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Figure 1. Given a monocular image sequence, NR-NeRF reconstructs a single canonical neural radiance field to represent geometry and
appearance, and a per-time-step deformation field. We can render the scene into a novel spatio-temporal camera trajectory that significantly
differs from the input trajectory. NR-NeRF also learns rigidity scores and correspondences without direct supervision on either. We can
use the rigidity scores to remove the foreground, we can supersample along the time dimension, and we can exaggerate or dampen motion.

Abstract

We present Non-Rigid Neural Radiance Fields (NR-
NeRF), a reconstruction and novel view synthesis approach
for general non-rigid dynamic scenes. Our approach takes
RGB images of a dynamic scene as input (e.g., from a
monocular video recording), and creates a high-quality
space-time geometry and appearance representation. We
show that a single handheld consumer-grade camera is suf-
ficient to synthesize sophisticated renderings of a dynamic
scene from novel virtual camera views, e.g. a ‘bullet-time’
video effect. NR-NeRF disentangles the dynamic scene into
a canonical volume and its deformation. Scene deforma-
tion is implemented as ray bending, where straight rays are
deformed non-rigidly. We also propose a novel rigidity net-
work to better constrain rigid regions of the scene, leading
to more stable results. The ray bending and rigidity net-
work are trained without explicit supervision. Our formula-
tion enables dense correspondence estimation across views
and time, and compelling video editing applications such as
motion exaggeration. Our code will be open sourced.

1. Introduction

Free viewpoint rendering is a well-studied problem
due to its wide range of applications in movies and vir-
tual/augmented reality [72, 9, 47]. In this work, we are in-
terested in dynamic scenes, which change over time, from
novel user-controlled viewpoints. Traditionally, multi-view
recordings are required for free viewpoint rendering of dy-
namic scenes [94, 82, 55]. However, such multi-view cap-
tures are expensive and cumbersome. We would like to en-
able the setting in which a casual user records a dynamic
scene with a single, moving consumer-grade camera. Ac-
cess to only a monocular video of the deforming scene leads
to a severely under-constrained problem. Most existing ap-
proaches thus limit themselves to a single object category,
such as the human body [23, 87, 31] or face [12]. Some ap-
proaches allow for the reconstruction of general non-rigid
objects [99, 17, 32, 68], but most methods only reconstruct
the geometry without the appearance of the objects in the
scene. In contrast, our objective is to reconstruct a general
dynamic scene, including its appearance, such that it can be
rendered from novel spatio-temporal viewpoints.
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Recent neural rendering approaches have shown impres-
sive novel-view synthesis of general static scenes from
multi-view input [78]. These approaches represent scenes
using trained neural networks and rely on less constraints
about the type of scene, compared to traditional approaches.
The closest prior work to our method is NeRF [45], which
learns a continuous volume of the scene encoded in a neu-
ral network using multiple camera views. However, NeRF
assumes the scene to be static. Neural Volumes [40] is an-
other closely related approach that uses multiple views of a
deforming scene to enable free viewpoint rendering. How-
ever, it uses a fixed-size voxel grid to represent the recon-
struction of the scene, restricting the resolution. In addi-
tion, it requires multi-view input for training, which limits
the applicability to in-the-wild outdoor settings or existing
monocular footage. Our new neural rendering approach in-
stead targets the more challenging setting of using just a
monocular video of a general dynamic scene. Due to the
non-rigidity, each image of the video records a different, de-
formed state of the scene, violating the constraints of stan-
dard neural rendering approaches. Our approach disentan-
gles the observations in any image into a canonical scene
and its deformations, without direct supervision on either.

We tackle this problem using several innovations. We
represent the non-rigid scene by two components: (1) a
canonical neural radiance field for capturing geometry and
appearance and (2) the scene deformation field. The canon-
ical volume is a static representation of the scene encoded
as a Multi-Layered Perceptron (MLP), which is not directly
supervised. This volume is deformed into each individ-
ual image using the estimated scene deformation. Specifi-
cally, the scene deformation is implemented as ray bending,
where straight camera rays can deform non-rigidly. The ray
bending is modeled using an MLP that takes point samples
on the ray as well as a latent code for each image as in-
put. Both the ray bending and the canonical scene MLPs
are jointly trained using the monocular observations. Since
the ray bending MLP deforms the entire space independent
of camera parameters, we can render the deforming volume
from static or time-varying novel viewpoints after training.

