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Abstract

The key challenge in learning dense correspondences
lies in the lack of ground-truth matches for real image pairs.
While photometric consistency losses provide unsupervised
alternatives, they struggle with large appearance changes,
which are ubiquitous in geometric and semantic matching
tasks. Moreover, methods relying on synthetic training pairs
often suffer from poor generalisation to real data.

We propose Warp Consistency, an unsupervised learn-
ing objective for dense correspondence regression. Our
objective is effective even in settings with large appear-
ance and view-point changes. Given a pair of real im-
ages, we first construct an image triplet by applying a ran-
domly sampled warp to one of the original images. We
derive and analyze all flow-consistency constraints aris-
ing between the triplet. From our observations and em-
pirical results, we design a general unsupervised objec-
tive employing two of the derived constraints. We val-
idate our warp consistency loss by training three recent
dense correspondence networks for the geometric and se-
mantic matching tasks. Our approach sets a new state-
of-the-art on several challenging benchmarks, including
MegaDepth, RobotCar and TSS. Code and models are at
github.com/PruneTruong/DenseMatching.

1. Introduction
Finding dense correspondences between images contin-

ues to be a fundamental vision problem, with many applica-
tions in video analysis [44], image registration [48, 42], im-
age manipulation [7, 25], and style transfer [19, 24]. While
supervised deep learning methods have achieved impres-
sive results, they are limited by the availability of ground-
truth annotations. In fact, collecting dense ground-truth cor-
respondence data of real scenes is extremely challenging
and costly, if not impossible. Current approaches there-
fore resort to artificially rendered datasets [4, 14, 45, 13],
sparsely computed matches [5, 55], or sparse manual anno-
tations [3, 34, 10]. These strategies lack realism, accuracy,
or scalability. In contrast, there is a virtually endless source
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Figure 1. We introduce the warp consistency graph of the image
triplet (I, I ′, J). The image I ′ is constructed by warping I accord-
ing to a randomly sampled flow W (black arrow). The blue arrows
represent predicted flows. Our unsupervised loss is derived from
the two constraints represented by the solid arrows, which predict
W by the composition I ′ → J → I and directly by I ′ → I .

of unlabelled image and video data, which calls for the de-
sign of effective unsupervised learning approaches.

Photometric objectives, relying on the brightness con-
stancy assumption, have prevailed in the context of unsu-
pervised optical flow [35, 57, 31]. However, in the more
general case of geometric matching, the images often stem
from radically different views, captured at different occa-
sions, and under different conditions. This leads to large
appearance transformations between the frames, which sig-
nificantly undermine the brightness constancy assumption.
It is further invalidated in the semantic matching task [25],
where the images depict different instances of the same ob-
ject class. As a prominent alternative to photometric ob-
jectives, warp-supervision [50, 49, 36, 32], also known as
self-supervised learning [37, 40, 34], trains the network on
synthetically warped versions of an image. While benefit-
ing from direct supervision, the lack of real image pairs of-
ten leads to poor generalization to real data.

We introduce Warp Consistency, an unsupervised learn-
ing objective for dense correspondence regression. Our loss
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Figure 2. Warped query image (right) according to our predicted
flow. Geometric and semantic matching applications pose highly
challenging appearance and geometric transformations.

leverages real image pairs without invoking the photomet-
ric consistency assumption. Unlike previous approaches,
it is capable of handling large appearance and view-point
changes, while also generalizing to unseen real data. From
a real image pair (I, J), we construct a third image I ′ by
warping I with a known flow field W , that is created by ran-
domly sampling e.g. homographies, from a specified distri-
bution. We then consider the consistency graph arising from
the resulting image triplet (I, I ′, J), visualized in Fig. 1.
It is used to derive a family of new flow-consistency con-
straints. By carefully analyzing their properties, we propose
an unsupervised loss based on predicting the flow W by the
composition I ′ → J → I via image J (Fig. 1). Our final
warp consistency objective is then obtained by combining it
with the warp-supervision constraint, also derived from our
consistency graph by the direct path I ′ → I .

We perform comprehensive empirical analysis of the ob-
jectives derived from our warp consistency graph and com-
pare them to existing unsupervised alternatives. In par-
ticular, our warp consistency loss outperforms approaches
based on photometric consistency and warp-supervision on
multiple geometric matching datasets. We further per-
form extensive experiments for two tasks by integrating our
approach into three recent dense matching architectures,
namely GLU-Net [50] and RANSAC-Flow [41] for geo-
metric matching, and SemanticGLU-Net [50] for seman-
tic matching. Our unsupervised learning approach brings
substantial gains: +18.2% PCK-5 on MegaDepth [23] for
GLU-Net, +2.8% PCK-5 for RANSAC-Flow on Robot-
Car [20, 29], as well as +16.1% and +4.4% PCK-0.05 on
PF-Pascal [9] and TSS [46] respectively, for SemanticGLU-
Net. This leads to a new state-of-the-art on all four datasets.
Example predictions are shown in Fig. 2.

2. Related work

Unsupervised optical flow: While supervised optical
flow networks need carefully designed synthetic datasets
for their training [4, 30], unsupervised approaches do not
require ground-truth annotations. Inspired by classical
optimization-based methods [11], they instead learn deep

models based on brightness constancy and spatial smooth-
ness losses [35, 57]. The predominant technique mainly re-
lies on photometric losses, e.g. Charbonnier penalty [57],
census loss [31], or SSIM [54, 52]. Such losses are of-
ten combined with forward-backward consistency [31] and
edge-aware smoothness regularization [53]. Occlusion es-
timation techniques [16, 31, 53] are also employed to mask
out occluded or outlier regions from the objective. Recently,
several works [27, 28, 26] use a data distillation approach
to improve the flow predictions in occluded regions. How-
ever, all aforementioned approaches rely on the assump-
tion of limited appearance changes between two consecu-
tive frames. While this assumption holds to a large degree
in optical flow data, it is challenged by the drastic appear-
ance changes encountered in geometric or semantic match-
ing applications, as visualised in Fig. 2.

