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Abstract

We propose an end-to-end trainable framework that pro-

cesses large-scale visual data tensors by looking at a frac-
tion of their entries only. Our method combines a neu-

ral network encoder with a tensor train decomposition
to learn a low-rank latent encoding, coupled with cross-
approximation (CA) to learn the representation through a

subset of the original samples. CA is an adaptive sam-

pling algorithm that is native to tensor decompositions and

avoids working with the full high-resolution data explicitly.

Instead, it actively selects local representative samples that

we fetch out-of-core and on demand. The required number

of samples grows only logarithmically with the size of the

input. Our implicit representation of the tensor in the net-

work enables processing large grids that could not be oth-

erwise tractable in their uncompressed form. The proposed

approach is particularly useful for large-scale multidimen-

sional grid data (e.g., 3D tomography), and for tasks that

require context over a large receptive field (e.g., predicting

the medical condition of entire organs). The code is avail-

able at https://github.com/aelphy/c-pic.

1. Introduction

Over the past decade, convolutional neural networks
(CNNs) in combination with parallel processing on GPUs
have brought about dramatic improvements in machine
learning for image data. Unfortunately, parallel hardware is
memory-limited, leading to a curse of dimensionality: state-
of-the-art 2D network architectures are typically not viable
for data with 3 or more dimensions, because one runs out of
memory to store the corresponding tensors. Despite efforts
to mitigate the problem via sparse convolutions [11, 18, 19]
or octrees [42, 50], one must in practice limit the size of
the inputs. E.g., the upper bound for 3D volumetric data is
about 5123 voxels on high-end commodity hardware.
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Figure 1: 2D illustration of learned low-rank embedding:
rank-3 compression of the input with SVD (the matrix
equivalent of TT decomposition) severely degrades the im-
age (bottom row). In contrast, our encoder warps the image
such that the same rank-3 truncation loses little information
and can be decoded almost perfectly (top row).

It is well-known that visual data usually lives on lower-
dimensional manifolds and, therefore, is in principle com-
pressible; c.f . classical ideas like Eigenfaces [48] or non-
negative tensor factorisation [44]. This motivates us
to seek a more memory-efficient representation of high-
dimensional visual data that is more efficient, and at the
same time compatible with the gradient-based learning pro-
cess of neural networks.

Selecting a sampling resolution at which data is recorded
and/or processed is always a trade-off between resources
(memory, run-time, power, etc.) and the level of detail and
context that the algorithm has access to. Indeed, relatively
small tensors are sufficient for applications where either
high-frequency details are not crucial and one can operate
at low spatial resolution (e.g., face recognition), or long-
range context has little impact and one can process local
windows (e.g., character recognition). But some tasks do
require sharp details and long-range context. For instance,
it has been shown that 3D object classification performance

111426

https://github.com/aelphy/c-pic


improves with increasing resolution [19]. A similar situa-
tion arises when making holistic predictions from medical
imagery: high-resolution detail helps to better spot subtle
tissue changes, whereas the global context is needed to as-
sess the extent of the condition. The ever-increasing res-
olution of the scanning hardware will only exacerbate this
discrepancy – even current CT or MRI scanners, with typi-
cally 1024⇥1024⇥128 voxels, are at the limit of what can
be conveniently processed.

In this paper, we propose C-PIC (for ”cherry-picking
gradients”), a framework for learning with tensors while
looking only at a small fraction of their entries. C-PIC ex-
ploits the fact that, after a suitable non-linear mapping, the
learned representation can be constrained to have low rank.
The constraint gives rise to a smart sampling strategy that
adaptively selects which tensor entries to be shown to the ar-
chitecture. The whole pipeline is end-to-end trainable with
back-propagation, so that the learned, low-dimensional em-
bedding is optimally tuned to a given prediction task. Cru-
cially, our approach can operate out-of-core, meaning that
it does not need to store the full input tensors in memory,
but only small (hyper-)cubes around the sampled locations.
It can therefore handle massive spatial resolutions that are
orders of magnitude larger than the available memory, par-
ticularly on GPUs (we have experimented with volumes up
to 81923

