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Abstract

Semantic segmentation aims to predict pixel-level labels.
It has become a popular task in various computer vision
applications. While fully supervised segmentation methods
have achieved high accuracy on large-scale vision datasets,
they are unable to generalize on a new test environment or a
new domain well. In this work, we first introduce a new Un-
aligned Domain Score to measure the efficiency of a learned
model on a new target domain in unsupervised manner.
Then, we present the new Bijective Maximum Likelihood1

(BiMaL) loss that is a generalized form of the Adversarial
Entropy Minimization without any assumption about pixel
independence. We have evaluated the proposed BiMaL on
two domains. The proposed BiMaL approach consistently
outperforms the SOTA methods on empirical experiments
on “SYNTHIA to Cityscapes”, “GTA5 to Cityscapes”, and
“SYNTHIA to Vistas”.

1. Introduction
Semantic segmentation is one of the most popular com-

puter vision topics, which aims to to assign each pixel in an
image to a predefined class. It has various practical applica-
tions, especially in autonomous driving where a segmenta-
tion model is needed to recognize roads, sidewalks, pedes-
trians or vehicles in a large variety of urban conditions. A
typical supervised segmentation model is usually trained on
datasets with labels. However, annotating images for the
semantic segmentation task is costly and time-consuming.
Alternatively, a powerful and cost-effective way to acquire a
large-scale training set is to use a simulation, e.g. game en-
gines, to create a synthetic dataset [42, 43]. However, fully
supervised models [3, 24] trained on the synthetic datasets
are often unable to perform well on real images due to the
pixel appearance gap between synthetic and real images.

Unsupervised Domain Adaptation (UDA) aims to train

1https://github.com/uark-cviu/BiMaL

a machine learning model on an annotated dataset, i.e. the
source, and guarantee its high performance on a new unla-
beled dataset, i.e. the target. The UDA approaches have
been applied to various computer vision tasks such as Se-
mantic Segmentation [3, 24, 26, 54, 55, 57], Face Recogni-
tion [12, 32, 33, 34, 35]. The recent UDA methods aim to
reduce the cross-domain discrepancy, along with the super-
vised training on the source domain [5, 16, 29, 40, 52, 54].
In particular, these methods aim to minimize the distribu-
tion discrepancy of the deep representations extracted from
the source and the target domains. This process can be per-
formed at single or multiple levels of deep features using
maximum mean discrepancies [16, 29, 52], or adversarial
training [5, 6, 20, 21, 22, 50]. The approaches in this group
have shown their potential in aligning the predicted out-
puts of images from the two domains. However, the bi-
nary cross-entropy label predicted by the learned discrim-
inator is usually a weak indication of structural learning
for the segmentation task. Another approach named self-
training utilizes the pseudo-labels or generative networks
conditioned on target images [37, 58]. Semi-supervised
learning is an approach related to UDA where the training
set consists of both labeled and unlabeled samples. Thus,
it has motivated several UDA approaches such as Class-
balanced self-training (CBST) [60], and entropy minimiza-
tion [4, 17, 40, 47, 54]. Although metrics such as entropy
can be efficiently computed and adopted for training, they
tend to rely on easy predictions, i.e. high confident scores,
as references for the label transfer from source to target do-
mains. This issue is alleviated in a later approach [4] by
preventing learned models from over-focusing on high con-
fident areas. However, this type of metrics is formulated in
pixel-wised manner, and, therefore, neglects the structural
information presented in the image (see Figure 1).
Contributions of this Work. This work presents a new
unsupervised domain adaptation approach to tackle the se-
mantic segmentation problem. Table 1 summarizes the dif-
ference between our proposed approach and the prior ones.
Our contributions can be summarized as follows.
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Figure 1. Two images have the same entropy but one has a poor prediction (a top image) and one has an better prediction (a bottom
image). Columns 1 and 2 are an input image and a ground truth. Columns 3 and 4 are an entropy map and a prediction of AdvEnt [54].
Column 5 is the results of our proposed method. The two predictions produced by AdvEnt have similar entropy scores (0.13 and 0.14).
Meanwhile, the BiMaL value of the bottom prediction (0.06) is smaller than the top prediction (0.14). Our results in the last column, which
have better BiMaL values than AdvEnt, can well model the structure of an image. In particular, our results have sharper results of a barrier
and a rider (white dash box), and a clear boundary between road and sidewalk.