Unsupervised geometric matching: Geometric matching
focuses on the more general case where the geometric trans-
formations and appearance changes between two frames
may be substantial. Methods either estimate a dense flow
field [32, 50, 49, 41] or output a cost volume [39, 55], which
can be further refined to increase accuracy [38, 22, 47]. The
later approaches train the feature embedding, which is then
used to compute dense similarity scores. Recent works fur-
ther leverage the temporal consistency in videos to learn
a suitable representation for feature matching [6, 15, 51].
Our work focuses on the first class of methods, which di-
rectly learn to regress a dense flow field. Recently, Xen et
al. [41] use classical photometric and forward-backward
consistency losses to train RANSAC-Flow. They partially
alleviate the sensitivity of photometric losses to large ap-
pearance changes by pre-aligning the images with Ransac.
Several methods [32, 50, 49] instead use a warp-supervision
loss. By posing the network to regress a randomly sampled
warp during training, a direct supervisory signal is obtained,
but at the cost of poorer generalization abilities to real data.

Semantic correspondences: Semantic matching poses ad-
ditional challenges due to intra-class appearance and shape
variations. Manual annotations in this context are ill-
defined and ambiguous, making it crucial to develop un-
supervised objectives. Methods rely on warp-supervision
strategies [36, 37, 3, 40, 50], use proxy losses on the cost
volume [12, 39, 37, 34], identify correct matches from
forward-backward consistency of the cost volumes [17], or
jointly learn semantic correspondence with attribute trans-
fer [19] or segmentation [21]. Most related to our work
are [58, 56, 59]. Zhou et al. [58] learn to align multiple
images using 3D-guided cycle-consistency by leveraging
the ground-truth matches between multiple CAD models.
However, the need for 3D CAD models greatly limits its
applicability in practice. In FlowWeb [59], the authors op-
timize online pre-existing pair-wise correspondences using
the cycle consistency of flows between images in a collec-
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tion. Unlike these approaches, we require pairs of images as
unique supervision and propose a general loss formulation,
learning to regress dense correspondences directly.

3. Method
3.1. Problem formulation and notation

We address the problem of finding pixel-wise corre-
spondences between two images I ∈ Rh×w×3 and J ∈
Rh×w×3. Our goal is to estimate a dense displacement field
FI→J ∈ Rh×w×2, often referred to as flow, relating pixels
in I to J . The flow field FI→J represents the pixel-wise 2D
motion vectors in the coordinate system of image I . It is
directly related to the mapping MI→J ∈ Rh×w×2, which
encodes the absolute location MI→J(x) ∈ R2 in J corre-
sponding to the pixel location x ∈ R2 in image I . It is thus
related to the flow through MI→J(x) = x+FI→J(x). It is
important to note that the flow and mapping representations
are asymmetric. MI→J parametrizes a mapping from each
pixel in image I , which is not necessarily bijective.

With a slight abuse of notation, we interchangeably view
FI→J and MI→J as either elements of Rh×w×2 or as func-
tions FI→J ,MI→J : R2 → R2. The latter is generally
obtained by a bilinear interpolation of the former, and the
interpretation will be clear from context when important.
We define the warping ΦF (T ) of a function T : R2 → Rd

by the flow F as ΦF (T )(x) = T (x+ F (x)). This is more
compactly expressed as ΦF (T ) = T ◦MF , where MF is the
mapping defined by F and ◦ denotes function composition.
Lastly, we let I : R2 → R2 be the identity map I(x) = x.

The goal of this work is to learn a neural network fθ,
with parameters θ, that predicts an estimated flow F̂I→J =
fθ(I, J) relating I to J . We will consistently use the hat ·̂
to denote an estimated or predicted quantity. The straight-
forward approach to learn fθ is to minimize the discrepancy
between the estimated flow F̂I→J and the ground-truth flow
FI→J over a collection of real training image pairs (I, J).
However, such supervised training requires large quantities
of densely annotated data, which is extremely difficult to ac-
quire for real scenes. This motivates the exploration of un-
supervised alternatives for learning dense correspondences.

3.2. Unsupervised data losses

To develop our approach, we first briefly review rele-
vant existing alternatives for unsupervised learning of flow.
While there is no general agreement in the literature, we
adopt a practical definition of unsupervised learning in our
context. We call a learning formulation ‘unsupervised’ if
it does not require any information (i.e. supervision) other
than pairs of images (I, J) depicting the same scene or ob-
ject. Specifically, unsupervised methods do not require any
annotations made by humans or other matching algorithms.
Photometric losses: Most unsupervised approaches train

(a) Forw.-backw. (2) (b) Warp-superv. (3) (c) Warp consistency
Figure 3. Alternative unsupervised strategies.

the network using a photometric loss [57, 31, 53, 41]. Under
the photometric consistency assumption, it minimizes the
difference between image I and image J warped according
to the estimated flow field F̂I→J as,

Lphoto = ρ
(
I , ΦF̂I→J

(J)
)
. (1)