⇡ 0.5 · 1012 voxels).
The key insight underlying our novel representation is

related to non-linear dimensionality reduction: if we can
transform the tensor values in a way that ”flattens the mani-
fold”, then we can explicitly impose a low rank structure on
the representation, which we do with the tensor train (TT)
decomposition [38]. I.e., we learn an end-to-end function
that maps the input data to the desired output via a low-rank
TT bottleneck. This is possible due to two important prop-
erties of the TT decomposition: (i) one can perform basic
tensor arithmetic in the compressed format, as well as back-
propagate through the decomposition; and (ii) there exist
efficient cross-approximation (CA) algorithms that find an
approximate TT decomposition based only a small set of
samples, rather than the complete input [39]. While there
have been attempts to use the TT format within a neural
network [35], our work is, to the best of our knowledge,
the first to employ cross-approximation for learning; mak-
ing it possible to operate at high spatial resolution without
running into memory limits.

With classical manifold learning, our work shares the as-
sumption of an underlying low-dimensional, but non-linear
data manifold. However, our embedding is discriminative,
in the sense that the projection onto the manifold is learned
end-to-end, taking into account the prediction task. In this
way, the learned encoder minimises not the error when re-
constructing from the latent representation, but the error of
the desired output after decoding the representation. See

Fig. 1 for a 2D illustration. By keeping the input and the ac-
tivation maps of the encoder implicit, we circumvent what
is arguably the main limitation of grid representations of
dimension D � 3: their huge memory consumption, expo-
nential in D. To summarise, our contributions are:

1. We design a first end-to-end neural architecture for
high-dimensional, but low-rank visual data that exploits
tensor decompositions;

2. We develop a computational scheme for back-
propagating through cross-approximation. The differ-
entiable CA step allows one to learns an optimal em-
bedding from a limited number of sample evaluations
and thereby opens the door to very large resolutions.

3. We develop an iterative basis projection scheme to
project the learned TT features onto a canonical basis,
so that they can serve as a basis for regression tasks.

We demonstrate our approach on two different medical
image analysis problems and show that we perform on par
with the state-of-the-art. Furthermore, C-PIC with the same
hyper-parameters can work on double the resolution while
other state-of-the-art methods fail due to the memory limit.

2. Background and Related Work
2.1. Tensor Train Decomposition

Tensors are a fundamental data structure for computer
vision in the current age of deep learning. For our purposes,
a tensor X 2 RI1⇥···⇥ID is a discrete sampling of a D-
dimensional space on a grid I = I1 ⇥ · · · ⇥ ID, with Id

samples along dimension d.
For a long time, low-rank approximations of matrices

have been used in computer vision as a tool to compress,
classify, or restore visual data, e.g. [2, 45, 48, 52, 25].
However, they build on matrix-specific decomposition tech-
niques like SVD or independent component analysis, which
do not directly generalise to tensors of dimension >2.

More recently, low-rank priors have been generalized to
the tensor case; see also Appendix A.1. The model used
in this paper, the tensor train (TT) [38], decomposes a ten-
sor of dimension D into D 3-dimensional tensors. Conse-
quently, its number of parameters grows only linearly with
the dimensionality. The TT is defined as

X[i1, . . . , iD] = Q1[1, i1, :]Q2[:, i2, :] . . . QD[:, iD, 1], (1)

where the tensors {Qd}
D
d=1, Qd 2 Rrd�1⇥Id⇥rd , are called

TT-cores and rd are the TT-ranks (r0 = rD = 1). The TT
decomposition has O

�
D · (maxd[rd])2 · maxd[Id]

�
storage

cost. Importantly, basic linear algebra operations such as
linear combination of tensors can be carried out directly in
this format without prior decompression (i.e., recomposing
the cores).
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Robust numerical schemes exist to find the TT de-
composition. The standard TT-SVD algorithm yields a
quasi-optimal decomposition [38] but is based on mul-
tiple rounds of singular value decomposition(SVD), i.e.,
it must visit all entries of the input tensor. Of crucial
importance for our work is a different algorithm, known
as cross-approximation, that efficiently constructs the TT-
cores based on an adaptively chosen sequence of local sam-
ples from the input tensor. Only a small fraction of all tensor
elements need to be queried; see Section 3.