Firstly, a new Unaligned Domain Score (UDS) is intro-
duced to measure the efficiency of the learned model on a
target domain in an unsupervised manner. Secondly, the
presented UDS is further extended as a new loss function,
named Bijective Maximum Likelihood (BiMaL) loss, that
can be used with an unsupervised deep neural network to
generalize on target domains. Indeed, we further demon-
strate BiMaL loss is a generalized form of the Adversar-
ial Entropy Minimization (AdvEnt) [54] without pixel in-
dependence assumption. Far apart from AdvEnt that as-
sumes pixel independence, BiMaL loss is formed using a
Maximum-likelihood formulation to model the global struc-
ture of a segmentation input and a Bijective function to
map that segmentation structure to a deep latent space. Fi-
nally, the proposed BiMaL method is evaluated on three
popular large-scale semantic segmentation benchmarks, in-
cluding GTA5 [42] to CityScapes [7], SYNTHIA [43] to
Cityscapes, and SYNTHIA to Vista [38]. The experimen-
tal results demonstrate our proposed BiMaL approach con-
sistently outperforms the State-of-the-Art (SOTA) methods
[5, 40, 50, 54, 55] in all these benchmark databases. To the
best of our knowledge, this is one of the first works that
introduces a novel bijective maximum likelihood approach
with flow-based metric to unsupervised domain adaptation
in semantic segmentation.

2. Related Work
Unsupervised Domain Adaptation has recently become

one of the most active research topics. The common UDA
approaches are domain discrepancy minimization [16, 29,
52], adversarial learning [5, 6, 20, 21, 22, 50], entropy min-
imization [37, 40, 54, 58], self-training [60]. In the scope of
this work, UDA is focused on semantic segmentation.

Adversarial training is the most common approach em-
ployed to UDA for semantic segmentation. Similar to gen-
erative adversarial networks (GANs), the adversarial train-

ing paradigm aims at training a discriminator to predict the
domain of inputs while the segmentation network tries to
fool the discriminator. This adversarial step is trained si-
multaneously with the supervised segmentation task on the
source domain. Hoffman et al. [21] first introduced GAN-
based UDA approach to semantic segmentation. Later,
Chen et al. [6] presented global and class-wise adaptation
learned by adversarial learning on pseudo labels. Con-
sidering the difference in spatial distribution, [5] proposed
a spatial-aware adaptation method to align two domains
along with a target guided distillation loss. Hong et al.
[22] learned a conditional generator to transform the fea-
ture maps of source domain to be similar to target domain.
Tasi et al. [50] used adversarial learning to learn a consis-
tency of scene layout and local context between source and
target domains. There are some prior methods that utilize
the generative networks to synthesize target images condi-
tioned on source images [58, 37]. Hoffman et al. [20] pre-
sented Cycle-Consistent Adversarial Domain Adaptation
that aligns at both pixel-level and feature-level representa-
tions. Zhu et al. [59] introduced a conservative loss in an ad-
versarial framework that penalizes the easy and hard source
examples. We et al. [56] proposed a DCAN framework that
uses the channel-wise feature alignment in the segmentation
networks. Sakaridis et al. [44] proposed an UDA frame-
work on scene understanding that gradually adapts a seg-
mentation model from non-foggy to heavy-foggy images.

To enhance the performance of domain adaptation, sev-
eral methods explore the use of privileged information
available on source data [2, 27, 45]. Vapnik et al. [53] first
introduced the idea of privileged information, i.e. additional
information only available at the training process. Later,
many methods [19, 30, 36, 46] take advantage of privileged
information for various tasks. In semantic segmentation,
SPIGAN [25] proposed an UDA approach that utilizes the
depth information during the training phase. Following SPI-
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Table 1. Comparison in the properties between our proposed approach and other methods. Convolutional Neural Network (CNN),
Generative Adversarial Net (GAN), Bijective Network (BiN), Entropy Minimization (EntMin), Curriculum Training (CT), Image-wise
Weighting (IW), Segmentation Map (Seg), Depth Map (Depth); ℓCE : Cross-entropy Loss, ℓadv: Adversarial Loss, ℓHuber: Huber Loss.