Here, ρ(·, ·) is a function measuring the difference between
two images, e.g. L2 [57], SSIM [54], or census [31].
Forward-backward consistency: By constraining the
backward flow F̂J→I to yield the reverse displacement of
its forward counterpart F̂I→J , we achieve the forward-
backward consistency loss [31],

Lfb =
∥∥F̂I→J +ΦF̂I→J

(F̂J→I)
∥∥ . (2)

Here, ∥ · ∥ denotes a suitable norm. While well moti-
vated, (2) is enforced by the trivial degenerate solution of
always predicting zero flow F̂I→J = F̂J→I = 0. It there-
fore bares the risk of degrading performance by biasing the
prediction towards zero, even if combined with a photomet-
ric loss (1). Both aforementioned losses are most often used
together with a visibility mask that filters out the influence
of occluded regions from the objective.
Warp-supervision: Another approach relies on syntheti-
cally generated training pairs, where the ground-truth flow
is obtained by construction [50, 36, 32]. Given only a single
image I , a training pair (I, I ′) is created by applying a ran-
domly sampled transformation W , e.g. a homography, to I
as I ′ = ΦW (I). Here, W is the synthetic flow field, which
serves as direct supervision through a regression loss,

Lwarp =
∥∥F̂I′→I −W

∥∥ . (3)

While this results in a strong and direct training signal, warp
supervision methods struggle to generalize to real image
pairs (I, J). This can lead to over-smooth predictions and
instabilities in the presence of unseen appearance changes.

3.3. Warp consistency graph

We set out to find a new unsupervised objective suit-
able for scenarios with large appearance and view-point
changes, where photometric based losses struggle. While
the photometric consistency assumption is avoided in
the forward-backward consistency (Fig. 3a) and warp-
supervision (Fig. 3b) objectives, these methods suffer from
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(a) I′J-bipath (b) JI-bipath (c) W -bipath (d) Cycle consistency (e) Pair-wise consistency

Figure 4. Consistency relations derived from our warp consistency graph constructed between images (I, I ′, J). For the bipaths constraints
a, b and c, the red and blue arrows indicate the paths used for the left and right hand side, respectively, of the constraints in (4)-(5).

severe drawbacks in terms of degenerate solutions and lack
of realism, respectively. To address these issues, we con-
sider all possible consistency relations obtained from the
three images involved in both aforementioned objectives.
Using this generalization, we not only retrieve forward-
backward and warp-supervision as special cases, but also
derive a family of new consistency relations.

From an image pair (I, J), we first construct an image
triplet (I, I ′, J) by warping I with a known flow-field W
in order to generate the new image I ′ = ΦW (I). We now
consider the full consistency graph, visualized in Fig. 3c,
encompassing all flow-consistency constraints derived from
the triplet of images (I, I ′, J). Crucially, we exploit the fact
that the transformation FI′→I = W is known. The goal is
to find consistency relations that translate to suitable learn-
ing objectives. Particularly, we wish to improve the network
prediction between the real image pair (I, J). We therefore
first explore the possible consistency constraints that can be
derived from the graph shown in Fig. 3c. For simplicity,
we do not explicitly denote visible or valid regions of the
stated consistency relations. They should be interpreted as
an equality constraint for all pixel locations x where both
sides represent a valid, non-occluded mapping or flow.

Pair-wise constraints: We first consider the consistency
constraints recovered from pairs of images, as visualized
in Fig. 4e. From the pair (I, J), and analogously (J, I ′),
we recover the standard forward-backward consistency con-
straint I = MJ→I ◦ MI→J , from which we derive (2).
Furthermore, from the pair (I ′, I) we can derive the warp-
supervision constraint (3) FI′→I = W .1

Bipath constraints: The novel consistency relations stem
from constraints that involve all three images in the triplet
(I, I ′, J). These appear in two distinct types, here termed
bipath and cycle constraints, respectively. We first consider
the former, which have the form M1→2 = M3→2 ◦M1→3.
That is, we obtain the same mapping by either proceeding
directly from image 1 to 2 or by taking the detour through
image 3. We thus compute the same mapping by two dif-
ferent paths: 1 → 2 and 1 → 3 → 2, from which we derive
the name of the constraint. The images 1, 2, and 3 represent

1While I = MI→I′ ◦MW and I = MW ◦MI→I′ are also possible,
they offer no advantage over standard warp-supervision: MI′→I = MW .

any enumeration of the triplet (I, I ′, J) that respects the di-
rection I ′ → I , specified by the known warp W . There thus
exist three different bipath constraints, detailed in Sec. 3.4.
Cycle constraints: The last category of constraints is for-
mulated by starting from any of the three images in Fig. 4d
and composing the mappings in a full cycle. Since we re-
turn to the starting image, the resulting composition is equal
to the identity map. This is expressed in a general form as
I = M3→1 ◦M2→3 ◦M1→2, where we have proceeded in
the cycle 1 → 2 → 3 → 1. Again constraining the direction
I ′ → I , we obtain three different constraints, as visualized
in Fig. 4d. Compared to the bipath constraints, the cycle
variants require two consecutive warping operations, stem-
ming from the additional mapping composition. Each warp
reduces the valid region and introduces interpolation noise
and artifacts in practice. Constraints involving fewer warp-
ing operations are thus desirable, which is an advantage of
the class of bipath constraints. In the next parts, we there-
fore focus on the later class to find a suitable unsupervised
objective for dense correspondence estimation.