2.2. Applications in Machine Learning
Tensor decompositions have been investigated as a way

of extracting features from high-dimensional datasets [41,
8], and at large scale [14]. The Tucker decomposition,
in particular, has recently also been extended to nonlinear
interactions between the cores, with either Gaussian Pro-
cesses [54] or deep neural networks [31].

[5] explore the Tucker decomposition as a lossy com-
pression tool for multi-dimensional grid data. Our work
goes further: we share the aim to compress gridded data via
the low-rank representation, but learn an encoder/decoder
structure tailored to the rank-constrained bottleneck to min-
imise the associated information loss.

In deep learning, the TT format has so far been used
mostly to compress very large network layers [35]. Re-
cently, the format was employed as part of a conditional
generative model for drug design [30, 53], where a varia-
tional auto-encoder was combined with a TT-induced prior
over the joint distribution of latent variables and class la-
bels. There, a global set of TT-cores are learnable parame-
ters, while we TT-decompose each individual input tensor,
thus requiring an efficient and differentiable procedure.

2.3. Prediction of Health Indicators
In section Section 4, we demonstrate our approach on

the concrete target application of predicting a patient’s fu-
ture condition from medical 3D scans (CT of the lung and
MRI of the brain, respectively). Regressing health indica-
tors from scan data has a long tradition in medical image
analysis, e.g., [27, 51]. Following the general trend in com-
puter vision, recent methods mostly employ deep CNNs for
the task. Examples include brain age estimation from MRI
scans, e.g., [24, 9]; and survival prediction from MRI scans,
e.g., [26, 13]. All these works use standard CNN archi-
tectures like VGG, U-Net or ResNet, and operate on low-
resolution scans (sizes below 200⇥200⇥100 voxels) to stay
within GPU memory limits.

3. Method
We first describe our model in feed-forward mode, where

it maps tensor-valued input data to the prediction via a low-
rank TT bottleneck. Then, we explain the efficient imple-

mentation and end-to-end learning of this model, includ-
ing back-propagation through the cross-approximation al-
gorithm, and a projection of TT-cores to obtain a unique
feature representation.

3.1. Model Architecture
C-PIC consists of four main building blocks: (i) an en-

coder that can be seen as a learned, non-linear dimension-
ality reduction; (ii) the TT decomposition, followed by (iii)

feature projection; and (iv) a conventional, learned predic-
tion function. See Fig. 2. In the first block, a learned map-
ping transforms the input tensor X to a latent encoding E.
The low (tensor) rank of that encoding is imposed by sub-
sequent TT decomposition. This mapping is implemented
as a 3D convolutional network (but another differentiable
feed-forward operator could also be used). As a result, we
obtain for each location in the input tensor X a vector in the
non-linear encoding E, i.e., the two tensors have the same
shape except for an extra channel dimension in E.

In the second block, which has not got any learnable pa-
rameters, the encoding E is decomposed into a set of TT-
cores {Qd}

D+1
d=1 with predefined, low TT-ranks, all bounded

by a hyper-parameter r. The rank r constrains the effec-
tive capacity of the representation E and offers a trade-off
between expressiveness and memory constraints. Crucially,
to build the TT decomposition one need not store the full
tensors X and E in memory, rather it is sufficient to observe
them at specific locations as described in Section 3.2. This
makes it possible to sidestep memory limits, but poses the
challenge of propagating gradients through the selection of
discrete locations.

In the final two blocks, the obtained TT-cores are used
as a basis for the prediction. Since the TT decomposition
is not unique, they are first projected onto a canonical ba-
sis to obtain an invariant feature vector (see Section 3.3),
which then serves as input for the final prediction step, in
our implementation a multi-layer perceptron (MLP).

3.2. Differentiable Cross-approximation
If the tensors X and E have high resolution, storing them

in memory quickly becomes intractable. Therefore, we pro-
pose to utilise an efficient approximate tensor learning algo-
rithm termed cross-approximation (CA) [39]. The principle
of CA is to reduce memory consumption by only consid-
ering selected entries of the tensor X, at carefully chosen
locations.

Originally, CA was conceived as a matrix sampling
method [49, 7] that uses the so-called pseudo-skeleton de-

composition [17] to approximately reconstruct a matrix U
while observing only r of its rows and columns. The inter-
section of these rows with indices J1 and columns with in-
dices J2 define an (r⇥r)-sized submatrix U(J1, J2). Find-
ing J1, J2 that yield the largest |det(U(J1, J2))| leads to
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(a) Overview of C-PIC pipeline.
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(b) C-PIC with detailed view of CA.

