accounting for this fact with our proposed an-
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Figure 5. Evaluation of the effect of the number of training videos
using Track mAP on the validation set of PD. The gap between
our full approach (shown in green), and the variant trained without
invisible object labels (shown in blue), increases consistently with
the dataset size. This demonstrates that a large dataset is required
to learn to hallucinate trajectories of fully occluded objects, and
KITTI (shown in yellow) would not be sufficient.

notation filtering strategy (second row in Table 2) results in
a 3.5 mAP improvement, validating its importance.

Next, we compare using ground truth location of invisi-
ble object to pseudo-ground-truth obtained via propagating
the occluded object with its constant velocity in 2D, or in
3D (see Section 3.3 for details). Constant velocity in 2D
(row 3 in Table 2) is not robust to camera changes and re-
sults in a lower performance than the ground truth locations.
In contrast, propagating the target with its last observed ve-
locity in 3D world coordinates (row 4 in the table), results in
labels which are both consistent with the observations and
fully deterministic, further improving the performance.

Finally, we compare our learning-based approach to the
constant velocity post-processing, which is a common way
of handling occlusions in the tracking literature [7, 66], in
the last two rows in Table 2. Firstly, this heuristic-based step
does indeed improve the performance of [66], but it remains
5.8 mAP points below our principled method. Secondly,
applying this post-processing to the outputs of our method
also improves its performance. We do not use any post-
processing in the remainder of the experiments.

Effect of the dataset size. In Figure 5 we plot the valida-
tion performance of two variants of our model: the full one,
and the one trained on visible objects only, while increas-
ing the number of videos in the training set of PD. One can
easily see that the gap between the two variants consistently
increases. In fact, below 75 videos it is close to 0. This
demonstrates that a large number of examples is required to
learn the tracking behind occlusions behaviour.

Yellow dashed line corresponds to the number of videos
in the training set of KITTI, and illustrates that even if this
dataset provided all required annotations, it would not be
sufficient to train our model. MOT17 contains only 7 train-

KITTI PD Car AP Person AP mAP
CenterTrack [66] X 7 73.8 39.4 56.6
Ours 7 X 83.3 38.2 60.8
Ours (tune) X X 75.7 44.6 60.2
Ours (joint) X X 84.7 56.3 70.5
CenterTrack (joint) X X 77.2 51.6 64.4

Table 3. Domain adaptation analysis using Track AP on the valida-
tion set of KITTI. We demonstrate the effectiveness of our simple
strategy, and confirm that the improvements mainly come from
better occlusion handling.

ing videos, making it even less practical for our purposes.
Domain adaptation. We now demonstrate how the model
learned on the large-scale, synthetic PD dataset can be
transferred to a real-world benchmark such as KITTI in Ta-
ble 3, and compare to the CenterTrack model released by
the authors. Firstly, we directly evaluate our model trained
on PD (fourth row in Tabel 2) and report the results in the
second row of Table 3. Despite the significant domain gap
between the synthetic and real videos, this variant manages
to outperform CenterTrack without seeing a single frame
from KITTI. The gap in performance on the Person cate-
gory remains large, due to its higher visual variability.

Directly fine-tuning our model on KITTI (shown in the
third row in the table), helps to reduce the domain discrep-
ancy, improving the Person performance, but also results in
un-learning the tracking behind occlusions behaviour, as re-
flected in the drop in Car AP. In contrast, jointly training on
the two datasets achieves the best results overall, validating
the effectiveness of the proposed approach.

Finally, we apply our domain adaptation approach to the
CenterTrack model trained on PD (first row in Table 1), and
report the results in the last row of Table 3. One can see that
synthetic data also improves CenterTrack results, but they
remain 6.1 mAP point below those of our approach. This
demonstrates that the improvements mainly come from our
model’s ability to better handle occlusions.

4.4. Comparison to the state of the art

In this section, we compare our full method, which
we refer to as PermaTrack, to the state of the art on the
KITTI [24], and MOT17 [38] benchmarks. All our models
are pre-trained on PD and adapted to the real domain using
the training set of the corresponding dataset.
KITTI. Table 4 lists the results on the KITTI test set, com-
paring to vision-based, online methods. Our method out-
performs the state of the art on all metrics on both cate-
gories, except for ML (Mostly Lost) on Car, where we are
0.4 points below [43]. Notice that we are 5.7 point above
this method on the main HOTA metric, and are outperform-
ing it by a large margin on all metrics on Person. Our
improvements over the state-of-the-art CenterTrack are 5
HOTA points on Car and 8.4 on Person, which is notable,
given that typical differences between the methods on the

10866



Figure 6. Qualitative results on a test sequence from the KITTI benchmark. Our approach is able to successfully track a fully occluded car
on the left (id 6, highlighted in white). Please see supplementary video for a more comprehensive analysis on both datasets.