Methods Architecture Source Label Learning Mechanism Loss Function Structural Learning
AdaptSeg [50] CNN + GAN Seg Domain Adaptation ℓadv Weak (binary label)

AdaptPatch [51] CNN + GAN Seg Domain Adaptation ℓadv Weak (binary label)
CBST [60] CNN Seg Self-Training ℓCE Not Applicable

ADVENT [54] CNN + GAN Seg Domain Adaptation EntMin Weak (binary label)
MaxSquare [4] CNN + GAN Seg Domain Adaptation Squares loss + IW Weak (binary label)
IntraDA [40] CNN + GAN Seg Curriculum Learning EntMin Weak (binary label)
SPIGAN [25] CNN + GAN Seg + Depth Domain Adaptation ℓadv + ℓ1 Weak (binary label)
DADA [55] CNN + GAN Seg + Depth Domain Adaptation ℓadv + ℓHuber Depth-aware Label

BiMaL CNN + BiN Seg Domain Adaptation Maximum Likelihood Segmentation Density
(Unsupervised)

GAN, Vu et al. [55] presented an adversarial approach that
utilizes the depth-aware of source and target images.

Entropy minimization has been used for semi-supervised
learning [17, 47]. Vu et al. [54] first introduced the entropy
minimization approach for domain adaptation in semantic
segmentation. The minimization process is solved by ad-
versarial learning. Later, [40] introduced an intra-domain
adaptation approach based on the entropy level of predic-
tions. The learning process involves two phases. The first
phase performs adaptation from the source domain to the
target domain, whereas the second phase aligns the hard
split and easy split within the target domain. Another recent
UDA approach is self-training, where the predictions of the
trained model are used as pseudo-labels for the unlabeled
data to train the new model. Self-training has been widely
used in classification [28] and segmentation tasks [60].

3. Unaligned Domain Scores (UDS)
Let xs ∈ Xs ⊂ RH×W×3 be an input image of the

source domain (H and W are the height and width of an
image), xt ∈ Xt ⊂ RH×W×3 be an input image of the
target domain, G : X → Y where X = Xs ∪ Xt be a se-
mantic segmentation function that maps an input image to
its corresponding segmentation map y ⊂ RH×W×C , i.e.
y = G(x, θ) (C is the number of semantic classes). In
general, given N labeled training samples from a source
domain Ds = {xi

s, ŷ
i
s}N1 and M unlabeled samples from

a target domain Dt = {xi
t}M1 , the unsupervised domain

adaptation for semantic segmentation can be formulated as:

θ∗ = argmin
θ

∑
i,j

[
Ls(G(xi

s, θ), ŷ
i
s) + Lt(G(xj

t , θ))
]

= argmin
θ

[
Exs∼p(xs),ŷs∼p(ŷs)

[
Ls(G(xs, θ), ŷs)]

+ Ext∼p(xt)[Lt(G(xt, θ))
]]

= argmin
θ

[
Eys∼p(ys),ŷs∼p(ŷs)

[
Ls(ys, ŷs)]

+ Eyt∼p(yt)[Lt(yt)
]]

(1)

where θ is the parameters of G, p(·) is the probability den-
sity function. As the labels for Ds are available, Ls can be
efficiently formulated as a supervised cross-entropy loss:

Ls(ys, ŷs) = −
∑
h,w,c

ŷh,w,c
s log

(
yh,w,c
s

)
(2)

where yh,w,c and ŷh,w,c represent the predicted and
ground-truth probabilities of the pixel at the location of
(h,w) taking the label of c , respectively. Meanwhile, Lt

handles unlabeled data from the target domain where the
ground-truth labels are not available. To alleviate this label
lacking issue, several forms of Lt(yt) have been exploited
such as cross-entropy loss with pseudo-labels [60], Proba-
bility Distribution Divergence (i.e. Adversarial loss defined
via an additional Discriminator) [50, 51], or entropy formu-
lation [54, 40].
Entropy minimization revisited. By adopting the
Shannon entropy formulation to the target prediction and
constraining function G to produce a high-confident predic-
tion, Lt can be formulated as

Lt(yt) =
−1

log(C)

∑
h,w,c

yh,w,c
t log

(
yh,w,c
t

)
. (3)

Although this form of Lt can give a direct assess-
ment of the predicted segmentation maps, it tends to
be dominated by the high probability areas (since the
high probability areas produce a higher value updated
gradient due to limyh,w,c

t →1
−∂Lt(yt)

∂yh,w,c
t

= 1
log(C) and

limyh,w,c
t →0

−∂Lt(yt)

∂yh,w,c
t

= −∞), i.e. easy classes, rather than
difficult classes [54]. More importantly, this is essentially
a pixel-wise formation, where pixels are treated indepen-
dently of each other. Consequently, the structural informa-
tion is usually neglected in this form. This issue could lead
to a confusion point during training process where two pre-
dicted segmentation maps have similar entropy but differ-
ent segmentation accuracy, one correct and other incorrect
as shown in Fig 1.