3.4. Bipath constraints

As mentioned in the previous section, there exist three
different bipath constraints that preserve the direction of the
known warp W . These are stated in terms of mappings as,

MI′→J = MI→J ◦MW (4a)
MJ→I = MW ◦MJ→I′ (4b)
MW = MJ→I′ ◦MI→J . (4c)

From (4), we can derive the equivalent flow constraints as,

FI′→J = W +ΦW (FI→J) (5a)

FJ→I = FJ→I′ +ΦFJ→I′
(W ) (5b)

W = FI′→J +ΦFI′→J
(FJ→I) . (5c)

Each constraint is visualized in Fig. 4a, b and c respectively.
At first glance, any one of the constraints in (5) could be
used as an unsupervised loss by minimizing the error be-
tween the left and right hand side. However, by separately
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analyzing each constraint in (4)-(5), we will find them to
have radically different properties which impact their suit-
ability as an unsupervised learning objective.

I ′J-bipath: The constraint (4a), (5a) is derived from the
two possible paths from I ′ to J (Fig. 4a). While not obvious
from (5a), it can be directly verified from (4a) that this con-
straint has a degenerate trivial solution. In fact, (4a) is satis-
fied for any W by simply mapping all inputs x to a constant
pixel location c ∈ R2 as M̂I′→J(x) = M̂I→J(x) = c. In
order to satisfy this constraint, the network can thus learn to
predict the same flow F̂ = c− I for any input image pair.

JI-bipath: From the paths J → I in Fig. 4b, we achieve
the constraint (4b), (5b). The resulting unsupervised loss is
formulated as

LJ→I =
∥∥F̂J→I′ +ΦF̂J→I′

(W )− F̂J→I

∥∥. (6)

Unfortunately, this objective suffers from another theoreti-
cal disadvantage. Due to the cancellation effect between the
estimated flow terms F̂J→I′ and F̂J→I , the objective (6) is
insensitive to a constant bias in the prediction. Specifically,
if a small constant bias b ∈ R2 is added to all flow predic-
tions in (6), it can be shown that the increase in the loss (6)
is approximately bounded by

∥∥ΦF̂J→I′
(DWb)

∥∥. Here, the
bias error b is scaled with the Jacobian DW of the warp W .
Since a smooth and invertible warp W implies a generally
small Jacobian DW , the change in the loss will be negli-
gible. The resulting insensitivity of (6) to a prediction bias
is further confirmed empirically by our experiments. We
provide derivations in the suppl. A.1. To further understand
and compare the bipath constraints (5), it is also useful to
consider the limiting case of reducing the magnitude of the
warps ∥W∥ → 0. By setting W = 0 it can be observed
that (6) becomes zero, i.e. no learning signal remains.

W -bipath: The third bipath constraint (4c), (5c) is derived
from the paths I ′ → I , which is determined by W (Fig. 4c).
It leads to the W -bipath consistency loss,

LW =
∥∥F̂I′→J +ΦF̂I′→J

(F̂J→I)−W
∥∥ . (7)

We first analyze the limiting case ∥W∥ → 0 by setting
W = 0, which leads to standard forward-backward con-
sistency (2) since I ′ = I . The W -bipath is thus a di-
rect generalization of the latter constraint. Importantly, by
randomly sampling non-zero warps W , degenerate solu-
tions are avoided, effectively solving the one fatal issue
of forward-backward consistency objectives. In addition
to avoiding degenerate solutions, W -bipath does not expe-
rience cancellation of prediction bias, as in (6). Further-
more, compared to warp-supervision (3), it enables to di-
rectly learn the flow prediction F̂J→I between the real pair
(I, J). In the next section, we therefore develop our final
unsupervised objective based on the W -bipath consistency.

3.5. Warp consistency loss

In this section, we develop our warp consistency loss,
an unsupervised learning objective for dense correspon-
dence estimation, using the consistency constraints derived
in Sec. 3.3 and 3.4. Specifically, following the observations
in Sec. 3.4, we base our loss on the W -bipath constraint.
W -bipath consistency term: To formulate an objective
based on the W -bipath consistency constraint (5c), we fur-
ther integrate a visibility mask V ∈ [0, 1]w×h. The mask
V takes a value V (x) = 1 for any pixel x where both sides
of (4c), (5c) represent a valid, non-occluded mapping, and
V (x) = 0 otherwise. The loss (7) is then extended as,

LW-vis =
∥∥∥V̂ ·

(
F̂I′→J +ΦF̂I′→J

(F̂J→I)−W
)∥∥∥ . (8)

Since we do not know the true V , we replace it with an esti-
mate V̂ . While there are different techniques for estimating
visibility masks [16, 31, 53], we base our strategy on [31].
Specifically, we compute our visibility mask as,

V̂ = 1

[∣∣F̂I′→J +ΦF̂I′→J
(F̂J→I)−W

∣∣2
2
< α2 + (9)

α1

(∣∣F̂I′→J

∣∣2
2
+

∣∣ΦF̂I′→J
(F̂J→I)

∣∣2
2
+ |W |22

)]
.

Here, 1[·] takes the value 1 or 0 if the input statement is
true or false, respectively. The scalars α1 and α2 are hyper-
parameters controlling the sensitivity of the mask estima-
tion. For the warp operation ΦF̂I′→J

(F̂J→I), we generally
found it beneficial not to back-propagate gradients through
the flow F̂I′→J used for warping. We believe that this bet-
ter encourages the network to directly adjust the flow F̂J→I ,
rather than ‘move’ the flow vectors using the warp ΦF̂I′→J

.