The ray bending MLP disentangles the geometry of the
scene from the scene deformations. The disentanglement
is an underconstrained problem, which we tackle with fur-
ther innovations. Our method assigns a rigidity score to
every point in the canonical volume, which allows for the
deformations to not affect the static regions in the scene.
This rigidity component is jointly learned without any di-
rect supervision. We also introduce multiple regularizers as
additional soft-constraints: A regularizer on the deforma-
tion magnitude of the visible deformations encourages only
sparse deformations of the volume, and thus helps to con-
strain the canonical volume. An additional divergence reg-
ularizer preserves the local shape, thereby constraining the
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Figure 2. We bend straight rays r from the deformed volume
using a deformation-dependent ray-bending network b’ and a
deformation-independent rigidity network w into a single static
canonical neural radiance field volume v.

representation of hidden (partially occluded) regions that
are not visible throughout the full video.

Our results show high-fidelity reconstruction and novel
view synthesis for a wide range of non-rigid scenes. Fig. 2
contains an overview of our method. To summarize, our
main technical contributions are as follows:

* A free viewpoint rendering method, NR-NeRF, that only
requires a monocular video of the dynamic scene (Sec. 3).
The spatio-temporal camera trajectory for test-time novel
view synthesis can differ significantly from the trajectory
of the input video. Moreover, we can extract dense corre-
spondences relating arbitrary (input or novel) frames.

* A rigidity network which can segment the scene into non-
rigid foreground and rigid background without being di-
rectly supervised (Sec. 3.2).

* Regularizers on the estimated deformations which con-
strain the problem by encouraging small volume preserv-
ing deformations (Sec. 3.3).

* Several extensions for handling of view dependence and
multi-view data, and applications of our technique for
simple scene editing (Secs. 3).

We compare NR-NeRF to several methods for neural novel
view rendering (Sec. 4). See our supplementary video for
visualizations and Sec. 5 for a discussion.

2. Related Work

4D Reconstruction and Novel Viewpoint Rendering.
Early methods for image-based novel and free-viewpoint
rendering combined traditional concepts of multi-view
camera geometry, explicit vision-based 3D shape and ap-
pearance reconstruction, and classical computer graphics or
image-based rendering. These methods are based on light
fields [34, 19, 4], multi-view stereo to capture dense depth
maps [94], layered depth images [60], or representations us-
ing 3D point clouds [1, 39, 65], meshes [43, 82] or surfels
[60, 7, 84] for dynamic scenes. Passive geometry capture
often leads to artifacts in scenes with severe occlusions and
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view-dependent appearance. Also, capturing temporally co-
herent representations in this way is challenging.

More recently, the combination of multi-view stereo with
fusion algorithms integrating implicit geometry over short
time windows lead to improved results and short-term tem-
poral coherence [10, 54, 22]. By using active depth cameras
and such fusion-type reconstruction, dynamic scene cap-
ture and novel viewpoint rendering from a low number of
cameras or a single camera were shown [91, 77, 25, 92].
Several algorithms use variants of shape-from-silhouette to
approximate real scene geometry, such as visual hull re-
construction or visual hulls improved via multi-view photo-
consistency in [33, 74]. While reconstruction is fast and
feasible with fewer cameras, the coarse approximate ge-
ometry introduces rendering artifacts, and the reconstruc-
tion is usually limited to the separable foreground. Accu-
rate and temporally coherent geometry is hard to capture
in this way [5, 6]. Some approaches use 3D templates and
combine vision-based reconstruction with appearance mod-
elling to enable free-viewpoint video relighting, e.g., by es-
timating reflectance models under general lighting or under
controlled light stage illumination [79, 35, 48, 21].