8550



Figure 2. The Proposed Framework. The RGB image input is firstly forwarded to a deep semantic segmentation network to produce
a segmentation map. The supervised loss is employed on the source training samples. Meanwhile, the predicted segmentation on target
training samples will be mapped to the latent space to compute the Bijective Maximum Likelihood loss. The bijective mapping network is
trained on the ground-truth images of the source domain.

3.1. The Proposed UDS Metric

In the entropy formulation, the pixel independent con-
straints are employed to convert the image-level metric to
pixel-level metric. In contrast, we propose an image-level
UDS metric that can directly evaluate the structural quality
of yt. Particularly, let pt(yt) and qt(yt) be the probabil-
ity mass functions of the predicted distribution and the real
(actual) distribution of the predicted segmentation map yt,
respectively. UDS metric measuring the efficiency of func-
tion G on the target dataset can be expressed as follows:

UDS = Eyt∼p(yt)LY (pt(yt), qt(yt))

=

∫
LY (pt(yt), qt(yt)) pt(yt)dyt ,

(4)

where LY (pt(yt), qt(yt)) defines the distance between two
distributions pt(yt) and qt(yt). Since there is no label for
sample in the target domain, the direct access to qt(yt) is
not available. Note that although xs and xt could vary sig-
nificantly in image space (e.g. difference in pixel appear-
ance due to lighting, scenes, weather), their segmentation
maps yt and ys share similar distributions in terms of both
class distributions as well as global and local structural con-
straints (sky has to be above roads, trees should be on side-
walks, vehicles should be on roads, etc.). Therefore, one
can practically adopted the prior knowledge learned from
segmentation labels of the source domains for qt(yt) as

UDS ≈
∫

LY (pt(yt), qs(yt)) pt(yt)dyt , (5)

where the distribution qs(yt) is the probability mass func-
tions of the real distribution learned from ground-truth seg-
mentation maps of Ds. As a result, the proposed USD met-
ric can be computed without the requirement of labeled tar-
get data for learning the density of segmentation maps in

target domain. There are several choices for LY to esti-
mate the divergence between the two distributions pt(yt)
and qs(yt). In this paper, we adopt the common metric such
as Kullback–Leibler (KL) formula for LY . Note that other
metrics are also applicable in the proposed UDS formula-
tion. Moreover, to enhance the smoothness of the predicted
semantic segmentation, a regularization term τ is imposed
into LY as

LY (pt(yt), qs(yt)) = log

(
pt(yt)

qs(yt)

)
+ τ(yt). (6)

By computing UDS, one can measure the quality of the pre-
dicted segmentation maps yt on the target data.

In the next sections, we firstly discuss in details the learn-
ing process of qs(yt), and then derivations of the UDS met-
ric for the novel Bijective Maximum Likelihood loss.

3.2. Learning Distribution with Bijective Mapping
on the Source Domain

Let F : Y → Z be the bijective mapping function that
maps a segmentation ŷs ∈ Y to the latent space Z , i.e.
ẑs = F (ŷs, θF ), where ẑs ∼ qz(ẑs) is the latent variable,
and qz is the prior distribution. Then, the probability distri-
bution qs(ŷs) can be formulated via the change of variable
formula:

log(qs(ŷs)) = log (qz(ẑs)) + log

(∣∣∣∣∂F (ŷs, θF )

∂ŷs

∣∣∣∣) , (7)

where θF is the parameters of F ,
∣∣∣∂F (ŷs,θF )

∂ŷs

∣∣∣ denotes the
Jacobian determinant of function F (ŷs, θF ) with respect
to ŷs. To learn the mapping function, the negative log-
likelihood will be minimized as follows:
θ∗F =argmin

θF
Eŷs∼qs(ŷs)

[
− log(qs(ŷs))

]
=argmin

θF
Eẑs∼qz(ẑs)

[
− log (qz(ẑs))− log

(∣∣∣∣∂F (ŷs, θF )

∂ŷs

∣∣∣∣)]
.