Warp-supervision term: In addition to our W -bipath ob-
jective (8), we use the warp-supervision (3), found as a pair-
wise constraint in our consistency graph (Fig. 4e). Bene-
fiting from the strong and direct supervision provided by
the synthetic flow W , the warp-supervision term increases
convergence speed and helps in driving the network to-
wards higher accuracy. Further, by the direct regression loss
against the flow W , which is smooth by construction, it also
acts as a smoothness constraint. On the other hand, through
the W -bipath loss (8), the network learns the realistic mo-
tion patterns and appearance changes present between real
images (I, J). As a result, both loss terms are mutually ben-
eficial. From a practical perspective, the warp-supervision
loss can be integrated at a low computational and memory
cost, since the backbone feature extraction for the three im-
ages I, I ′, J can be shared between the two loss terms.
Adaptive loss balancing: Our final unsupervised objec-
tive combines the losses (8) and (3) as L = LW-vis +λLwarp.
This raises the question of how to set the trade-off λ. In-
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stead of resorting to manual tuning, we eliminate this hyper-
parameter by automatically balancing the weights over each
training batch as λ = LW-vis/Lwarp.

3.6. Sampling warps W

The key element of our warp consistency objective is the
sampled warp W . During training, we randomly sample it
from a distribution W ∼ pW , which we need to design. As
discussed in Sec. 3.4, the W -bipath loss (8) approaches the
forward-backward consistency loss (2) when the magnitude
of the warps decreases ∥W∥ → 0. Exclusively sampling too
small warps W ≈ 0 therefore risks biasing the prediction
towards zero. On the other hand, too large warps would
render the estimation of F̂I′→J challenging and introduce
unnecessary invalid image regions. As a rough guide, the
distribution pW should yield warps of similar magnitude as
the real transformations ∥FJ→I∥, thus giving similar impact
to all three terms in (8). Fortunately, as analyzed in the
supplementary Sec. G, our approach is not sensitive to these
settings as long as they are within reasonable bounds.

We construct W by sampling homography, Thin-plate
Spline (TPS) and affine-TPS transformations randomly,
following a procedure similar to previous approaches us-
ing warp-supervision [36]. (i) Homographies are con-
structed by randomly translating the four image corner lo-
cations. The magnitudes of the translations are chosen in-
dependently through Gaussian or uniform sampling, with
standard-deviation or range equal to σH . (ii) For TPS, we
randomly jitter a 3 × 3 grid of control points by indepen-
dently translating each point. We use the same standard de-
viation or range σH as for our homographies. (iii) To gen-
erate larger scale and rotation changes, we also compose
affine and TPS. We first sample affine transformations by
selecting scale, rotation, translation and shearing parame-
ters according to a Gaussian or uniform sampling. The TPS
transform is then sampled as explained above and the final
synthetic flow W is a composition of both flows.

To make the warps W harder, we optionally also com-
pose the flow obtained from (i), (ii) and (iii) with randomly
sampled elastic transforms. Specifically, we generate an
elastic deformation motion field, as described in [43] and
apply it in multiple regions selected randomly. Detailed set-
tings are provided in the supplementary Sec. C, D and E.

4. Experiments
We evaluate our unsupervised learning approach for

three dense matching networks and two tasks, namely GLU-
Net [50] and RANSAC-Flow [41] for geometric matching,
and SemanticGLU-Net [50] for semantic matching. We ex-
tensively analyze our method and compare it to earlier unsu-
pervised objectives, defining a new state-of-the-art on mul-
tiple datasets. Further results, analysis, visualizations and
implementation details are provided in the supplementary.

Query Reference GLU-Net* WarpC-GLU-Net

Query Reference WarpC-RANSAC-FlowRANSAC-Flow

SemanticGLU-Net WarpC-SemanticGLU-NetReferenceQuery

Figure 5. Warped query according to baseline network and our
approach. In the middle row, we visualize the predicted mask by
RANSAC-Flow based networks in red (unmatchable regions).

4.1. Method analysis

We first perform a comprehensive analysis of our ap-
proach. We adopt GLU-Net [50] as our base architecture. It
is a 4-level pyramidal network operating at two image reso-
lutions to estimate dense flow fields.

Experimental set-up for GLU-Net: We slightly sim-
plify the GLU-Net [50] architecture by replacing the dense
decoder connections with standard residual blocks, which
drastically reduces the number of network parameters with
negligible impact on performance. As in [50], the feature
extraction network is set to a VGG-16 [2] with ImageNet
pre-trained weights. We train the rest of the architecture
from scratch in two stages. We first train GLU-Net using
our unsupervised objective, described in Sec. 3.5, but with-
out the visibility mask V̂ . As a second stage, we add the
visibility mask and employ stronger warps W , with elastic
transforms. For both stages, we use the training split of the
MegaDepth dataset [23], which comprises diverse internet
images of 196 different world monuments.

Datasets and metrics: We evaluate on standard datasets
with sparse ground-truth, namely RobotCar [29, 20] and
MegaDepth [23]. For the latter, we use the test split of
[41], which consists of 19 scenes not seen during training.
Images in Robotcar depict outdoor road scenes and are par-
ticularly challenging due to their many textureless regions.
MegaDepth images show extreme view-point and appear-
ance variations. In line with [41], we use the Percentage
of Correct Keypoints at a given pixel threshold T (PCK-T )
as the evaluation metric (in %). We also employ the 59 se-
quences of the homography dataset HPatches [1]. We eval-
uate with the Average End-Point-Error (AEPE) and PCK.