The progress in RGB-D sensors has enabled depth map
capture from a single camera. Such sensors can been used
for 3D reconstruction and completion of rigid environments
[51] and non-rigid objects [98, 50, 28, 71]. Other method
classes allow capturing deformable geometry from sets of
monocular views. Dense non-rigid structure from motion
requires dense point tracks over input images, which are
then factorized into camera poses and non-rigid 3D states
per view [17, 32, 68]. The correspondences are usually
obtained with dense optical flow methods, which makes
them prone to occlusions and inaccuracies, and which can
have a detrimental effect on the reconstructions. Monocular
template-based methods do not assume dense matches and
rely on a known 3D state of a deformable object (a 3D tem-
plate), which is then tracked across time [59, 52, 90, 88], or
a training dataset with multiple object states [18, 81]. Ob-
taining templates for complex objects and scenes is often
non-trivial and requires specialized setups.

In contrast, our approach avoids explicit image-based
3D reconstruction. Moreover, we support arbitrary back-
grounds whereas the discussed methods for monocular 3D
reconstruction of deformable objects ignore it. Our ap-
proach enables free-viewpoint rendering of general de-
formable scenes with multiple objects and complex defor-
mations with high visual fidelity, and yet does not rely on
templates, 2D correspondences and multi-view setups.
Neural Scene Representations and Neural Rendering.
An emerging algorithm class uses neural networks to aug-
ment or replace established graphics and vision concepts for
reconstruction and novel-view rendering. Most recent work
is designed for static scenes [24, 13, 53, 44, 14, 69, 70, 46,

]; methods for dynamic scenes are in their infancy.

Several approaches address related problems to ours,
such as generating images of humans in new poses [2,

, 49, 64] or body reenactment from monocular videos
[8]. Other methods combine explicit dynamic scene recon-
struction and traditional graphics rendering with neural re-
rendering [42, 30, 29, 89]. Shysheya et al. [67] proposed
a neural rendering approach for human avatars with tex-
ture warping. Zhu et al. [97] leverage geometric constraints
and optical flow for synthesizing novel views of humans
from a single image. Thies ef al. [80] combine neural tex-
tures with the classical graphics pipeline for novel view syn-
thesis of static objects and monocular video re-rendering.
Neural Volumes [40] learn object models which can be an-
imated and rendered from novel views, given multi-view
video data. In contrast to all these methods, we require only
a set of monocular views of a non-rigid scene as input and
are able to render the scene from novel views.
Non-Peer-Reviewed Reports. Since the intersection of
neural scene representations and volumetric rendering has
recently become a very active area of research with quickly
evolving progress, several methods for dynamic settings
have been proposed concurrently to ours. We mention them
only for completeness since they are not peer-reviewed and
thus do not constitute prior work. Some methods extend
neural radiance fields to deforming faces [83, 16, 15, 62].
Others focus on moving human bodies [85, 58, 75] or more
general objects [61, 37, 86, 57, 11, 36]. Our method differs
from these by tackling general, real-world dynamic scenes
from monocular RGB observations and camera parameters
only, without using any other auxiliary method to estimate,
for example, optical flow or depth.

3. Method

Our Non-Rigid Neural Radiance Field (NR-NeRF) ap-
proach takes as input a set of N RGB images {¢;} ' of a
non-rigid scene and their extrinsics {R;, t; }; ;" and intrin-
sics {K; }1* ;. NF-NeRF then finds a single canonical neu-
ral radiance volume that can be deformed via ray bending
to correctly render each ¢;. Specifically, we collect appear-
ance and geometry information in the static canonical vol-
ume v parametrized by weights 8. We model deformations
by bending the straight rays sent out by a camera to obtain a
deformed rendering of v. This ray bending is implemented
as a ray bending MLP b with weights . It maps, condi-
tioned on the current deformation, 3D points (e.g., sampled
from the straight rays) to 3D positions in v. The defor-
mation conditioning takes the form of auto-decoded latent
codes {1,})¥,! for each image i.

3.1. Background: Neural Radiance Fields

We first recap NeRF [45] for rigid scenes. NeRF renders
a 3D volume into an image by accumulating color, weighted
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by accumulated transmittance and density, along camera
rays. The 3D volume is parametrized by an MLP v(x,d) =
(c,0) thatregresses an RGB color ¢ = ¢(x,d) € [0, 1]® and
an opacity o = o(x) € [0, 1] for a point x € R3 on a ray
with direction d € R3.