(8)
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In general, there are various choices for the prior distribu-
tion qz . However, the ideal distribution should satisfy two
criteria: (1) simplicity in the density estimation, and (2)
easy in sampling. Considering the two criteria, we choose
Normal distribution as the prior distribution qz . Note that
any other distribution is also feasible as long as it satisfies
the mentioned criteria.

To enforce the information flow from a segmentation do-
main to a latent space with different abstraction levels, the
bijective function F can be further formulated as a compo-
sition of several sub-bijective functions fi as F = f1 ◦ f2 ◦
...◦fK , where K is the number of sub-functions. The Jaco-
bian ∂F

∂ys
can be derived by ∂F

∂ŷs
= ∂f1

∂ŷs
· ∂f2

∂f1
· · · ∂fK

∂fK−1
.

With this structure, the properties of each fi will define
the properties for the whole bijective mapping function F .
Interestingly, with this form, F becomes a DNN struc-
ture when fi is a non-linear function built from a com-
position of convolutional layers. Several DNN structures
[8, 9, 39, 15, 23, 14, 49] can be adopted for sub-functions.

4. Bijective Maximum Likelihood Loss
In this section, we present the proposed Bijective Maxi-

mum Likelihood (BiMaL) which can be used as the loss of
target domain Lt. From Eqns. (5) and (6), UDS metric can
be rewritten as follows:

UDS =

∫ [
log

(
pt(yt)

qs(yt)

)
+ τ(yt)

]
pt(yt)dyt

= Eyt∼pt(yt) [log(pt(yt))]

− Eyt∼pt(yt) [log(qs(yt))] + Eyt∼pt(yt) [τ(yt)]

≤ Eyt∼pt(yt) [− log(qs(yt)) + τ(yt)]

(9)

It should be noticed that with any form of the distribution
pt, the above inequality still holds as pt(yt) ∈ [0, 1] and
log(pt(yt)) ≤ 0. Now, we define our Bijective Maximum
Likelihood Loss as

Lt(yt) = − log(qs(yt)) + τ(yt), (10)

where log(qs(yt)) defines the log-likelihood of yt with re-
spect to the density function qs. Then, by adopting the bi-
jectve function F learned from Eqn. (8) using samples from
source domain and the prior distribution qz , the first term of
Lt(yt) in Eqn. (10) can be efficiently computed via log-
likelihood formulation:

Lllk(yt) = − log(qs(yt))

= − log (qz(zt))− log

(∣∣∣∣∂F (yt, θF )

∂yt

∣∣∣∣) ,
(11)

where zt = F (yt, θF ). Thanks to the bijective property
of the mapping function F , the minimum negative log-
likelihood loss Lllk(yt) can be effectively computed via
the density of the prior distribution qz and its associated

Jacobian determinant
∣∣∣∂F (yt,θF )

∂yt

∣∣∣. For the second term
of Lt(yt), we further enhance the smoothness of the pre-
dicted semantic segmentation with the pair-wised formu-
lation to encourage similar predictions for neighbourhood
pixels with similar color:

τ(yt) =
∑
h,w

∑
h′,w′

exp

{
−

||xh,w
t − xh′,w′

t ||22
2σ2

1

−
||yh,w

t − yh′,w′
t ||22

2σ2
2

}
(12)

where (h′, w′) ∈ Nh,w denotes the neighbourhood pixels
of (h,w), xh,w represents the color at pixel (h,w); and
{σ1, σ2} are the hyper parameters controlling the scale of
Gaussian kernels. It should be noted that any regularizers
[3, 13] enhancing the smoothness of the segmentation re-
sults can also be adopted for τ . Putting Eqns. (10), (11),
(12) to Eqn (1), the objective function can be rewritten as:

θ∗ = argmin
θ

[
Eys∼p(ys),ŷs∼p(ŷs)

[
Ls(ys, ŷs)]

+ Eyt∼p(yt)[Lllk(yt) + τ(yt)
]] (13)

Figure 2 illustrates our proposed BiMaL framework to learn
the deep segmentation network G. Also, we can prove that
direct entropy minimization as Eqn. (3) is just a particular
case of our log likelihood maximization. We will further
discuss how our maximum likelihood can cover the case of
pixel-independent entropy minimization in Section 4.2.

4.1. BiMaL properties

Global Structure Learning. Sharing similar property
with [10, 11, 15, 39, 48], from Eqn. (7), as the learned
density function is adopted for the entire segmentation map
ŷs, the global structure in ŷs can be efficiently captured and
modeled.