Figure 2: General model architecture (a), and detailed view, c.f. Algorithm 1 (b). The input tensor X is treated as if it were
partially observed. The indices JCA obtained via cross-approximation define a set of locations i in X, and the local encoder
function processes a voxel-cube B

i
s around each of them and outputs feature vectors for the corresponding locations i in E.

These values are used to construct the TT approximation of E.

a rank-r matrix interpolant U(:, J2)U(J1, J2)�1U(J1, :)
with the (up to a constant factor) lowest approximation error
w.r.t. the original U [16].

The same idea can be applied in D > 2 dimensions as
well: a small subset of tensor indices can, under reason-
able conditions [39], be used to approximate the tensor E,
which in turn gives rise to an approximate TT decomposi-
tion {Qd}

D+1
d=1 of E.

Let JCA be a set of some N locations in the tensor E
with D + 1 dimensions, i.e., JCA = {(in1 , . . . i

n
D+1)}

N
n=1.

CA alternates between two steps of choosing the indices
JCA and building the TT-cores {Qd}

D+1
d=1 as follows:

1. Index selection: select a set of indices JCA along all
tensor dimensions, such that the approximation error is
small. The error minimisation is a combinatorial prob-
lem and is in practice solved via the greedy maxvol

heuristic [15, 43].

2. Cross-interpolation: compute TT-cores {Qd}
D+1
d=1

based on the entries of E evaluated only at indices
JCA. The cores {Qd}

D+1
d=1 are derived from the pseudo-

skeleton reconstruction via standard matrix operations,
including QR factorization, matrix multiplication, and
least-squares inversion. See Appendix A.2 for further
details about the CA procedure.

The value of E at a location i 2 JCA is obtained by en-
coding the corresponding local voxel cube B

i
s from X, cen-

tred at location i. In this way, one avoids having to store the
full tensors in memory, instead one must only access a set
{B

i
s} of N voxel cubes. The fixed, small size s of each cube

determines the local context included around each sample
and depends on the receptive field of the encoder, see Alg. 1.

When used to approximate a given tensor E in a classi-
cal way, CA iterates only over the index selection step, then
explicitly assembles the TT decomposition of E with cross-
interpolation. Our work is the first to employ CA within a
larger, trainable neural architecture. This means that, during
training, the source E changes in response to the evolving
encoder weights. Consequently, the set of indices JCA must
also be updated throughout the learning process. While
cross-interpolation consists of differentiable algebraic op-
erations, index selection is a discrete function that poses a
problem when training the pipeline end-to-end. To over-
come this issue, we propose a scheme that alternates be-
tween iterative index selection and gradient descent. More
specifically, we cherry-pick the tensor elements and the as-
sociated gradients as follows: First, we select and fix a set
of indices JCA and, using those, perform back-propagation
through the cross-interpolation procedure to update the net-
work weights. Then, to catch up with the changed encoder
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Figure 3: Feature projection. We follow the notation from
[12]: each blue box represents a TT-core (3rd-order tensor).
The leading and trailing dimensions satisfy j0 = jD+2 = 1.
We extract invariant features for the K training instances by
stacking and rank-truncating them (like PCA for 2D matri-
ces). This yields K feature vectors (core Ctr

0 ) and an or-
thogonal basis (cores C1, . . . , CD+1).

parameters and associated representation E, we pick a new
set of indices JCA, switch back to back-propagation at those
new locations, and so on. It is easy to see that this proce-
dure converges since, for a given input, the index selection
no longer changes once the encoding has converged.

Complexity of CA. It can be shown [39] that an in-
dex set JCA containing N(r) = O(Dr

2 maxd[Id]) entries
from E is sufficient to interpolate D cores, and respectively
O(Dr

2 maxd[Id]s) entries from X. Each of the TT-cores
{Qd}

D+1
d=1 contains r

2
Id elements, thus storing them does

not change the memory complexity. The time complexity
of the cross approximation algorithm (without the cost of
sampling the tensor elements) is O(Dr

3 maxd[Id]) [39].