Warp consistency graph losses: In Tab. 1 we empirically
compare the constraints extracted from our warp consis-
tency graph (Sec. 3.3). All networks are trained with only
the first stage, on the same synthetic transformations W .
Since we observed it to give a general improvement, we
stop gradients through the flow used for warping (but not
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the flow that is warped). The I ′J-bipath (II) and JI-bipath
(III) losses lead to a degenerate solution and a large pre-
dicted bias respectively, which explains the very poor per-
formance of the networks. The cycle loss (V) obtains much
better results but does not reach the performance of the W -
bipath constraint (IV). We only show the cycle starting from
I ′ here (V), since it performs best among all cycle losses
(see suppl. A.3). While the warp-supervision loss (I) results
in a better accuracy on all datasets (PCK-1 and PCK-5 for
HPatches), it is significantly less robust to large view-point
changes than the W -bipath objective (IV), as evidenced by
results in PCK-10 and AEPE. These two losses have com-
plementary behaviors and combining them (VIII) leads to a
significant gain in both accuracy and robustness. Combin-
ing the warp-supervison loss (I) with I ′J-bipath (II) in (VI)
or with JI-bipath (III) in (VII) instead results in drastically
lower performance than (VIII). The cycle loss (V) with the
warp-supervision (I) in (IX) is also slightly worse.

Ablation study: In Tab. 2 we analyze the key components
of our approach. We first show the importance of not back-
propagating gradients in the warp operation. Adding the
warp-supervision objective with constant weights of λ = 1
increases both the network’s accuracy and robustness for all
datasets. Further using adaptive loss balancing (Sec. 3.5)
provides a significant improvement in accuracy (PCK-1) for
MegaDepth with only minor loss on other thresholds. In-
cluding our visibility mask V̂ in the second training stage
drastically improves all metrics for all datasets. Finally, fur-
ther sampling harder transformations results in better accu-
racy, particularly for PCK-1 on MegaDepth. We therefore
use this as our standard setting in the following experiments,
where we denote it as WarpC.

Comparison to alternative losses: Finally, in Tab. 3 we
compare and combine our proposed objective with alter-
native losses. The census loss [31] (I), popular in opti-
cal flow, does not have sufficient invariance to appearance
changes and thus leads to poor results on geometric match-
ing datasets. The SSIM loss [54] (II) is more robust to the
large appearance variations present in MegaDepth. Further
combining SSIM with the forward-backward consistency
loss (III) leads to a small improvement. Compared to SSIM
(III) on MegaDepth, our WarpC approach (VI) achieves su-
perior PCK-5 (+7.8%) and PCK-10 (+10.2%) at the cost
of a slight reduction in sub-pixel accuracy. Furthermore,
our approach demonstrates superior generalization capabili-
ties by outperforming all other alternatives on the RobotCar
and HPatches datasets. For completeness, we also evalu-
ate the combination (VII) of our loss with the photometric
SSIM loss. This leads to improved PCK-1 on MegaDepth
but degrades other metrics compared to WarpC (VI). Nev-
ertheless, adding WarpC significantly improves upon SSIM
(II) for all thresholds and datasets. Moreover, combin-
ing the warp-supervision (IV) with the forward-backward

MegaDepth RobotCar HPatches
PCK-1 PCK-5 PCK-10 PCK-1 PCK-5 PCK-10 AEPE PCK-5

I Warp-supervision (3) 35.98 57.21 63.88 2.43 33.63 54.50 28.50 76.76
II I ′J-bipath (5a) 0.00 0.05 0.21 0.00 0.00 0.13 370.80 0.01
III JI-bipath (5b),(6) 0.00 0.06 0.21 0.00 0.05 0.21 162.50 0.04
IV W -bipath (5c),(7) 29.55 67.70 74.42 2.25 33.88 55.38 26.13 70.51
V I ′-cycle 25.04 64.44 71.75 2.19 32.79 54.55 27.51 66.16

VI I ′J-bipath + warp-sup. 0.00 0.11 0.45 0.01 0.35 1.52 255.40 0.02
VII JI-bipath + warp-sup. 33.72 61.10 67.44 2.26 34.06 55.07 28.91 71.52
VIII W -bipath + warp-sup. 43.47 69.90 75.23 2.49 35.28 56.45 22.83 78.60
IX I ′-cycle + warp-sup. 42.11 68.84 74.28 2.52 35.75 56.96 24.16 78.58

Table 1. Analysis of warp consistency graph losses (Sec. 3.3-3.4).

MegaDepth RobotCar HPatches
PCK-1 PCK-5 PCK-10 PCK-1 PCK-5 PCK-10 AEPE PCK-5

W -bipath (7), grad in warp 20.06 58.57 67.83 2.04 31.70 53.57 29.37 60.40
W -bipath (7) 29.55 67.70 74.42 2.25 33.88 55.38 26.13 70.51
+ warp-supervision (3) 39.66 70.38 76.06 2.45 34.92 56.37 22.52 78.65
+ adaptive loss balancing 43.47 69.90 75.23 2.49 35.28 56.45 22.83 78.60
+ visibility mask V̂ (8) 48.86 77.58 82.27 2.51 35.78 57.19 21.63 82.55
+ harder warps W 50.61 78.61 82.94 2.51 35.92 57.44 21.00 83.24

Table 2. Ablation study by incrementally adding each component.