Tractability and Invertibility. Thanks to the designed
bijection F, the complex distribution of segmentation maps
can be efficiently captured. Moreover, the mapping function
is bijective, and, therefore, both inference and generation
are exact and tractable.

4.2. Relation to Entropy Minimization

The first term of UDS in Eqn. (9) can be derived as∫
log

(
pt(y)

qs(y)

)
pt(yt)dyt ≥ 0

⇔Eyt∼pt(yt) [log(pt(yt))− log(qs(yt))] ≥ 0

⇔Eyt∼pt(yt) [− log(qs(yt))] ≥ Eyt∼pt(yt) [− log(pt(yt))]

⇔Eyt∼pt(yt)[Lllk(yt)] ≥ Ent(Yt)

(14)

where Yt is the random variable with possible values yt ∼
pt(yt), and Ent(Yt) denotes the entropy of the random vari-
able Yt. It can be seen that the proposed negative log-
likelihood Lllk is an upper bound of the entropy of Yt.
Therefore, minimizing our proposed BiMaL loss will also
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Figure 3. Examples of four semantic segmentation datasets includ-
ing RGB images (top row) and corresponding ground-truth images
(bottom row). (a) GTA and (b) SYNTHIA are synthetic datasets,
(c) Cityscapes and (d) Vistas are real collected datasets.

enforce the entropy minimization process. Moreover, by
not assuming pixel independence, our proposed BiMaL can
model and evaluate structural information at the image-level
better than previous pixel-level approaches [4, 40, 54].

5. Experimental Results
This section will present our experimental results on

three different benchmarks, i.e. SYNTHIA to Cityscapes,
GTA to Cityscapes, and SYNTHIA to Vistas. First, we
overview datasets and network architectures used in our ex-
periments. Second, we present the ablation study to analyze
the effectiveness of our proposed BiMaL and the capability
of the bijective network. Finally, we present the quantita-
tive and qualitative results of our method compared to prior
methods on the three benchmarks.

5.1. Datasets

GTA5 [42] is a synthetic dataset containing 24, 966
densely labelled images at the resolution of 1, 914× 1, 052.
This dataset was collected from the game Grand Theft Auto
V. The ground-truth annotations were automatically gener-
ated with 33 categories. In our experiments, we consider 19
categories that are compatible with the Cityscapes [7].

SYNTHIA (SYNHIA-RAND-CITYSCAPES) [43] is
also synthetic dataset that contains 9, 400 pixel-level la-
belled RGB images. In our experiments, we use the 16 com-
mon categories that overlap with the Cityscapes dataset.

Cityscapes [7] is a real-world dataset including 3, 975
images with fine semantic, dense pixel annotations of 30
classes. In our experiments, 2, 495 images are used for
training and 500 images are used for testing.

Vistas (Mapillary Vistas Dataset) [38] is diverse
street-level imagery dataset with pixel-accurate and
instance-specific human annotations for understanding
street scenes around the world. Vistas consists of 25, 000
high-resolution images and 124 semantic object categories.

Figure 4. Ablative semantic segmentation performance mIoU (%)
on the effectiveness of the proposed BiMaL loss.

Figure 5. Reconstructed Images and Synthetic Images From
The Bijective Mapping Function F . (a) Reconstructed images
(bottom row) from the corresponding input images (top row). (b)
Synthetic images sampled from the latent space.

In our experiments, we consider 7 classes that are common
to SYNTHIA, Cityscapes and Vistas as shown in Fig. 3.

5.2. Network Architectures

In our experiments, we adopt the DeepLab-V2 [3] with
ResNet-101 [18] backbone for the segmentation network G.
Also, we utilize the Atrous Spatial Pyramid Pooling with
sampling rate {6, 12, 18, 24}. We only use the output of
layer conv5 to predict the segmentation. In the Bijective
network F , we use the multi-scale architecture as [8, 9, 14,
23, 39]. For each scale, we have multiple steps of flow, each
of which consists of ActNorm, Invertible 1×1 Convolution,
and Affine Coupling Layer [23, 48]. In our experiments, the
number of scales and number of flow steps are set to 4 and
32, respectively.