3.3. Feature projection
The TT decomposition is, by construction, not unique.1

To address this issue, our pipeline includes a PCA-like step
that projects the TT-cores into a canonical feature space of
rank r as follows. Given multiple training instances k =
1 . . . K, we view their TT decompositions {{Qk

d}
D+1
d=1 }

K
k=1

as a set of K vectors that forms a basis. We concatenate
these vectors in the TT format along a new, leading dimen-

1E.g., one can create an equivalent TT with different weights by right-
multiplying all slices of some core with any non-singular matrix R and
left-multiplying all slices of the subsequent core with its inverse R�1.

Algorithm 1 DIFFERENTIABLE CA FOR TT

I = I1 ⇥ I2 ⇥ I3 – 3D grid
X 2 RI – input visual data
E 2 RI⇥ndims – full-rank output of encoder f�

B
i
s ⇢ I ⇥ ndims – s-neighborhood of i 2 I ⇥ ndims

Require: Input data X, local size s

1: for epoch = 1, . . . , nepochs do
2: for d = 1, 2, 3, 4 do
3: Select CA indices JCA ⇢ I ⇥ ndims (Sec. 3.2)
4: end for
5: for d = 1, 2, 3, 4 do
6: Get X[j], 8j 2 {B

i
s| 8i 2 JCA}

7: Get E[i] = f�(Bi
s), 8i 2 JCA

8: Compute Qd via cross-interpolation (Sec. 3.2)
9: end for

10: Project cores Q1, Q2, Q3, Q4 into lower-dimensional
features fr (Sec. 3.3)

11: Compute loss l of fr

12: Update cores via backprop(l)
13: end for

Output: Q1, Q2, Q3, Q4

sion to form a (D + 2)-dimensional TT tensor C repre-
senting that basis, i.e. C[k, ...] ⇡ Qk (the concatenation
is done in the TT compressed domain). The first core C0

of C has shape 1 ⇥ K ⇥ j1, i.e. it indexes the training
instances along its spatial dimension. Next, we orthogo-
nalise C with respect to C0 and rank-truncate the resulting
core into a K ⇥ r feature matrix Ctr

0 . The trailing cores
{Cd}

D+1
d=1 now form an orthogonal basis, while matrix Ctr

0

contains one r-dimensional feature vector fk for each input
Xk that is now invariant to the choice of coefficients in the
TT representation Qk. The whole procedure is an exten-
sion of standard PCA matrix projection to the case where
basis elements are TT tensors; see also Fig. 3. For infer-
ence, we similarly concatenate input instances into a new
tensor, which we then project onto the learned basis to ob-
tain their corresponding r-sized feature vectors. We refer to
the supplementary material for further details.

3.4. Technical Details
Tensorisation. An important technical detail along the
way is the shape of the embedding E that affects the
memory complexity. In principle, one can directly apply
TT decomposition to the tensor E sampling and storing
O(Dr

2 maxd[Id]s) entries of it. However, if the tensor
has high spatial resolution, i.e., maxd[Id] is large, one can
reach better memory complexity by employing the so-called
Quantised2 Tensor Train (QTT) decomposition [28, 37].

The idea of QTT is to build a TT decomposition for
2The name does not imply quantisation of real-valued tensor entries.
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the tensor after reshaping it to a higher dimensional one.
Particularly, if all {log2 Id}

D
d=1 are natural numbers, a D-

dimensional tensor E with sizes {Id}
D
d=1 can be reshaped

into a D
0-dimensional tensor Ẽ with D

0 =
P

d log2 Id and
sizes {Id = 2}

D0

d=1. As the result, QTT decomposition of
E requires a storage cost of O(r2

D maxd[log2 Id]s), as op-
posed to the initial O(r2

D maxd[Id]s). Intuitively, the QTT
scheme exploits the similarity between adjacent voxels in
the uncompressed tensor E and is related to the wavelet
transform; see, e.g., [36]. Note that the reshaping is only
done locally and implicitly within the QTT routine, by a
function that maps index tuples from E to Ẽ and vice versa.