MegaDepth RobotCar HPatches
PCK-1 PCK-5 PCK-10 PCK-1 PCK-5 PCK-10 AEPE PCK-5

I Census (1) 33.49 58.44 61.42 1.85 28.25 48.37 59.85 48.15
II SSIM (1) 51.93 69.58 71.58 2.18 31.48 51.65 38.62 62.61
III SSIM (1) + f-b (2) 52.59 70.78 72.78 2.12 31.86 52.13 35.79 64.48
IV Warp-superv. (3) 38.50 59.60 66.21 2.36 33.28 54.47 25.04 78.60
V Warp-superv. + f-b (2) 45.62 71.36 75.92 2.50 36.04 57.13 23.10 79.64
VI WarpC ((8) + (3)) 50.61 78.61 82.94 2.51 35.92 57.44 21.00 83.24
VII WarpC + SSIM 54.92 75.65 78.04 2.43 35.01 56.44 26.01 74.64

VIII Supervised 38.83 72.42 77.34 2.15 32.52 53.88 37.91 56.15
IX WarpC + Sup. ft. 56.68 81.33 84.76 2.41 34.67 55.89 22.78 78.19

Table 3. Analysis and comparison of learning objectives.

loss in (V) leads to an improvement compared to (IV). It
is however significantly worse than combining the warp-
supervision with our W -bipath loss in (VI), which can be
seen as a generalization of the forward-backward loss. Fi-
nally, we compare with using the sparse ground-truth super-
vision provided by SfM reconstruction of the MegaDepth
training images. Interestingly, training the dense prediction
network from scratch with solely sparse annotations (VIII)
leads to inferior performance compared to our unsupervised
objective (VI). Lastly, we fine-tune (IX) our proposed net-
work (VI) with sparse annotations. While this leads to a
moderate gain on MegaDepth, it comes at the cost of worse
generalization properties on RobotCar and HPatches.

4.2. Geometric matching

Here, we train the recent GLU-Net [50] and RANSAC-
Flow [41] architectures with our unsupervised learning ap-
proach and compare them against state-of-the-art dense ge-
ometric matching methods.

Experimental set-up for GLU-Net: We follow the train-
ing procedure explained in Sec. 4.1 and refer to the result-
ing model as WarpC-GLU-Net. The original GLU-Net [50]
is trained using solely the warp-supervision (3) on a dif-
ferent training set. For fair comparison, we also report re-
sults of our altered GLU-Net architecture when trained on
MegaDepth with our warp distribution. This corresponds to
setting (IV) in Tab. 3, which we here call GLU-Net*.

Experimental set-up for RANSAC-Flow: We addi-
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MegaDepth [23] RobotCar [29, 20]
PCK-1 PCK-3 PCK-5 PCK-10 PCK-1 PCK-3 PCK-5 PCK-10

SIFT-Flow [25] 8.70 12.19 13.30 - 1.12 8.13 16.45 -
NCNet [39] 1.98 14.47 32.80 - 0.81 7.13 16.93 -
DGC-Net [32] 3.55 20.33 32.28 - 1.19 9.35 20.17 -
GLU-Net [50, 49] 21.58 52.18 61.78 69.81 2.30 17.15 33.87 55.67
GLU-Net-GOCor [49] 37.28 61.18 68.08 74.39 2.31 17.62 35.18 57.26

GLU-Net* 38.50 59.60 60.33 66.21 2.36 17.18 33.28 54.47
WarpC-GLU-Net 50.61 73.80 78.61 82.94 2.51 18.59 35.92 57.44

RANSAC-Flow [41] 52.60 83.46 86.80 88.80 2.09 15.94 31.61 53.06
WarpC-RANSAC-Flow 53.77 84.23 88.18 90.53 2.29 17.23 34.42 56.12

Table 4. State-of-the-art comparison for geometric matching.

tionally use our unsupervised strategy to train RANSAC-
Flow [41]. In the original work [41], the network is
trained on MegaDepth [23] image pairs that are coarsely
pre-aligned using feature matching and Ransac. Training
is separated into three stages. First, the network is trained
using the SSIM loss (1), which is further combined with
the forward-backward consistency loss (2) in the second
stage. In the last stage, a matchability mask is also trained,
by weighting the previous losses with the predicted mask
and including a mask regularization term. For our WarpC-
RANSAC-Flow, we also follow a three-step training using
the same training pairs. As for the WarpC-GLU-Net train-
ing, we add our visibility mask V̂ in the second training
stage. In the third stage, we train the matchability mask
by simply replacing V̂ in (8) with the predicted mask, and
adding the same mask regularizer as in RANSAC-Flow.

Results: In Tab. 4, we report results on MegaDepth and
RobotCar. Note that we only compare to methods that do
not finetune on the test set. Our approach WarpC-GLU-
Net outperforms the original GLU-Net and baseline GLU-
Net* by a large margin at all PCK thresholds. Our pro-
posed unsupervised objective enables the network to handle
the large and complex 3D motions present in real image
pairs, as evidenced in Fig. 5, top. Our unsupervised ap-
proach WarpC-RANSAC-Flow also achieves a substantial
improvement compared to RANSAC-Flow. Importantly,
WarpC-RANSAC-Flow shows much better generalization
capabilities on RobotCar. The poorer generalization of
photometric-based objectives, such as SSIM [54] here, fur-
ther supports our findings in Sec. 4.1. Interestingly, train-
ing the matchability branch of RANSAC-Flow with our
objective results in drastically more accurate mask predic-
tions. This is visualized in Fig. 5, middle, where our ap-
proach WarpC-RANSAC-Flow effectively identifies unre-
liable matching regions such as the sky (in red), whereas
RANSAC-Flow, trained with the SSIM loss, is incapable of
discarding the sky and field as unreliable.