Consider a pixel (u,v) of an image ¢;. For a pinhole
camera, the associated ray r, ,(j) = o + jd(u,v) can be
calculated using R, t;, and K;, which yield the ray origin
o € R3 and ray direction d(u,v) € R3. We can then inte-
grate along the ray from the near plane j,, to the far plane j;
of the camera frustum to obtain the final color ¢ at (u, v):

c(ruw) /ﬂ V(j

In

o(ru,w(5)) - €(ruw(i), d(w,0)) dj -, (1)

with V(j) = exp(— f J o(ry,»(s)) ds) being the accumu-
lated transmittance along the ray from Jn up to . In prac-
tice, the integrals are approximated by discrete samples x
along the ray. NeRF employs a coarse volume v, with net-
work weights 0. and a fine volume v ; with network weights
6¢. Both volumes have the same architecture, but do not
share weights: § = 6. U 6;. When rendering a ray, v, is
accessed first at uniformly distributed samples along the ray.
These coarse samples are used to estimate the transmittance
distribution, from which fine samples are sampled. v is
then evaluated at the combined set of coarse and fine sam-
ple points. We refer to the original paper for more details.
Adaptations for NR-NeRF. We assume Lambertian ma-
terials and thus remove the view-dependent layers of rigid
NeREF, i.e., we set ¢ = c(x). Since each image corresponds
to a different deformation of the volume in our non-rigid
setting, we also learn a latent code for each time step, which
is then used as input for the ray bending network which pa-
rameterizes scene deformations. The weights of this net-
work and the latent codes are shared between v, and v.

3.2. Deformation Model

The original NeRF method [45] assumes rigidity and
cannot handle non-rigid scenes. A naive approach to model-
ing deformations in the NeRF framework would be to con-
dition the volume on the deformation (e.g., by conditioning
it on time or a deformation latent code). We explore the lat-
ter option in the experiments in Sec. 4.3. As we will show,
apart from not providing hard correspondences, this naive
approach only leads to satisfying results when reconstruct-
ing the input camera path, but gives implausible results for
novel view synthesis. Instead, we explicitly model the con-
sistency of geometry and appearance across time by disen-
tangling them from the deformation.

We accumulate geometry and appearance from all
frames into a single, non-deforming canonical volume. We
employ general space warping (or ray bending) on top of the
static canonical volume to model non-rigid deformations.

For an input image ¢; at training time, we want to render
the canonical volume such that the image is reproduced. To
that end, we need to un-do the deformation of the specific
time step ¢ by mapping the camera rays to the deformation-
independent canonical volume. We first send out straight
rays from the input camera. To account for the deforma-
tion, we then bend the straight rays such that sampling and
subsequently rendering the canonical volume along the bent
rays yields ¢;. We choose a very unrestricted parametriza-
tion of the ray bending, namely an MLP.

Specifically, we implement ray bending as a ray bending
network b(x,1;) € R3. For a point x, for example lying on
a straight ray, the network regresses an offset under a defor-
mation represented by 1;. The offset is then added to x, thus
bending the ray. Finally, we pass the new, bent ray point
to the canonical volume, that is: (c,0) = v(x + b(x,1;)).
Note that v is not conditioned on 1;, which leads to the dis-
entanglement of deformation (b and 1;) from geometry and
appearance (v). We denote the bent version of the straight
ray T as 1, (j) = £(j) + b(E(j). L,).

Rigidity Network. However, we find that rigid parts of
the scene are insufficiently constrained by this formula-
tion. We reformulate b(x,1;) € R? as the product of a
raw offset b’(x,1;) and a rigidity mask w(x) € [0, 1], i.e
b(x,1;) = w(x)b’(x,1;). Forrigid objects, we want to pre-
vent deformations and hence desire w(x) = 0, while for
non-rigid objects, we want w(x) > 0. This makes it easier
for b’ to focus on the non-rigid parts of the scene, which
change over time, since rigid parts can get masked out by
the rigidity network w, which is jointly trained. Because
the rigidity network is not conditioned on the latent code
1;, it is forced to share knowledge about the rigidity of re-
gions in the scene across time steps, which also ensures that
parts of the rigid background that can be unregularized at
certain time steps are nonetheless reconstructed at all time
steps without any deformation.