The entire framework is implemented in PyTorch [41].
Training and validating models are conducted on 4 GPUs of
NVIDIA Quadpro P8000 with 48GB each GPU. Segmenta-
tion and bijective networks are trained by a Stochastic Gra-
dient Descent optimizer [1] with learning rate 2.5 × 10−4,
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Table 2. Semantic segmentation performance mIoU (%) on Cityscapes validation set of different models trained on SYNTHIA. We
also show the mIoU (%) of the 13 classes (mIoU*) excluding classes with *.

SYNTHIA → Cityscapes (16 classes)

Models ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l*

fe
nc

e*

po
le

*

lig
ht

si
gn

ve
g

sk
y

pe
rs

on

ri
de

r

ca
r

bu
s

m
bi

ke

bi
ke

m
Io

U

m
Io

U
*

Without Adaptation 64.9 26.1 71.5 3.0 0.2 21.7 0.1 0.2 73.1 71.0 48.4 20.7 62.9 27.9 12.0 35.6 33.7 39.6
SPIGAN-no-PI [25] 69.5 29.4 68.7 4.4 0.3 32.4 5.8 15.0 81.0 78.7 52.2 13.1 72.8 23.6 7.9 18.7 35.8 41.2

SPIGAN [25] 71.1 29.8 71.4 3.7 0.3 33.2 6.4 15.6 81.2 78.9 52.7 13.1 75.9 25.5 10.0 20.5 36.8 42.4
AdaptSegnet [50] 79.2 37.2 78.8 - - - 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 - 45.9
AdaptPatch [51] 82.2 39.4 79.4 - - - 6.5 10.8 77.8 82.0 54.9 21.1 67.7 30.7 17.8 32.2 - 46.3

CLAN [31] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8
AdvEnt [54] 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 47.6
IntraDA [40] 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9
DADA[55] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 42.6 49.8

Our BiMaL 92.8 51.5 81.5 10.2 1.0 30.4 17.6 15.9 82.4 84.6 55.9 22.3 85.7 44.5 24.6 38.8 46.2 53.7

Table 3. Semantic segmentation performance mIoU (%) on Cityscapes validation set of different models trained on GTA5
GTA5 → Cityscapes (19 classes)
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Without Adaptation [50] 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
ROAD [5] 76.3 36.1 69.6 28.6 22.4 28.6 29.3 14.8 82.3 35.3 72.9 54.4 17.8 78.9 27.7 30.3 4.0 24.9 12.6 39.4

AdaptSegNet [50] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
MinEnt [54] 84.2 25.2 77.0 17.0 23.3 24.2 33.3 26.4 80.7 32.1 78.7 57.5 30.0 77.0 37.9 44.3 1.8 31.4 36.9 43.1
AdvEnt [54] 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8
Our BiMaL 91.2 39.6 82.7 29.4 25.2 29.6 34.3 25.5 85.4 44.0 80.8 59.7 30.4 86.6 38.5 47.6 1.2 34.0 36.8 47.3

momentum 0.9, and weight decay 10−4. The batch size per
GPU is set to 4 for segmentation network, and 16 for learn-
ing bijective network. The image size is set to 1280 × 720
pixels in all experiments.

5.3. Ablation Study

Effectiveness of Losses. Figure 4 reports the seman-
tic performance (mIoU) of BiMaL on the 16 classes of
the Cityscape validation set when the model is trained on
SYNTHIA dataset. We consider three cases: (1) without
adaptation (train with source only), (2) BiMaL without reg-
ularization term (Lllk(y) only), and (3) BiMaL with regu-
larization term (Lllk(y) + τ(y)). Overall, the proposed Bi-
MaL improve the performance of the method. In particular,
the mIoU accuracy of the baseline (without adaptation) is
33.7%. In comparison, BiMaL without regularization and
BiMaL with regularization achieve the mIoU accuracy of
43.5% and 46.2%, respectively. In terms of per-class accu-
racy, using BiMaL significantly improves the performance
on classes of ‘road’, ‘sidewalk’, ‘bus’, and ‘motocycle’.

Bijective Network Ability. We conduct a pilot ex-
periment of the bijective network on ground-truth semantic
segmentation images of the GTA dataset. This experiment
aims to analyze the ability of the bijective network in mod-
eling the image and structure information. The number of
scales and number of flow steps are set to 3, and 32, respec-
tively. As shown in Figure 5(a), our bijective network can
successfully reconstruct good-quality images. It also can
synthesize images sampled from the latent space as shown
in Figure 5(b). These experimental results have shown that

the bijective network can model images even with complex
structures as scene segmentation.