4.3. Semantic matching

Finally, we evaluate our approach for the task of se-
mantic matching by training SemanticGLU-Net [50], a ver-
sion of GLU-Net specifically designed for semantic images,
which includes multi-resolution features and NC-Net [39].

Experimental set-up: Following [37, 3], we only fine-tune
a pre-trained network on semantic correspondence data.

TSS [46] PF-Pascal [9]
Methods Features FG3DCar JODS Pascal Avg. α=0.05 α=0.1

CNNGeo [37] ResNet-101 90.1 76.4 56.3 74.4 41.0 69.5
WeakAlign [37] ResNet-101 90.3 76.4 56.5 74.4 49.0 75.8
RTNs [18] ResNet-101 90.1 78.2 63.3 77.2 55.2 75.9
PARN [17] ResNet-101 89.5 75.9 71.2 78.8 - -
NC-Net [39] ResNet-101 94.5 81.4 57.1 77.7 - 78.9
DCCNet [12] ResNet-101 93.5 82.6 57.6 77.9 55.6 82.3
DHPF [34] ResNet-101 - - - - 56.1 82.1
SAM-Net [19] VGG-19 96.1 82.2 67.2 81.8 60.1 80.2
GLU-Net [50] VGG-16 93.2 73.3 71.1 79.2 42.2 69.1
GLU-Net-GOCor [49] VGG-16 94.6 77.9 77.7 83.4 36.6 56.8
SemanticGLU-Net [50] VGG-16 94.4 75.5 78.3 82.8 46.0 70.6
WarpC-SemanticGLU-Net VGG-16 97.1 84.7 79.7 87.2 62.1 81.7

Table 5. State-of-the-art comparison for semantic matching.

Specifically, we start from the SemanticGLU-Net weights
provided by the authors, which are trained with warp-
supervision without using any correspondences from flow
annotations. We finetune this network on the PF-PASCAL
training set [9], which consists of 20 object categories, us-
ing our unsupervised loss (Sec. 3.5).
Datasets and metrics: We first evaluate on the test set of
PF-Pascal [9]. In line with [10], we report the PCK with a
pixel threshold equal to α ·max(hq, wq), where hq and wq

are the dimensions of the query image and α = (0.05, 0.1).
To demonstrate generalization capabilities, we also validate
our trained model on TSS [46], which provides dense flow
field annotations for the foreground object in each pair. We
report the PCK for α = 0.05. We also provide results on
PF-Willow [8] and SPair-71K [33] in suppl. K.3.
Results: Results are reported in Tab. 5. Our approach
WarpC-SemanticGLU-Net sets a new state-of-the-art on
TSS by obtaining a remarkable improvement compared to
previous works. On the PF-Pascal dataset, our method
ranks first for the small threshold α = 0.05 with a sub-
stantial 2% increase compared to second best method. It
obtains marginally lower PCK (0.6%) than DCCNet [12]
for α = 0.1, but the later approach employs a much deeper
feature backbone, beneficial on semantic images. Nev-
ertheless, our unsupervised fine-tuning provides 16% and
11.1% gain, for each threshold respectively, over the base-
line, demonstrating that our objective effectively copes with
the radical appearance changes encountered in the semantic
matching task. A visual example is shown in Fig. 5 bottom.

5. Conclusion
We propose an unsupervised learning objective for dense

correspondences, particularly suitable for scenarios with
large changes in appearance and geometry. From a real im-
age pair, we construct an image triplet and design a regres-
sion loss based on the flow-constraints existing between the
triplet. When integrated into three recent dense correspon-
dence networks, our approach outperforms state-of-the-art
for multiple geometric and semantic matching datasets.
Acknowledgements: This work was supported by the ETH
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A. Dosovitskiy, and T. Brox. A large dataset to train convo-
lutional networks for disparity, optical flow, and scene flow
estimation. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4040–4048, 2016. 2

[31] Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow: Un-
supervised learning of optical flow with a bidirectional cen-
sus loss. In AAAI, New Orleans, Louisiana, Feb. 2018. 1, 2,
3, 5, 7

[32] Iaroslav Melekhov, Aleksei Tiulpin, Torsten Sattler, Marc
Pollefeys, Esa Rahtu, and Juho Kannala. DGC-Net: Dense
geometric correspondence network. In Proceedings of the
IEEE Winter Conference on Applications of Computer Vision
(WACV), 2019. 1, 2, 3, 8

[33] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Spair-71k: A large-scale benchmark for semantic correspon-
dence. CoRR, abs/1908.10543, 2019. 8

[34] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho.
Learning to compose hypercolumns for visual correspon-
dence. In Computer Vision - ECCV 2020 - 16th European

Conference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part XV, pages 346–363, 2020. 1, 2, 8

[35] Zhe Ren, Junchi Yan, Bingbing Ni, Bin Liu, Xiaokang Yang,
and Hongyuan Zha. Unsupervised deep learning for opti-
cal flow estimation. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA, pages 1495–1501, 2017. 1,
2

[36] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convo-
lutional neural network architecture for geometric matching.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 39–48, 2017. 1, 2, 3, 6

[37] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. End-to-
end weakly-supervised semantic alignment. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 6917–6925, 2018. 1, 2, 8

[38] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Efficient
neighbourhood consensus networks via submanifold sparse
convolutions. In Computer Vision - ECCV 2020 - 16th Eu-
ropean Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part IX, pages 605–621, 2020. 2

[39] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelovic, Akihiko
Torii, Tomás Pajdla, and Josef Sivic. Neighbourhood consen-
sus networks. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December 2018,
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