3.3. Losses

With the architecture specified, we next optimize all pa-
rameters (6, 1, {1;};) jointly. We optimize the network
weights as usual but auto-decode the latent codes 1; [76, 56].
Notation. For ease of presentation, we consider a sin-
gle time step ¢ and a single straight ray r with coarse ray
points C' = {¥(j)}jec for a set C of uniformly sampled
J € [jn,Js] and fine ray points F' = {F¥(j)};cr for a set
F of importance-sampled j. For a latent code 1, the bent
ray 11 gives C = {11(j)};ec and F' = {T1(j)}jer. The
actual training uses a batch of randomly chosen rays from
the training images.

Reconstruction Loss. We adapt the data term from NeRF
to our non-rigid setting as follows:

Liua = [lec(C) = e@)|3 + ey (C U F) — &)} , @)
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where ¢(r) is the ground-truth color of the pixel and c¢(.5)
is the estimated ray color on the set S of discrete ray points.
While this reconstruction loss yields satisfactory results
along the space-time camera trajectory of the input record-
ing, we show later in Sec. 4.2 that it leads to undesirable
renderings for novel views. We thus find it necessary to
regularize the bending of rays with further priors.
Offsets Loss. We regularize the offsets with a loss on their
magnitude. Since we want visually unoccupied space (i.e.,
air) to be compressible and not hinder the optimization,
we weigh the loss at each point by its opacity. However,
this would still apply a high weight to completely occluded
points along the ray, which leads to artifacts when rendering
novel views. We thus additionally weigh by transmittance:

1 _. 2—w(E(j
L oses = 157 2 s * [DEG). DIl D 3)
jecC

where we weigh each point by transmittance and occupancy
a; =V (j) - o(tf(j)). We do not back-propagate into «;.
However, as we show in Sec. 4, we find that applying the
offsets loss to the masked offsets leads to an unstable back-
ground in novel views. We hypothesize that this is due to
the multiplicative ambiguity between unmasked offsets and
rigidity mask. We find that applying the loss to the regressed
rigidity mask and raw offsets separately works better:

1 . —w(F( .
Loges = 1] > as (I @) DI +wiigiai w(E(5))).

jec
(C))
where we penalize b’ instead of b. The exponent of the
first term is a tweak to get two desirable properties that nei-
ther an ¢; nor an /5 loss fulfills: For non-rigid objects (w
closer to 1), it becomes an /1 loss, which has two advan-
tages: (1) the gradient is independent of the magnitude of
the offset, so unlike with an ¢5 loss, small and large off-
sets/motions are treated equally, and (2) relative to an /o
loss, it encourages sparsity in the offsets field, which fits
our scenes. For rigid objects (w closer to 0), it becomes an
{5 loss, which tampers off in its gradient magnitude as the
offset magnitude approaches 0, preventing noisy gradients
that an ¢; loss has for the tiny offsets of rigid objects.
Divergence Loss. Since the offsets loss only constrains vis-
ible areas, we introduce additional regularization of hidden
areas. Inspired by local, isometric shape preservation from
computer graphics, like as-rigid-as-possible regularization
for surfaces [73, 27] or volume preservation for volumes
[71], we seek to preserve the local shape after deformation.
To that end, we propose to regularize the absolute value of
the divergence of the offsets field. The Helmholtz decom-
position [3] allows to split any twice-differentiable 3D vec-
tor field on a bounded domain into a sum of a rotation-free
and a divergence-free vector fields. Thus, by penalizing the
divergence, we encourage the vector field to be composed

primarily of translations and rotations, effectively preserv-
ing volume. The divergence loss is:

1 . .
Ldivergence = @ Z 'U}; : |le(b(I‘(‘])7 1))|2 ) (5)
jeC

where we do not back-propagate into w’; = o((j)), and we
take the divergence div of b w.r.t. the position r(j).