QTT is the most sample-efficient scheme for tensors with
large maxd[Id] and we exploit it in Section 4 to handle reso-
lutions that are intractable with standard deep learning mod-
els. Still, our scheme is flexible. If the number of samples
is not a concern, one can use the conventional TT represen-
tation without reshaping during CA. In principle, it is also
possible to use our scheme with the exact TT-SVD algo-
rithm instead of the approximate CA to find the decomposi-
tion, if the inputs are small enough to fit them into memory.

Feature projection and batching. For PCA, the number of
samples K must be at least as large as the feature dimension
r. Consequently, the batch size during learning must be at
least r samples per mini-batch. Note that the common basis
would in principle have to be computed over all training
samples. In practice we cache the basis in each mini-batch
and append it to the cores of the next mini-batch to converge
towards a stable, common basis at the end of an epoch.

Numerical issues. The basis computation is implemented
with the cvxpylayer method [1], which we found to have
better stability than other algebraic schemes during the
backward pass through our differentiable CA. Due to the
memory-efficiency of C-PIC we are also able to train it with
float64 precision to further improve numerical stability. We
do this in all experiments (baselines had to be trained with
float32 to stay within memory limits).

Index batching. A subtle technical detail is that performing
the backward pass simultaneously for all indices selected by
CA still requires significant memory, especially for large in-
puts that require more CA samples. To further reduce mem-
ory consumption, one can switch to batch-wise processing
of the CA indices, such that only the gradients for one batch
must be held in memory. However, the price to pay is an in-
crease in runtime, proportional to the number of batches, as
one has to run the cross-interpolation step more often. We
have implemented the index batching trick and have em-
pirically verified convergence for tensors up to size 81923.
Still, we recommend to use index batching only when nec-
essary, as it greatly slows down the training (and even for
scans of size 5123 the complete backward pass fits into the
memory of a modern GPU).

Figure 4: Examples from OSIC, resolution 32⇥ 512⇥ 512.

4. Experiments
To illustrate the effectiveness of C-PIC, we apply it to

two different prediction tasks where health indicators shall
be regressed from medical 3D scans. The tasks were se-
lected because of their global, holistic nature, i.e., in both
cases one should assess the state of an entire organ and
the future progression of the condition, for which it makes
sense to process the entire scan, rather than cut it into
smaller tiles.

4.1. Datasets
OSIC Pulmonary Fibrosis Progression is a dataset of CT
scans of patients’ lungs, originally released for a Kaggle
competition [40]. Example scans are shown in Fig. 4. Pul-
monary fibrosis causes a progressive decline of the pul-
monary capacity, and the goal of the challenge is to pre-
dict that decline from a scan taken at time t = 0. Lung
capacity is quantified by forced vital capacity (FVC, the
volume of exhaled air exhaled). For the patients in the
dataset it has been repeatedly measured over 1-2 years af-
ter the scan by means of a spirometer. FVC as a function
of time (in weeks) is the regression target. Overall, there
are 176 patients and 1549 individual ground truth FVC val-
ues. As error metric, the creators of the challenge proposed
the modified Laplace Log Likelihood (mLLL), defined as
mLLL = �

p
2�/� � ln(

p
2�); with � the standard de-

viation of the predicted FVC, truncated at 70 FVC units,
and � the absolute error of the predicted FVC, truncated at
1000 FVC units. For training we use quantile regression.
From predicted {0.2, 0.5, 0.8} quantiles we compute both
predicted FVC and standard deviation.
MICCAI 2020 BraTS is a dataset of MRI scans [34] show-
ing brains with a specific type of tumor [33, 3, 4]. Exam-
ples are shown in Fig. 5. The target value that should be
predicted from a scan is the patient’s survival time (in days)
after the scan was taken. The participants of the study are
divided into two groups, where the first group underwent
a specific type of treatment (gross total resection surgery),
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Figure 5: Examples from BraTS, resolution 256⇥256⇥256.