Car Person
HOTA ↑ MOTA ↑ MT ↑ PT ↓ ML↓ HOTA ↑ MOTA ↑ MT ↑ PT ↓ ML ↓

MASS [32] 68.3 84.6 74.0 23.1 2.9 - - - - -
IMMDP [60] 68.7 82.8 60.3 27.5 12.2 - - - - -
AB3D [57] 69.8 83.5 67.1 21.5 11.4 35.6 38.9 17.2 41.6 41.2
TuSimple [15] 71.6 86.3 71.1 22.0 6.9 45.9 57.6 30.6 44.3 25.1
SMAT [25] 71.9 83.6 62.8 31.2 6.0 - - - - -
TrackMPNN [43] 72.3 87.3 84.5 13.4 2.2 39.4 52.1 35.1 46.1 18.9
CenterTrack [66] 73.0 88.8 82.2 15.4 2.5 40.4 53.8 35.4 43.3 21.3
PermaTrack (Ours) 78.0 91.3 85.7 11.7 2.6 48.6 66.0 48.8 35.4 15.8

Table 4. Comparison to the state of the art on the test set of the KITTI benchmark using aggregate metrics. Some methods only report
results on Car. Our approach outperforms all the other methods by a significant margin on all the metrics except for ML on Car.

T.R. IDF1 ↑ MOTA ↑ MT ↑ PT ↓ ML ↓

Pu
bl

ic

CenterTrack [66] 7 63.2 63.1 37.5 38.1 24.5
PermaTrack (Ours) 7 67.0 67.8 43.7 36.3 20.1
CenterTrack [66] X 66.4 63.8 37.2 38.1 24.8
PermaTrack (Ours) X 71.1 68.2 41.0 39.5 19.5

Pr
iv

at
e

CenterTrack [66] 7 64.2 66.1 41.3 37.5 21.2
PermaTrack (Ours) 7 68.2 69.4 46.3 36.0 17.7
CenterTrack [66] X 69.4 66.2 39.5 38.3 22.1
PermaTrack (Ours) X 71.9 69.5 42.5 39.8 17.7

Table 5. Comparison to the state of the art on the validation set of
the MOT17 using private and public detections. Our method out-
performs the state-of-the-art CenterTrack approach on all metrics
both with and without the Track Rebirth (T.R.) post-processing.

leader-board are within 1 point, and that CenterTrack is pre-
trained on a large-scale, real-world nuScenes dataset [12].
MOT17. The policy on this dataset is that only methods
that don’t use external data for training can be evaluated on
the test server with public detections. With just 7 videos in
the training set, MOT17 is not sufficient to learn the com-
plex tracking behind occlusions behaviour. For fairness, we
compare our method to the variant of the state-of-the-art
CenterTrack which is pre-trained on the real-world Crowd-
Human dataset [52] using the validation set of MOT17 in
Table 5. The results on the test set using private detections
are reported in the supplementary material.

Without post-processing, our approach outperforms [66]
using both public and private detections. The improvements
are especially significant in the public evaluation (the same
bounding boxes used by both methods), emphasizing our
method’s better tracking abilities. Finally, adding Track Re-
birth post-processing from [66] (T.R. in the table, a variant

of constant velocity) improves the performance of both ap-
proaches and does not change the conclusions.

Qualitative results. We provide an example of the output
of our method on a sequence from the test set of KITTI in
Figure 6. In this challenging scenario, as the ego-vehicle
drives forward, the car on the left (id 6, highlighted in
white) is fully occluded by another moving vehicle (id 2),
but our method manages to correctly localize it and main-
tain the trajectory. A more comprehensive analysis of our
approach is presented in the supplementary video1.

5. Conclusion

In this work, we propose PermaTrack, an end-to-end-
trainable approach for joint object detection and tracking.
Thanks to its recurrent memory module, it is capable of rea-
soning about the location of objects using the entire previ-
ous history, and not just the current observation. Combined
with supervision from synthetic data, this allows to train the
model to track objects when they are fully occluded - a key
concept in cognitive science known as object permanence.

Our method obtains state-of-the-art results on the KITTI
and MOT17 multi-object tracking benchmarks. While the
ablation analysis demonstrates that hallucinating trajecto-
ries of invisible objects is a crucial factor in the final per-
formance, knowledge about the full history also increases
robustness to partial occlusions, and other low visibility sce-
narios, such as motion blur.

1https://www.youtube.com/watch?v=Dj2gSJ_xILY
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Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. In
EMNLP, 2014. 3

[15] Wongun Choi. Near-online multi-target tracking with aggre-
gated local flow descriptor. In ICCV, 2015. 8

[16] Wongun Choi and Silvio Savarese. Multiple target tracking
in world coordinate with single, minimally calibrated cam-
era. In ECCV, 2010. 2

[17] Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia
Schmid, and Deva Ramanan. TAO: A large-scale benchmark
for tracking any object. In ECCV, 2020. 6

[18] César Roberto de Souza, Adrien Gaidon, Yohann Cabon,
Naila Murray, and Antonio Manuel López. Generating hu-
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 3

[68] Yang Zou, Zhiding Yu, Xiaofeng Liu, B.V.K. Vijaya Kumar,
and Jinsong Wang. Confidence regularized self-training. In
ICCV, 2019. 3

[69] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong
Wang. Unsupervised domain adaptation for semantic seg-
mentation via class-balanced self-training. In ECCV, 2018.
3

10869