We employ FFJORD’s [20] fast, unbiased divergence es-
timation, which is three times less computationally expen-
sive than an exact computation. The divergence is defined
as:

div(b(x)) = Tr (

db(x)\ _09b(x),  0Ib(x), JIb(x).
dx)_ or oy o2
(6)
where b(x); € R is the k-th component of b(x), Tr(-)
is the trace operator, and % is the 3 x 3 Jacobian ma-
trix. Naively computing the divergence with PyTorch’s
automatic differentiation requires three backward passes,
one for each term of the sum. Instead, the authors of
FFJORD [20] use Hutchinson’s trace estimator [26]:

Tr(A) = Eg[eT Ae] . (7

Here, e is Gaussian-distributed. The single-sample Monte-
Carlo estimator implied by this expectation can be com-
puted with a single backward pass.

Full Loss. We combine all losses to obtain the full loss:

L= Ldata + woffsetsLoffsets + wdivergenceLdivergence ) (8)

where the weights wrigidity, Wotfsetss and Woftsers are scene-
specific since we consider a variety of non-rigid scene types.
Our implementation uses the structure-from-motion method
COLMAP [65] to estimate the camera parameters. For fur-
ther training and implementation details, we refer to the
supplemental material. We will release our source code.

4. Results

We present qualitative results of our method, including
rigidity scores and correspondences, by rendering into in-
put and novel spatio-temporal views in Sec. 4.1.Turning to
the inner workings, Sec. 4.2 investigates the crucial design
choices we made to improve novel view quality. We con-
clude the evaluation of our approach in Sec. 4.3 by compar-
ing to prior work and a baseline approach. Finally, we show
simple scene-editing results in Sec. 4.4. In the supplemental
material, we provide information on data capture and show
extensions to multi-view data and view-dependent effects.

4.1. Qualitative Results

We present qualitative results of NR-NeRF by rendering
the scene from input and novel spatio-temporal views. We
also visualize the additional outputs of our method.
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Figure 3. The input (left) is reconstructed by NR-NeRF (middle)
and rendered into a novel view (right).

2
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Figure 4. NR-NeRF can render a deformed state captured at a
certain time into a novel view. We visualize here this novel-view
rendering and additional modalities as seen from the novel view,
namely rigidity scores and correspondences.

Input Reconstruction and Novel View Synthesis. Fig. 3
shows examples of input reconstruction and novel view syn-
thesis with NR-NeRF. As the center column shows, the in-
put is reconstructed faithfully. This enables high-quality
novel view synthesis, example results can be found in the
third column. We can freely move the camera in areas
around the original camera paths and specify the time step.
Rigidity. NR-NeRF estimates rigidity scores without super-
vision to improve background stability in novel-view ren-
derings. We show examples in Fig. 4 and find that the back-
ground is consistently scored as highly rigid while fore-
ground is correctly estimated to be rather non-rigid.
Correspondences. Another side effect of our proposed ap-
proach is the ability to estimate consistent dense 3D corre-
spondences into the canonical model across different cam-
era views and time steps. Fig. 4 shows examples.

4.2. Ablation Study

After this look at the outputs of NR-NeRF, we now turn
to its internal workings. Specifically, since we aim for con-
vincing novel-view renderings, we take a closer look at the
impact of some of our design choices on the foreground and
background stability of our novel-view results.

Setup. We investigate the necessity of all regularization
losses by removing each loss individually and all of them at
once. Next, we remove the rigidity network to see the im-
pact on background stability. Finally, we determine whether

Ours

No regularization

Without L divergenc

Figure 5. Ablation Study. We render the scene into novel views
to determine the stability of the non-rigid part after removing the
divergence loss, all regularization losses, and none of the losses.

applying the offsets loss separately on both the regressed
rigidity and the unmasked offsets, i.e., Logers in our method,
or directly on the masked offsets, Lyaive offsers> WOrks better.

Results. We find that Lgivergence 1s crucial for stable de-
formations of the non-rigid objects in the foreground, see
Fig. 5. On the other side, the interplay of all of the remain-
ing design choices is necessary to stabilize the rigid back-
ground as Fig. 6 shows. The supplemental video contains
video examples that highlight the instability in these cases.