whereas the second group was not. In total there are for 235
patients. We discard grouping and treat all scans as one sin-
gle dataset for survival prediction. As error metric, we use
the RMSE of the predicted survival time. During training
we normalise the survival time to 5 years.
Synthetic upsampling. The goal of our work is efficient,
compressed representation learning that is able to handle
large, high-resolution data. However, there do not seem
to be any high-resolution benchmark datasets of sufficient
size (although modern scanners can capture up to at least
1024⇥1024⇥128 voxels). Therefore, we also synthetically
upsample the two datasets to 2⇥ higher resolution along
each dimension with 3rd-order spline interpolation, to ob-
tain 8⇥ higher voxel count. Clearly, this step does not add
any information to the lower-resolution originals, so we do
not expect better performance, still the upsampled version
gives us an opportunity to verify that our approach can in-
deed handle such large volumes. In fact, it does so without
any loss of accuracy, which supports the hypothesis that the
data has low rank and can therefore be compressed without
information loss.
Implementation Details. The detailed layer structure of
the CNN encoder and the MLP for prediction are given
in Appendix A.4. All models are trained with RAdam [32],
with base learning rate 10�3. All quantitative results are
averages over five-fold cross-validation.

4.2. Results
We first apply C-PIC to the data in its original form

(without upsampling), and compare it to a 3D version of
ResNet-34 [21] as a baseline. C-PIC is trained with batch
size 20, for the baseline we had to reduce the batch size to
2 to fit the training into memory. To show that the CNN en-
coder is indeed needed before the low-rank constraint can
be imposed, we also run our pipeline without the encoder.

I.e., the raw input tensor X is fed into TT decomposition,
projected to a canonical feature vector, and fed into the re-
gression MLP.

Quantitative results for the OSIC dataset are shown in
Table 1. They show that C-PIC, with rank r = 10 and
channel depth ndim = 16, not only needs a lot less memory,
but in fact predicts FVC significantly better than the ResNet
baseline. The performance gain provides evidence that the
low-rank assumption underlying our method is justified, at
least for the medical scan data we have used: if the intrin-
sic rank of the data were higher, there would have to be at
least some performance loss; whereas if the assumption is
valid, it can even act as a regulariser for the learning pro-
cess. The TT+MLP baseline, on the contrary, performs a
bit worse than ResNet and significantly worse than C-PIC,
i.e., there appears to be a clear benefit in non-linearly trans-
forming the scans to a ”TT-friendly” representation with the
convolutional encoder, and consequently in the associated
end-to-end learning framework.

As a next step, we perform the same experiment with the
up-scaled scans to see how our method scales to larger vol-
umes. At the increased size of 64 ⇥ 1024 ⇥ 1024 voxels
the ResNet baseline can no longer be trained, as even a last-
generation GPU with 24GB of on-board RAM runs out of
memory already with batch size 1. On the contrary, C-PIC
reaches the same performance as for the smaller scans (as
mentioned earlier, no improvement is expected, since the
synthetic up-sampling, in contrast to actual high-resolution
scanning, does not add information). The table also shows
that the huge memory savings of C-PIC of course come at
the price of longer training time because of the added com-
plexity to back-propagate through the TT bottleneck and
CA algorithm. The difference is partly due to our imple-
mentation being not nearly as optimised as standard back-
propagation code; but we cannot at this point quantify the
speed-up achievable with a careful implementation. Note,
however, the training time grows sub-linearly with the res-
olution, due to the favourable scaling properties of CA.

Results for BraTS are shown in Table 2. For the big-
ger scan volume and more complex image content of the
brain scans, we keep the rank r = 10, but increase the
channel depth of the encoding to ndim = 32 as a default.
Again, C-PIC matches the performance of ResNet baseline,
with greatly reduced memory consumption. In fact, it even
reaches a slightly lower RMSE, but in this case the margin is
small and we do not claim to outperform the baseline. Addi-
tionally, the table also shows the impact of different channel
depths in the encoder. Too few channels negatively affect
the prediction, whereas too many significantly increase the
runtime. We emphasise that, while adding channels in the
latent space increases the representation power of the en-
coding E, it only adds a tiny number of weights (for the cor-
responding convolution kernels). The added channels can
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Table 1: OSIC Pulmonary Fibrosis Progression results. C-PIC outperforms the baselines, and can also handle 8⇥ larger scan
volumes, contrary to a 3D ResNet (marked as N/A in the table).