5.4. Comparisons with SOTA Methods

We present the experimental results of the proposed ap-
proach in comparison to other strong baselines. Compar-
ative experiments are conducted on three benchmarks: i.e.
SYNTHIA to Cityscapes, GTA5 to Cityscapes, and SYN-
THIA to Vistas. In all three benchmarks, our method con-
sistently achieves the SOTA semantic segmentation perfor-
mance in term of “mean Intersection over Union” (mIoU).

SYNTHIA to Cityscapes. Table 2 presents the seman-
tic performance (mIoU) on the 16 classes of the Cityscape
validation set. Our proposed method achieves better accu-
racy than the prior methods, i.e. 46.2% higher than DADA
[55] by 3.6%. Considering per-class results, our method
significantly improves the results on classes of ‘sidewalk’
(51.5%), ‘car’ (85.7%), and ‘bus’ (44.5%). We also report
the results on a 13-class subset where our proposed method
also achieves the State-of-the-Art performance.

GTA5 to Cityscapes. Table 3 shows the mIoU of 19
classes of Cityscapes on the validation set. Our approach
gains mIoU of 47.3% that is state-of-the-art performance
compared to the prior methods. Analysing per-class results,
our method gains the improvement on most classes. In par-
ticular, the results on classes of ‘terrain’ (+10.0%), ‘truck’
(+9.1%), ‘bus’ (+8.0%), ‘motorbike’ (+5.6%) demon-
strate significant improvements compared to AdvEnt. For
other classes, the proposed method gains moderate im-
provements, compared to prior SOTA methods.
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Figure 6. Qualitative results of the SYNTHIA → Cityscapes experiment. Columns 1 and 5 are the input and corresponding ground
truth. Columns 2, 3 and 4 are the results of the model without adaptation, AdvEnt [54], and our method.

SYNTHIA to Vistas. Table 4 reports the mIoU on 7
classes of the Vistas testing set. Our approach gains an
mIoU of 67.2% which is the SOTA performance compared
to prior methods. Moreover, our method also gains moder-
ate improvements in per-class accuracy.

Qualitative Results. Figure 6 illustrates the qualitative
results of the SYNTHIA to Cityscapces experiment. Our
method gives the better qualitative results compared to a
model trained on the source domain and AdvEnt [54]. Our
method can model well the structure of an image. In par-
ticular, our results have a clear border between ‘road’ and
‘sidewalk’. Meanwhile, the results of model trained on
source only and AdvEnt have an unclear border between
‘road’ and ‘sidewalk’. Overall, our qualitative semantic

Table 4. Semantic segmentation performance mIoU (%) on
Vistas testing set of different models trained on SYNTHIA.
(const. denotes for construction)

SYNTHIA → Vistas (7 classes)

Models fla
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SPIGAN-no-PI [25] 53.0 30.8 3.6 14.6 53.0 5.8 26.9 26.8
SPIGAN [25] 74.1 47.1 6.8 43.3 83.7 11.2 42.2 44.1
AdvEnt [54] 86.9 58.8 30.5 74.1 85.1 48.3 72.5 65.2
DADA [55] 86.7 62.1 34.9 75.9 88.6 51.1 73.8 67.6
Our BiMaL 87.6 61.6 35.3 77.5 87.8 53.3 75.6 68.4

segmentation results are sharper than the results of AdvEnt.

6. Conclusions
This paper has presented a new Bijective Maximum

Likelihood approach to domain adaptation in semantic
scene segmentation. Compared to Adversarial Entropy
Minimization loss, it is a more generalized form and can
work without any assumption about pixel independence. In
addition, a new Unaligned Domain Score metric has been
also introduced to measure the efficiency of a segmenta-
tion model on a new target domain in the unsupervised
manner. Through intensive experiments on three different
datasets, i.e. SYNTHIA to Cityscapes, GTA to Cityscapes,
and SYNTHIA to Vistas, we achieve SOTA performance
compared to prior methods. Specifically, our semantic seg-
mentation accuracy on these three benchmarks are 46.2%,
47.3%, and 68.4%, respectively. The future direction of this
work is to solve challenging cases coming from the differ-
ences in “segmentation structures” between source and tar-
get domains such as left- and right-hand traffic.
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Cord, and Patrick Pérez. Advent: Adversarial entropy mini-
mization for domain adaptation in semantic segmentation. In
CVPR, 2019.

[55] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Mathieu
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