4.3. Comparisons

Having only considered our method in isolation so far,
we next compare NR-NeRF to prior work and a baseline. In
this section, we split the images into training and test sets
by partitioning the temporally-ordered images into consec-
utive blocks of length 16 each, with the first twelve for the
training set and the remaining four for the test set.

Prior Work and Baseline. We start with the trivial baseline
of rigid NeRF [45], which cannot handle dynamic scenes.
We consider two variants: view-dependent rigid NeRF, as
in the original method [45], and view-independent rigid
NeRF, where we remove the view-direction conditioning.
We next introduce naive NR-NeRF, which adds naive sup-
port for dynamic scenes to rigid NeRF: We condition the
neural radiance fields volume on the latent code 1;, i.e.,
(c,0) = v(x,1;). For test images i, we backpropagate gra-
dients into the corresponding latent code 1;. We do the same
for NR-NeRF in order to optimize for the test latent codes.
Note that test images solely influence test latent codes, as is
typical for auto-decoding [56]. Finally, we compare to Neu-
ral Volumes [40], for which we use the official code release.
We consider two variants: (1) as in [40], the geometry and
appearance template is conditioned on the latent code (NV),
and (2) the geometry and appearance template are indepen-
dent of the latent code (modified NV).

Input Reconstruction. We first consider input reconstruc-
tion quality on the training set to verify the plausibility of
the learned representations. See Fig. 7. We find that naive
NR-NeRF and both variants of Neural Volumes perform
very well on this task, similar to our method. However,
rigid NeRF’s not accounting for deformations leads to blur.
Novel View Synthesis. We next evaluate novel-view per-
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Figure 6. Ablation Study. We quantify the impact of our main
design choices on background stability. To that end, we render the
entire input sequence into a fixed novel view for all time steps and
compute the standard deviation of each pixel’s color across time
to measure color changes and hence background stability. a) We
show cumulative plots across all pixels, where our full method
(left-most curve) has the most stable background. b) We then show
how those instabilities are distributed in the scene. The results of
NR-NeRF show the least instability in the background.

formance qualitatively and quantitatively on the test sets.
Fig. 7 contains novel-view results of all methods. Both ver-
sions of Neural Volumes give implausible results that are in
some cases only barely recognizable. The two rigid NeRF
variants show blurry, static results similar to the training re-
construction results earlier. While the still images in Fig. 7
show some undesirable artifacts like blurrier or less stable
results compared to ours, we refer to the supplemental video
to see naive NeRF’s temporal inconsistencies , especially on
spatio-temporal trajectories different from the input.

After the qualitative overview, we now evaluate the
novel-view results of the methods considered quantitatively.
We use the same three metrics as NeRF [45]. We use PSNR
and SSIM [96] as conventional metrics for image similar-
ity, where higher is better. In addition, we use a learned
perceptual metric, LPIPS [95], where lower is better. Tab. 1
contains the quantitative results. Our method obtains the
best SSIM and LPIPS scores, and the second-best PSNR af-

Ours | Naive | Rigid Rigid NV NV

(cond.) | (nocond.) (mod.)
PSNR 1| 24.70 | 25.83 | 22.24 21.88 14.13 | 14.10
SSIM 1] 0.758 | 0.738 | 0.662 0.659 0.259 | 0.263
LPIPS | | 0.197 | 0.226 | 0.309 0.313 0.580 | 0.583

Table 1. Quantitative Results Averaged Across Scenes. We eval-
uate our method, naive NR-NeRF, rigid NeRF [45] (1) with view
conditioning and (2) without view conditioning, and Neural Vol-
umes [40] (1) without and (2) with modifications. For PSNR and
SSIM [96], higher is better. For LPIPS [95], lower is better.

ter naive NR-NeRF. As we saw in the input reconstruction
results, naive NR-NeRF is competitive for settings that are
close to the input spatio-temporal trajectory, as is the case
for our test sets. We, therefore, next evaluate more challeng-
ing novel view scenarios with a spatio-temporal trajectory
significantly different from the input. Since we do not have
access to ground-truth novel view data, we focus on back-
ground stability for a spatially fixed camera.