resolution mLLL" training time prediction time fw/bw memory # params

ResNet 34 32 ⇥ 512 ⇥ 512 -6.86 4650 s. / epoch 0.2 s. / sample 7.0 Gb 67M
ResNet 34 64 ⇥ 1024 ⇥ 1024 N/A N/A N/A 57.9 Gb 67M
TT + MLP 32 ⇥ 512 ⇥ 512 -6.91 27534 s. / epoch 14.9 s. / sample 1.0 Gb 64K
C-PIC 32 ⇥ 512 ⇥ 512 -6.73 51480 s. / epoch 25.2 s. / sample 3.5 Gb 87K
C-PIC 64 ⇥ 1024 ⇥ 1024 -6.73 62478 s. / epoch 46.1 s. / sample 4.2 Gb 87K

Table 2: MICCAI 2020 BraTS results. C-PIC outperforms the baseline in terms of RMSE of the predicted survival time.
Additionally, the table also shows C-PIC results with different channel depth of the encoding E. Reducing the channel depth
too far hurts performance, even with the same tensor rank r=10.

resolution RMSE# training time prediction time fw/bw memory # params

ResNet 34 2563 48.7 days 519 s. / epoch 0.3 s. / sample 14.0 Gb 67M
TT + MLP 2563 83.9 days 646 s. / epoch 2.9 s. / sample 4.2 Gb 3K
C-PIC ndim = 32, r = 10 2563 48.2 days 3300 s. / epoch 13.4 s. / sample 8.9 Gb 37K
C-PIC ndim = 16, r = 10 2563 49.1 days 2979 s. / epoch 12.8 s. / sample 8.7 Gb 27K
C-PIC ndim = 8, r = 10 2563 51.1 days 2883 s. / epoch 12.1 s. / sample 7.9 Gb 21K
C-PIC ndim = 8, r = 10 5123 51.2 days 16560 s. / epoch 79.0 s. / sample 45.5 Gb 21K
C-PIC ndim = 8, r = 12 2563 51.1 days 5520 s. / epoch 27.9 s. / sample 13.4 Gb 21K
C-PIC ndim = 8, r = 15 2563 51.1 days 7140 s. / epoch 35.8 s. / sample 18.6 Gb 22K

be interpreted as additional dimensions of the encoded data
manifold, which make it easier to ”flatten”. They do not re-
lax the low-rank constraint: independent of the number of
channels in its last dimension, the tensor E is decomposed
into cores {Qd} with the same tensor rank r=10.

We also test the influence of the tensor rank r on perfor-
mance, with fixed, low ndim =8. For ranks r 2 {10, 12, 15}

we observe similar performance. With values r < 10
the training tends to become unstable, thus preventing the
model from learning. Whereas for r >20 the training went
out of memory (but our implementation is not fully opti-
mised, so higher ranks are likely possible).

5. Conclusion
We have developed a neural network architecture that in-

cludes the truncated tensor-train decomposition as a low-
rank latent representation, and have devised methods to
back-propagate through the decomposition. Most notably,
we have shown how the compressed TT encoding can be
learned by cross-approximation, from a sparse set of local
samples drawn from suitable locations of the input tensor.
Thanks to this strategy, there is no need to store the uncom-
pressed input tensor explicitly, which in turn makes it possi-
ble to process large, high-dimensional grids that exceed the
memory of commodity hardware. In experiments on med-

ical CT and MRI scans, we have demonstrated that our C-
PIC method matches or even exceeds the performance of a
conventional CNN regressor; while using orders of magni-
tude less memory, thus making it possible to process much
larger data volumes, which we expect to increasingly see
in the near future as scanning hardware improves. While
we have, for practical reasons, concentrated on 3D scan
data, our method is generic. As long as the requirement
of low tensor rank is met (after a non-linear encoding tuned
to fit the subsequent decomposition), our method can also
be utilised with tensorial data of dimension >3.

A limitation of C-PIC is that TT decomposition is not
robust against translations and rotations of the input data
space, i.e., the inputs are implicitly assumed to be roughly
aligned (like medical scans). We do not expect it to work
as well for arbitrarily shifted and/or rotated inputs, unless
the encoder can compensate for such transformations. One
possible solution is to actively favour invariance of the en-
coding during training, for instance by deep supervision or
suitable data augmentation. We leave this for future work.

In this work we have experimented only with regres-
sion tasks. However, the low-rank latent embedding that
we learn should be equally applicable in combination with
other tasks, like classification or segmentation. We specu-
late that it may even serve as a basis for a generative model.
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