Background Stability. While a moving camera during ren-
dering can obfuscate background instability, we found that
stabilizing the background for fixed novel-view renderings
matters for perceptual fidelity but is difficult to achieve. We
thus quantitatively evaluate on this challenging task here. In
Fig. 8, we compare the background stability of our method,
naive NR-NeRF, and the Neural Volumes variants. We ex-
clude rigid NeRF since it is static by design. We find that
our method leads to significantly more stable background
synthesis than the other methods, and we refer to the sup-
plemental material for further results.

4.4. Simple Scene Editing

We can manipulate the learned model in several simple
ways: foreground removal, temporal super-sampling, de-
formation exaggeration and dampening, and forced back-
ground stabilization. We discuss foreground removal here
and the other editing tasks in the supplemental material due
to space constraints.

Our representation enables us to remove a potentially oc-
cluding non-rigid object from the foreground, leaving only
the unoccluded background. Assuming the rigidity net-
work assigns higher scores to non-rigid objects than to rigid
(background) objects, we can threshold them at test time to
segment the canonical volume into rigid and non-rigid parts.
We can then set the non-rigid part transparent, see Fig. 9.

5. Limitations

For simplicity, the discrete integration along the bent ray
uses the interval lengths given by the straight ray. As we
build on NeRF, our method is similarly slow. All else being
equal, ray bending increases runtime by about 20%. How-
ever, due to fewer rays and points sampled, we train for 6
hours. We can thus train multiple NR-NeRFs (to find appro-

12965



Naive NR-NeRF

Rigid NeRF
_(view-dep.)

Rigid NeRF Neural Volumes Neural Volumes
(ot view-dep.) (modified)

Figure 7. We compare input reconstruction quality (first row) and novel view synthesis quality (second row). Only our method synthesizes
sharp novel views.

Neural Volumes Neural Volumes (modified)

Figure 8. We compare background stability. See Fig. 6 for an
explanation. We use all test time steps here. The results of NR-
NeRF show the least instability.

Figure 9. (Left) the ground-truth input image and (right) a render-
ing without non-rigid foreground.

priate loss weights) in a time similar to other NeRF-based
methods [45]. Neural Sparse Voxel Fields [38] are a promis-
ing direction to speed up NeRF-like methods. The back-
ground needs to be fairly close to the foreground, an issue
we “inherit” from NeRF and which could be addressed sim-
ilarly to NeRF++ [93]. Since we use a deformation model
that does not go from the canonical space to the deformed
space, we cannot obtain exact correspondences between im-
ages captured at different time steps, but instead need to use
a nearest neighbor approximation. We do not account for
appearance changes that are due to deformation or light-
ing changes. For example, temporally changing shadowing
in the input images is an issue. Foreground removal can
fail if a part of the foreground is entirely static. Render-

ing parts of the scene barely or not at all observed in the
training data would not lead to realistic results. Motion blur
in input images is not modeled and would lead to artifacts.
The background needs to be static and dominant enough
for structure-from-motion [65] to estimate correct extrin-
sics. Since our problem is severely under-constrained, we
employ strong regularization, which leads to a trade-off be-
tween sharpness and stability on some scenes.

6. Conclusion

We presented a method for free viewpoint rendering of a
dynamic scene using just a monocular video as input. Sev-
eral high-quality reconstruction and novel view synthesis
results of general dynamic scenes, as well as unsupervised,
yet plausible rigidity scores and dense 3D correspondences
demonstrate the capabilities of the proposed method. Our
results suggest that space warping in the form of ray bend-
ing is a promising deformation model for volumetric repre-
sentations like NeRF. Furthermore, we have demonstrated
that background instability, a problem also noted by concur-
rent work [57], can be mitigated in an unsupervised fashion
by learning a rigidity mask. The extensions to multi-view
data and view dependence invite future work on more con-
strained settings for higher quality. Although rather rudi-
mentary, we have shown that NR-NeRF enables several
scene-editing tasks, and we look forward to further work
in the direction of editable neural representations.
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